| /* |
| * Generic process-grouping system. |
| * |
| * Based originally on the cpuset system, extracted by Paul Menage |
| * Copyright (C) 2006 Google, Inc |
| * |
| * Copyright notices from the original cpuset code: |
| * -------------------------------------------------- |
| * Copyright (C) 2003 BULL SA. |
| * Copyright (C) 2004-2006 Silicon Graphics, Inc. |
| * |
| * Portions derived from Patrick Mochel's sysfs code. |
| * sysfs is Copyright (c) 2001-3 Patrick Mochel |
| * |
| * 2003-10-10 Written by Simon Derr. |
| * 2003-10-22 Updates by Stephen Hemminger. |
| * 2004 May-July Rework by Paul Jackson. |
| * --------------------------------------------------- |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of the Linux |
| * distribution for more details. |
| */ |
| |
| #include <linux/cgroup.h> |
| #include <linux/ctype.h> |
| #include <linux/errno.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/mount.h> |
| #include <linux/pagemap.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched.h> |
| #include <linux/backing-dev.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/magic.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/sort.h> |
| #include <linux/kmod.h> |
| #include <linux/delayacct.h> |
| #include <linux/cgroupstats.h> |
| #include <linux/hash.h> |
| #include <linux/namei.h> |
| #include <linux/smp_lock.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/idr.h> |
| #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ |
| |
| #include <asm/atomic.h> |
| |
| static DEFINE_MUTEX(cgroup_mutex); |
| |
| /* Generate an array of cgroup subsystem pointers */ |
| #define SUBSYS(_x) &_x ## _subsys, |
| |
| static struct cgroup_subsys *subsys[] = { |
| #include <linux/cgroup_subsys.h> |
| }; |
| |
| #define MAX_CGROUP_ROOT_NAMELEN 64 |
| |
| /* |
| * A cgroupfs_root represents the root of a cgroup hierarchy, |
| * and may be associated with a superblock to form an active |
| * hierarchy |
| */ |
| struct cgroupfs_root { |
| struct super_block *sb; |
| |
| /* |
| * The bitmask of subsystems intended to be attached to this |
| * hierarchy |
| */ |
| unsigned long subsys_bits; |
| |
| /* Unique id for this hierarchy. */ |
| int hierarchy_id; |
| |
| /* The bitmask of subsystems currently attached to this hierarchy */ |
| unsigned long actual_subsys_bits; |
| |
| /* A list running through the attached subsystems */ |
| struct list_head subsys_list; |
| |
| /* The root cgroup for this hierarchy */ |
| struct cgroup top_cgroup; |
| |
| /* Tracks how many cgroups are currently defined in hierarchy.*/ |
| int number_of_cgroups; |
| |
| /* A list running through the active hierarchies */ |
| struct list_head root_list; |
| |
| /* Hierarchy-specific flags */ |
| unsigned long flags; |
| |
| /* The path to use for release notifications. */ |
| char release_agent_path[PATH_MAX]; |
| |
| /* The name for this hierarchy - may be empty */ |
| char name[MAX_CGROUP_ROOT_NAMELEN]; |
| }; |
| |
| /* |
| * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the |
| * subsystems that are otherwise unattached - it never has more than a |
| * single cgroup, and all tasks are part of that cgroup. |
| */ |
| static struct cgroupfs_root rootnode; |
| |
| /* |
| * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when |
| * cgroup_subsys->use_id != 0. |
| */ |
| #define CSS_ID_MAX (65535) |
| struct css_id { |
| /* |
| * The css to which this ID points. This pointer is set to valid value |
| * after cgroup is populated. If cgroup is removed, this will be NULL. |
| * This pointer is expected to be RCU-safe because destroy() |
| * is called after synchronize_rcu(). But for safe use, css_is_removed() |
| * css_tryget() should be used for avoiding race. |
| */ |
| struct cgroup_subsys_state *css; |
| /* |
| * ID of this css. |
| */ |
| unsigned short id; |
| /* |
| * Depth in hierarchy which this ID belongs to. |
| */ |
| unsigned short depth; |
| /* |
| * ID is freed by RCU. (and lookup routine is RCU safe.) |
| */ |
| struct rcu_head rcu_head; |
| /* |
| * Hierarchy of CSS ID belongs to. |
| */ |
| unsigned short stack[0]; /* Array of Length (depth+1) */ |
| }; |
| |
| |
| /* The list of hierarchy roots */ |
| |
| static LIST_HEAD(roots); |
| static int root_count; |
| |
| static DEFINE_IDA(hierarchy_ida); |
| static int next_hierarchy_id; |
| static DEFINE_SPINLOCK(hierarchy_id_lock); |
| |
| /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
| #define dummytop (&rootnode.top_cgroup) |
| |
| /* This flag indicates whether tasks in the fork and exit paths should |
| * check for fork/exit handlers to call. This avoids us having to do |
| * extra work in the fork/exit path if none of the subsystems need to |
| * be called. |
| */ |
| static int need_forkexit_callback __read_mostly; |
| |
| /* convenient tests for these bits */ |
| inline int cgroup_is_removed(const struct cgroup *cgrp) |
| { |
| return test_bit(CGRP_REMOVED, &cgrp->flags); |
| } |
| |
| /* bits in struct cgroupfs_root flags field */ |
| enum { |
| ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ |
| }; |
| |
| static int cgroup_is_releasable(const struct cgroup *cgrp) |
| { |
| const int bits = |
| (1 << CGRP_RELEASABLE) | |
| (1 << CGRP_NOTIFY_ON_RELEASE); |
| return (cgrp->flags & bits) == bits; |
| } |
| |
| static int notify_on_release(const struct cgroup *cgrp) |
| { |
| return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
| } |
| |
| /* |
| * for_each_subsys() allows you to iterate on each subsystem attached to |
| * an active hierarchy |
| */ |
| #define for_each_subsys(_root, _ss) \ |
| list_for_each_entry(_ss, &_root->subsys_list, sibling) |
| |
| /* for_each_active_root() allows you to iterate across the active hierarchies */ |
| #define for_each_active_root(_root) \ |
| list_for_each_entry(_root, &roots, root_list) |
| |
| /* the list of cgroups eligible for automatic release. Protected by |
| * release_list_lock */ |
| static LIST_HEAD(release_list); |
| static DEFINE_SPINLOCK(release_list_lock); |
| static void cgroup_release_agent(struct work_struct *work); |
| static DECLARE_WORK(release_agent_work, cgroup_release_agent); |
| static void check_for_release(struct cgroup *cgrp); |
| |
| /* Link structure for associating css_set objects with cgroups */ |
| struct cg_cgroup_link { |
| /* |
| * List running through cg_cgroup_links associated with a |
| * cgroup, anchored on cgroup->css_sets |
| */ |
| struct list_head cgrp_link_list; |
| struct cgroup *cgrp; |
| /* |
| * List running through cg_cgroup_links pointing at a |
| * single css_set object, anchored on css_set->cg_links |
| */ |
| struct list_head cg_link_list; |
| struct css_set *cg; |
| }; |
| |
| /* The default css_set - used by init and its children prior to any |
| * hierarchies being mounted. It contains a pointer to the root state |
| * for each subsystem. Also used to anchor the list of css_sets. Not |
| * reference-counted, to improve performance when child cgroups |
| * haven't been created. |
| */ |
| |
| static struct css_set init_css_set; |
| static struct cg_cgroup_link init_css_set_link; |
| |
| static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); |
| |
| /* css_set_lock protects the list of css_set objects, and the |
| * chain of tasks off each css_set. Nests outside task->alloc_lock |
| * due to cgroup_iter_start() */ |
| static DEFINE_RWLOCK(css_set_lock); |
| static int css_set_count; |
| |
| /* |
| * hash table for cgroup groups. This improves the performance to find |
| * an existing css_set. This hash doesn't (currently) take into |
| * account cgroups in empty hierarchies. |
| */ |
| #define CSS_SET_HASH_BITS 7 |
| #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) |
| static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; |
| |
| static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) |
| { |
| int i; |
| int index; |
| unsigned long tmp = 0UL; |
| |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) |
| tmp += (unsigned long)css[i]; |
| tmp = (tmp >> 16) ^ tmp; |
| |
| index = hash_long(tmp, CSS_SET_HASH_BITS); |
| |
| return &css_set_table[index]; |
| } |
| |
| static void free_css_set_rcu(struct rcu_head *obj) |
| { |
| struct css_set *cg = container_of(obj, struct css_set, rcu_head); |
| kfree(cg); |
| } |
| |
| /* We don't maintain the lists running through each css_set to its |
| * task until after the first call to cgroup_iter_start(). This |
| * reduces the fork()/exit() overhead for people who have cgroups |
| * compiled into their kernel but not actually in use */ |
| static int use_task_css_set_links __read_mostly; |
| |
| static void __put_css_set(struct css_set *cg, int taskexit) |
| { |
| struct cg_cgroup_link *link; |
| struct cg_cgroup_link *saved_link; |
| /* |
| * Ensure that the refcount doesn't hit zero while any readers |
| * can see it. Similar to atomic_dec_and_lock(), but for an |
| * rwlock |
| */ |
| if (atomic_add_unless(&cg->refcount, -1, 1)) |
| return; |
| write_lock(&css_set_lock); |
| if (!atomic_dec_and_test(&cg->refcount)) { |
| write_unlock(&css_set_lock); |
| return; |
| } |
| |
| /* This css_set is dead. unlink it and release cgroup refcounts */ |
| hlist_del(&cg->hlist); |
| css_set_count--; |
| |
| list_for_each_entry_safe(link, saved_link, &cg->cg_links, |
| cg_link_list) { |
| struct cgroup *cgrp = link->cgrp; |
| list_del(&link->cg_link_list); |
| list_del(&link->cgrp_link_list); |
| if (atomic_dec_and_test(&cgrp->count) && |
| notify_on_release(cgrp)) { |
| if (taskexit) |
| set_bit(CGRP_RELEASABLE, &cgrp->flags); |
| check_for_release(cgrp); |
| } |
| |
| kfree(link); |
| } |
| |
| write_unlock(&css_set_lock); |
| call_rcu(&cg->rcu_head, free_css_set_rcu); |
| } |
| |
| /* |
| * refcounted get/put for css_set objects |
| */ |
| static inline void get_css_set(struct css_set *cg) |
| { |
| atomic_inc(&cg->refcount); |
| } |
| |
| static inline void put_css_set(struct css_set *cg) |
| { |
| __put_css_set(cg, 0); |
| } |
| |
| static inline void put_css_set_taskexit(struct css_set *cg) |
| { |
| __put_css_set(cg, 1); |
| } |
| |
| /* |
| * compare_css_sets - helper function for find_existing_css_set(). |
| * @cg: candidate css_set being tested |
| * @old_cg: existing css_set for a task |
| * @new_cgrp: cgroup that's being entered by the task |
| * @template: desired set of css pointers in css_set (pre-calculated) |
| * |
| * Returns true if "cg" matches "old_cg" except for the hierarchy |
| * which "new_cgrp" belongs to, for which it should match "new_cgrp". |
| */ |
| static bool compare_css_sets(struct css_set *cg, |
| struct css_set *old_cg, |
| struct cgroup *new_cgrp, |
| struct cgroup_subsys_state *template[]) |
| { |
| struct list_head *l1, *l2; |
| |
| if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { |
| /* Not all subsystems matched */ |
| return false; |
| } |
| |
| /* |
| * Compare cgroup pointers in order to distinguish between |
| * different cgroups in heirarchies with no subsystems. We |
| * could get by with just this check alone (and skip the |
| * memcmp above) but on most setups the memcmp check will |
| * avoid the need for this more expensive check on almost all |
| * candidates. |
| */ |
| |
| l1 = &cg->cg_links; |
| l2 = &old_cg->cg_links; |
| while (1) { |
| struct cg_cgroup_link *cgl1, *cgl2; |
| struct cgroup *cg1, *cg2; |
| |
| l1 = l1->next; |
| l2 = l2->next; |
| /* See if we reached the end - both lists are equal length. */ |
| if (l1 == &cg->cg_links) { |
| BUG_ON(l2 != &old_cg->cg_links); |
| break; |
| } else { |
| BUG_ON(l2 == &old_cg->cg_links); |
| } |
| /* Locate the cgroups associated with these links. */ |
| cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); |
| cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); |
| cg1 = cgl1->cgrp; |
| cg2 = cgl2->cgrp; |
| /* Hierarchies should be linked in the same order. */ |
| BUG_ON(cg1->root != cg2->root); |
| |
| /* |
| * If this hierarchy is the hierarchy of the cgroup |
| * that's changing, then we need to check that this |
| * css_set points to the new cgroup; if it's any other |
| * hierarchy, then this css_set should point to the |
| * same cgroup as the old css_set. |
| */ |
| if (cg1->root == new_cgrp->root) { |
| if (cg1 != new_cgrp) |
| return false; |
| } else { |
| if (cg1 != cg2) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* |
| * find_existing_css_set() is a helper for |
| * find_css_set(), and checks to see whether an existing |
| * css_set is suitable. |
| * |
| * oldcg: the cgroup group that we're using before the cgroup |
| * transition |
| * |
| * cgrp: the cgroup that we're moving into |
| * |
| * template: location in which to build the desired set of subsystem |
| * state objects for the new cgroup group |
| */ |
| static struct css_set *find_existing_css_set( |
| struct css_set *oldcg, |
| struct cgroup *cgrp, |
| struct cgroup_subsys_state *template[]) |
| { |
| int i; |
| struct cgroupfs_root *root = cgrp->root; |
| struct hlist_head *hhead; |
| struct hlist_node *node; |
| struct css_set *cg; |
| |
| /* Built the set of subsystem state objects that we want to |
| * see in the new css_set */ |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| if (root->subsys_bits & (1UL << i)) { |
| /* Subsystem is in this hierarchy. So we want |
| * the subsystem state from the new |
| * cgroup */ |
| template[i] = cgrp->subsys[i]; |
| } else { |
| /* Subsystem is not in this hierarchy, so we |
| * don't want to change the subsystem state */ |
| template[i] = oldcg->subsys[i]; |
| } |
| } |
| |
| hhead = css_set_hash(template); |
| hlist_for_each_entry(cg, node, hhead, hlist) { |
| if (!compare_css_sets(cg, oldcg, cgrp, template)) |
| continue; |
| |
| /* This css_set matches what we need */ |
| return cg; |
| } |
| |
| /* No existing cgroup group matched */ |
| return NULL; |
| } |
| |
| static void free_cg_links(struct list_head *tmp) |
| { |
| struct cg_cgroup_link *link; |
| struct cg_cgroup_link *saved_link; |
| |
| list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { |
| list_del(&link->cgrp_link_list); |
| kfree(link); |
| } |
| } |
| |
| /* |
| * allocate_cg_links() allocates "count" cg_cgroup_link structures |
| * and chains them on tmp through their cgrp_link_list fields. Returns 0 on |
| * success or a negative error |
| */ |
| static int allocate_cg_links(int count, struct list_head *tmp) |
| { |
| struct cg_cgroup_link *link; |
| int i; |
| INIT_LIST_HEAD(tmp); |
| for (i = 0; i < count; i++) { |
| link = kmalloc(sizeof(*link), GFP_KERNEL); |
| if (!link) { |
| free_cg_links(tmp); |
| return -ENOMEM; |
| } |
| list_add(&link->cgrp_link_list, tmp); |
| } |
| return 0; |
| } |
| |
| /** |
| * link_css_set - a helper function to link a css_set to a cgroup |
| * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() |
| * @cg: the css_set to be linked |
| * @cgrp: the destination cgroup |
| */ |
| static void link_css_set(struct list_head *tmp_cg_links, |
| struct css_set *cg, struct cgroup *cgrp) |
| { |
| struct cg_cgroup_link *link; |
| |
| BUG_ON(list_empty(tmp_cg_links)); |
| link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, |
| cgrp_link_list); |
| link->cg = cg; |
| link->cgrp = cgrp; |
| atomic_inc(&cgrp->count); |
| list_move(&link->cgrp_link_list, &cgrp->css_sets); |
| /* |
| * Always add links to the tail of the list so that the list |
| * is sorted by order of hierarchy creation |
| */ |
| list_add_tail(&link->cg_link_list, &cg->cg_links); |
| } |
| |
| /* |
| * find_css_set() takes an existing cgroup group and a |
| * cgroup object, and returns a css_set object that's |
| * equivalent to the old group, but with the given cgroup |
| * substituted into the appropriate hierarchy. Must be called with |
| * cgroup_mutex held |
| */ |
| static struct css_set *find_css_set( |
| struct css_set *oldcg, struct cgroup *cgrp) |
| { |
| struct css_set *res; |
| struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; |
| |
| struct list_head tmp_cg_links; |
| |
| struct hlist_head *hhead; |
| struct cg_cgroup_link *link; |
| |
| /* First see if we already have a cgroup group that matches |
| * the desired set */ |
| read_lock(&css_set_lock); |
| res = find_existing_css_set(oldcg, cgrp, template); |
| if (res) |
| get_css_set(res); |
| read_unlock(&css_set_lock); |
| |
| if (res) |
| return res; |
| |
| res = kmalloc(sizeof(*res), GFP_KERNEL); |
| if (!res) |
| return NULL; |
| |
| /* Allocate all the cg_cgroup_link objects that we'll need */ |
| if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { |
| kfree(res); |
| return NULL; |
| } |
| |
| atomic_set(&res->refcount, 1); |
| INIT_LIST_HEAD(&res->cg_links); |
| INIT_LIST_HEAD(&res->tasks); |
| INIT_HLIST_NODE(&res->hlist); |
| |
| /* Copy the set of subsystem state objects generated in |
| * find_existing_css_set() */ |
| memcpy(res->subsys, template, sizeof(res->subsys)); |
| |
| write_lock(&css_set_lock); |
| /* Add reference counts and links from the new css_set. */ |
| list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
| struct cgroup *c = link->cgrp; |
| if (c->root == cgrp->root) |
| c = cgrp; |
| link_css_set(&tmp_cg_links, res, c); |
| } |
| |
| BUG_ON(!list_empty(&tmp_cg_links)); |
| |
| css_set_count++; |
| |
| /* Add this cgroup group to the hash table */ |
| hhead = css_set_hash(res->subsys); |
| hlist_add_head(&res->hlist, hhead); |
| |
| write_unlock(&css_set_lock); |
| |
| return res; |
| } |
| |
| /* |
| * Return the cgroup for "task" from the given hierarchy. Must be |
| * called with cgroup_mutex held. |
| */ |
| static struct cgroup *task_cgroup_from_root(struct task_struct *task, |
| struct cgroupfs_root *root) |
| { |
| struct css_set *css; |
| struct cgroup *res = NULL; |
| |
| BUG_ON(!mutex_is_locked(&cgroup_mutex)); |
| read_lock(&css_set_lock); |
| /* |
| * No need to lock the task - since we hold cgroup_mutex the |
| * task can't change groups, so the only thing that can happen |
| * is that it exits and its css is set back to init_css_set. |
| */ |
| css = task->cgroups; |
| if (css == &init_css_set) { |
| res = &root->top_cgroup; |
| } else { |
| struct cg_cgroup_link *link; |
| list_for_each_entry(link, &css->cg_links, cg_link_list) { |
| struct cgroup *c = link->cgrp; |
| if (c->root == root) { |
| res = c; |
| break; |
| } |
| } |
| } |
| read_unlock(&css_set_lock); |
| BUG_ON(!res); |
| return res; |
| } |
| |
| /* |
| * There is one global cgroup mutex. We also require taking |
| * task_lock() when dereferencing a task's cgroup subsys pointers. |
| * See "The task_lock() exception", at the end of this comment. |
| * |
| * A task must hold cgroup_mutex to modify cgroups. |
| * |
| * Any task can increment and decrement the count field without lock. |
| * So in general, code holding cgroup_mutex can't rely on the count |
| * field not changing. However, if the count goes to zero, then only |
| * cgroup_attach_task() can increment it again. Because a count of zero |
| * means that no tasks are currently attached, therefore there is no |
| * way a task attached to that cgroup can fork (the other way to |
| * increment the count). So code holding cgroup_mutex can safely |
| * assume that if the count is zero, it will stay zero. Similarly, if |
| * a task holds cgroup_mutex on a cgroup with zero count, it |
| * knows that the cgroup won't be removed, as cgroup_rmdir() |
| * needs that mutex. |
| * |
| * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't |
| * (usually) take cgroup_mutex. These are the two most performance |
| * critical pieces of code here. The exception occurs on cgroup_exit(), |
| * when a task in a notify_on_release cgroup exits. Then cgroup_mutex |
| * is taken, and if the cgroup count is zero, a usermode call made |
| * to the release agent with the name of the cgroup (path relative to |
| * the root of cgroup file system) as the argument. |
| * |
| * A cgroup can only be deleted if both its 'count' of using tasks |
| * is zero, and its list of 'children' cgroups is empty. Since all |
| * tasks in the system use _some_ cgroup, and since there is always at |
| * least one task in the system (init, pid == 1), therefore, top_cgroup |
| * always has either children cgroups and/or using tasks. So we don't |
| * need a special hack to ensure that top_cgroup cannot be deleted. |
| * |
| * The task_lock() exception |
| * |
| * The need for this exception arises from the action of |
| * cgroup_attach_task(), which overwrites one tasks cgroup pointer with |
| * another. It does so using cgroup_mutex, however there are |
| * several performance critical places that need to reference |
| * task->cgroup without the expense of grabbing a system global |
| * mutex. Therefore except as noted below, when dereferencing or, as |
| * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use |
| * task_lock(), which acts on a spinlock (task->alloc_lock) already in |
| * the task_struct routinely used for such matters. |
| * |
| * P.S. One more locking exception. RCU is used to guard the |
| * update of a tasks cgroup pointer by cgroup_attach_task() |
| */ |
| |
| /** |
| * cgroup_lock - lock out any changes to cgroup structures |
| * |
| */ |
| void cgroup_lock(void) |
| { |
| mutex_lock(&cgroup_mutex); |
| } |
| |
| /** |
| * cgroup_unlock - release lock on cgroup changes |
| * |
| * Undo the lock taken in a previous cgroup_lock() call. |
| */ |
| void cgroup_unlock(void) |
| { |
| mutex_unlock(&cgroup_mutex); |
| } |
| |
| /* |
| * A couple of forward declarations required, due to cyclic reference loop: |
| * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> |
| * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations |
| * -> cgroup_mkdir. |
| */ |
| |
| static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
| static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
| static int cgroup_populate_dir(struct cgroup *cgrp); |
| static const struct inode_operations cgroup_dir_inode_operations; |
| static const struct file_operations proc_cgroupstats_operations; |
| |
| static struct backing_dev_info cgroup_backing_dev_info = { |
| .name = "cgroup", |
| .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, |
| }; |
| |
| static int alloc_css_id(struct cgroup_subsys *ss, |
| struct cgroup *parent, struct cgroup *child); |
| |
| static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) |
| { |
| struct inode *inode = new_inode(sb); |
| |
| if (inode) { |
| inode->i_mode = mode; |
| inode->i_uid = current_fsuid(); |
| inode->i_gid = current_fsgid(); |
| inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
| inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; |
| } |
| return inode; |
| } |
| |
| /* |
| * Call subsys's pre_destroy handler. |
| * This is called before css refcnt check. |
| */ |
| static int cgroup_call_pre_destroy(struct cgroup *cgrp) |
| { |
| struct cgroup_subsys *ss; |
| int ret = 0; |
| |
| for_each_subsys(cgrp->root, ss) |
| if (ss->pre_destroy) { |
| ret = ss->pre_destroy(ss, cgrp); |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| static void free_cgroup_rcu(struct rcu_head *obj) |
| { |
| struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head); |
| |
| kfree(cgrp); |
| } |
| |
| static void cgroup_diput(struct dentry *dentry, struct inode *inode) |
| { |
| /* is dentry a directory ? if so, kfree() associated cgroup */ |
| if (S_ISDIR(inode->i_mode)) { |
| struct cgroup *cgrp = dentry->d_fsdata; |
| struct cgroup_subsys *ss; |
| BUG_ON(!(cgroup_is_removed(cgrp))); |
| /* It's possible for external users to be holding css |
| * reference counts on a cgroup; css_put() needs to |
| * be able to access the cgroup after decrementing |
| * the reference count in order to know if it needs to |
| * queue the cgroup to be handled by the release |
| * agent */ |
| synchronize_rcu(); |
| |
| mutex_lock(&cgroup_mutex); |
| /* |
| * Release the subsystem state objects. |
| */ |
| for_each_subsys(cgrp->root, ss) |
| ss->destroy(ss, cgrp); |
| |
| cgrp->root->number_of_cgroups--; |
| mutex_unlock(&cgroup_mutex); |
| |
| /* |
| * Drop the active superblock reference that we took when we |
| * created the cgroup |
| */ |
| deactivate_super(cgrp->root->sb); |
| |
| /* |
| * if we're getting rid of the cgroup, refcount should ensure |
| * that there are no pidlists left. |
| */ |
| BUG_ON(!list_empty(&cgrp->pidlists)); |
| |
| call_rcu(&cgrp->rcu_head, free_cgroup_rcu); |
| } |
| iput(inode); |
| } |
| |
| static void remove_dir(struct dentry *d) |
| { |
| struct dentry *parent = dget(d->d_parent); |
| |
| d_delete(d); |
| simple_rmdir(parent->d_inode, d); |
| dput(parent); |
| } |
| |
| static void cgroup_clear_directory(struct dentry *dentry) |
| { |
| struct list_head *node; |
| |
| BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); |
| spin_lock(&dcache_lock); |
| node = dentry->d_subdirs.next; |
| while (node != &dentry->d_subdirs) { |
| struct dentry *d = list_entry(node, struct dentry, d_u.d_child); |
| list_del_init(node); |
| if (d->d_inode) { |
| /* This should never be called on a cgroup |
| * directory with child cgroups */ |
| BUG_ON(d->d_inode->i_mode & S_IFDIR); |
| d = dget_locked(d); |
| spin_unlock(&dcache_lock); |
| d_delete(d); |
| simple_unlink(dentry->d_inode, d); |
| dput(d); |
| spin_lock(&dcache_lock); |
| } |
| node = dentry->d_subdirs.next; |
| } |
| spin_unlock(&dcache_lock); |
| } |
| |
| /* |
| * NOTE : the dentry must have been dget()'ed |
| */ |
| static void cgroup_d_remove_dir(struct dentry *dentry) |
| { |
| cgroup_clear_directory(dentry); |
| |
| spin_lock(&dcache_lock); |
| list_del_init(&dentry->d_u.d_child); |
| spin_unlock(&dcache_lock); |
| remove_dir(dentry); |
| } |
| |
| /* |
| * A queue for waiters to do rmdir() cgroup. A tasks will sleep when |
| * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some |
| * reference to css->refcnt. In general, this refcnt is expected to goes down |
| * to zero, soon. |
| * |
| * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; |
| */ |
| DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); |
| |
| static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) |
| { |
| if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) |
| wake_up_all(&cgroup_rmdir_waitq); |
| } |
| |
| void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) |
| { |
| css_get(css); |
| } |
| |
| void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) |
| { |
| cgroup_wakeup_rmdir_waiter(css->cgroup); |
| css_put(css); |
| } |
| |
| |
| static int rebind_subsystems(struct cgroupfs_root *root, |
| unsigned long final_bits) |
| { |
| unsigned long added_bits, removed_bits; |
| struct cgroup *cgrp = &root->top_cgroup; |
| int i; |
| |
| removed_bits = root->actual_subsys_bits & ~final_bits; |
| added_bits = final_bits & ~root->actual_subsys_bits; |
| /* Check that any added subsystems are currently free */ |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| unsigned long bit = 1UL << i; |
| struct cgroup_subsys *ss = subsys[i]; |
| if (!(bit & added_bits)) |
| continue; |
| if (ss->root != &rootnode) { |
| /* Subsystem isn't free */ |
| return -EBUSY; |
| } |
| } |
| |
| /* Currently we don't handle adding/removing subsystems when |
| * any child cgroups exist. This is theoretically supportable |
| * but involves complex error handling, so it's being left until |
| * later */ |
| if (root->number_of_cgroups > 1) |
| return -EBUSY; |
| |
| /* Process each subsystem */ |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| struct cgroup_subsys *ss = subsys[i]; |
| unsigned long bit = 1UL << i; |
| if (bit & added_bits) { |
| /* We're binding this subsystem to this hierarchy */ |
| BUG_ON(cgrp->subsys[i]); |
| BUG_ON(!dummytop->subsys[i]); |
| BUG_ON(dummytop->subsys[i]->cgroup != dummytop); |
| mutex_lock(&ss->hierarchy_mutex); |
| cgrp->subsys[i] = dummytop->subsys[i]; |
| cgrp->subsys[i]->cgroup = cgrp; |
| list_move(&ss->sibling, &root->subsys_list); |
| ss->root = root; |
| if (ss->bind) |
| ss->bind(ss, cgrp); |
| mutex_unlock(&ss->hierarchy_mutex); |
| } else if (bit & removed_bits) { |
| /* We're removing this subsystem */ |
| BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); |
| BUG_ON(cgrp->subsys[i]->cgroup != cgrp); |
| mutex_lock(&ss->hierarchy_mutex); |
| if (ss->bind) |
| ss->bind(ss, dummytop); |
| dummytop->subsys[i]->cgroup = dummytop; |
| cgrp->subsys[i] = NULL; |
| subsys[i]->root = &rootnode; |
| list_move(&ss->sibling, &rootnode.subsys_list); |
| mutex_unlock(&ss->hierarchy_mutex); |
| } else if (bit & final_bits) { |
| /* Subsystem state should already exist */ |
| BUG_ON(!cgrp->subsys[i]); |
| } else { |
| /* Subsystem state shouldn't exist */ |
| BUG_ON(cgrp->subsys[i]); |
| } |
| } |
| root->subsys_bits = root->actual_subsys_bits = final_bits; |
| synchronize_rcu(); |
| |
| return 0; |
| } |
| |
| static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) |
| { |
| struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info; |
| struct cgroup_subsys *ss; |
| |
| mutex_lock(&cgroup_mutex); |
| for_each_subsys(root, ss) |
| seq_printf(seq, ",%s", ss->name); |
| if (test_bit(ROOT_NOPREFIX, &root->flags)) |
| seq_puts(seq, ",noprefix"); |
| if (strlen(root->release_agent_path)) |
| seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
| if (strlen(root->name)) |
| seq_printf(seq, ",name=%s", root->name); |
| mutex_unlock(&cgroup_mutex); |
| return 0; |
| } |
| |
| struct cgroup_sb_opts { |
| unsigned long subsys_bits; |
| unsigned long flags; |
| char *release_agent; |
| char *name; |
| /* User explicitly requested empty subsystem */ |
| bool none; |
| |
| struct cgroupfs_root *new_root; |
| |
| }; |
| |
| /* Convert a hierarchy specifier into a bitmask of subsystems and |
| * flags. */ |
| static int parse_cgroupfs_options(char *data, |
| struct cgroup_sb_opts *opts) |
| { |
| char *token, *o = data ?: "all"; |
| unsigned long mask = (unsigned long)-1; |
| |
| #ifdef CONFIG_CPUSETS |
| mask = ~(1UL << cpuset_subsys_id); |
| #endif |
| |
| memset(opts, 0, sizeof(*opts)); |
| |
| while ((token = strsep(&o, ",")) != NULL) { |
| if (!*token) |
| return -EINVAL; |
| if (!strcmp(token, "all")) { |
| /* Add all non-disabled subsystems */ |
| int i; |
| opts->subsys_bits = 0; |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| struct cgroup_subsys *ss = subsys[i]; |
| if (!ss->disabled) |
| opts->subsys_bits |= 1ul << i; |
| } |
| } else if (!strcmp(token, "none")) { |
| /* Explicitly have no subsystems */ |
| opts->none = true; |
| } else if (!strcmp(token, "noprefix")) { |
| set_bit(ROOT_NOPREFIX, &opts->flags); |
| } else if (!strncmp(token, "release_agent=", 14)) { |
| /* Specifying two release agents is forbidden */ |
| if (opts->release_agent) |
| return -EINVAL; |
| opts->release_agent = |
| kstrndup(token + 14, PATH_MAX, GFP_KERNEL); |
| if (!opts->release_agent) |
| return -ENOMEM; |
| } else if (!strncmp(token, "name=", 5)) { |
| int i; |
| const char *name = token + 5; |
| /* Can't specify an empty name */ |
| if (!strlen(name)) |
| return -EINVAL; |
| /* Must match [\w.-]+ */ |
| for (i = 0; i < strlen(name); i++) { |
| char c = name[i]; |
| if (isalnum(c)) |
| continue; |
| if ((c == '.') || (c == '-') || (c == '_')) |
| continue; |
| return -EINVAL; |
| } |
| /* Specifying two names is forbidden */ |
| if (opts->name) |
| return -EINVAL; |
| opts->name = kstrndup(name, |
| MAX_CGROUP_ROOT_NAMELEN, |
| GFP_KERNEL); |
| if (!opts->name) |
| return -ENOMEM; |
| } else { |
| struct cgroup_subsys *ss; |
| int i; |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| ss = subsys[i]; |
| if (!strcmp(token, ss->name)) { |
| if (!ss->disabled) |
| set_bit(i, &opts->subsys_bits); |
| break; |
| } |
| } |
| if (i == CGROUP_SUBSYS_COUNT) |
| return -ENOENT; |
| } |
| } |
| |
| /* Consistency checks */ |
| |
| /* |
| * Option noprefix was introduced just for backward compatibility |
| * with the old cpuset, so we allow noprefix only if mounting just |
| * the cpuset subsystem. |
| */ |
| if (test_bit(ROOT_NOPREFIX, &opts->flags) && |
| (opts->subsys_bits & mask)) |
| return -EINVAL; |
| |
| |
| /* Can't specify "none" and some subsystems */ |
| if (opts->subsys_bits && opts->none) |
| return -EINVAL; |
| |
| /* |
| * We either have to specify by name or by subsystems. (So all |
| * empty hierarchies must have a name). |
| */ |
| if (!opts->subsys_bits && !opts->name) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int cgroup_remount(struct super_block *sb, int *flags, char *data) |
| { |
| int ret = 0; |
| struct cgroupfs_root *root = sb->s_fs_info; |
| struct cgroup *cgrp = &root->top_cgroup; |
| struct cgroup_sb_opts opts; |
| |
| lock_kernel(); |
| mutex_lock(&cgrp->dentry->d_inode->i_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| /* See what subsystems are wanted */ |
| ret = parse_cgroupfs_options(data, &opts); |
| if (ret) |
| goto out_unlock; |
| |
| /* Don't allow flags to change at remount */ |
| if (opts.flags != root->flags) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* Don't allow name to change at remount */ |
| if (opts.name && strcmp(opts.name, root->name)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| ret = rebind_subsystems(root, opts.subsys_bits); |
| if (ret) |
| goto out_unlock; |
| |
| /* (re)populate subsystem files */ |
| cgroup_populate_dir(cgrp); |
| |
| if (opts.release_agent) |
| strcpy(root->release_agent_path, opts.release_agent); |
| out_unlock: |
| kfree(opts.release_agent); |
| kfree(opts.name); |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
| unlock_kernel(); |
| return ret; |
| } |
| |
| static const struct super_operations cgroup_ops = { |
| .statfs = simple_statfs, |
| .drop_inode = generic_delete_inode, |
| .show_options = cgroup_show_options, |
| .remount_fs = cgroup_remount, |
| }; |
| |
| static void init_cgroup_housekeeping(struct cgroup *cgrp) |
| { |
| INIT_LIST_HEAD(&cgrp->sibling); |
| INIT_LIST_HEAD(&cgrp->children); |
| INIT_LIST_HEAD(&cgrp->css_sets); |
| INIT_LIST_HEAD(&cgrp->release_list); |
| INIT_LIST_HEAD(&cgrp->pidlists); |
| mutex_init(&cgrp->pidlist_mutex); |
| } |
| |
| static void init_cgroup_root(struct cgroupfs_root *root) |
| { |
| struct cgroup *cgrp = &root->top_cgroup; |
| INIT_LIST_HEAD(&root->subsys_list); |
| INIT_LIST_HEAD(&root->root_list); |
| root->number_of_cgroups = 1; |
| cgrp->root = root; |
| cgrp->top_cgroup = cgrp; |
| init_cgroup_housekeeping(cgrp); |
| } |
| |
| static bool init_root_id(struct cgroupfs_root *root) |
| { |
| int ret = 0; |
| |
| do { |
| if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) |
| return false; |
| spin_lock(&hierarchy_id_lock); |
| /* Try to allocate the next unused ID */ |
| ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, |
| &root->hierarchy_id); |
| if (ret == -ENOSPC) |
| /* Try again starting from 0 */ |
| ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); |
| if (!ret) { |
| next_hierarchy_id = root->hierarchy_id + 1; |
| } else if (ret != -EAGAIN) { |
| /* Can only get here if the 31-bit IDR is full ... */ |
| BUG_ON(ret); |
| } |
| spin_unlock(&hierarchy_id_lock); |
| } while (ret); |
| return true; |
| } |
| |
| static int cgroup_test_super(struct super_block *sb, void *data) |
| { |
| struct cgroup_sb_opts *opts = data; |
| struct cgroupfs_root *root = sb->s_fs_info; |
| |
| /* If we asked for a name then it must match */ |
| if (opts->name && strcmp(opts->name, root->name)) |
| return 0; |
| |
| /* |
| * If we asked for subsystems (or explicitly for no |
| * subsystems) then they must match |
| */ |
| if ((opts->subsys_bits || opts->none) |
| && (opts->subsys_bits != root->subsys_bits)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) |
| { |
| struct cgroupfs_root *root; |
| |
| if (!opts->subsys_bits && !opts->none) |
| return NULL; |
| |
| root = kzalloc(sizeof(*root), GFP_KERNEL); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| if (!init_root_id(root)) { |
| kfree(root); |
| return ERR_PTR(-ENOMEM); |
| } |
| init_cgroup_root(root); |
| |
| root->subsys_bits = opts->subsys_bits; |
| root->flags = opts->flags; |
| if (opts->release_agent) |
| strcpy(root->release_agent_path, opts->release_agent); |
| if (opts->name) |
| strcpy(root->name, opts->name); |
| return root; |
| } |
| |
| static void cgroup_drop_root(struct cgroupfs_root *root) |
| { |
| if (!root) |
| return; |
| |
| BUG_ON(!root->hierarchy_id); |
| spin_lock(&hierarchy_id_lock); |
| ida_remove(&hierarchy_ida, root->hierarchy_id); |
| spin_unlock(&hierarchy_id_lock); |
| kfree(root); |
| } |
| |
| static int cgroup_set_super(struct super_block *sb, void *data) |
| { |
| int ret; |
| struct cgroup_sb_opts *opts = data; |
| |
| /* If we don't have a new root, we can't set up a new sb */ |
| if (!opts->new_root) |
| return -EINVAL; |
| |
| BUG_ON(!opts->subsys_bits && !opts->none); |
| |
| ret = set_anon_super(sb, NULL); |
| if (ret) |
| return ret; |
| |
| sb->s_fs_info = opts->new_root; |
| opts->new_root->sb = sb; |
| |
| sb->s_blocksize = PAGE_CACHE_SIZE; |
| sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
| sb->s_magic = CGROUP_SUPER_MAGIC; |
| sb->s_op = &cgroup_ops; |
| |
| return 0; |
| } |
| |
| static int cgroup_get_rootdir(struct super_block *sb) |
| { |
| struct inode *inode = |
| cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); |
| struct dentry *dentry; |
| |
| if (!inode) |
| return -ENOMEM; |
| |
| inode->i_fop = &simple_dir_operations; |
| inode->i_op = &cgroup_dir_inode_operations; |
| /* directories start off with i_nlink == 2 (for "." entry) */ |
| inc_nlink(inode); |
| dentry = d_alloc_root(inode); |
| if (!dentry) { |
| iput(inode); |
| return -ENOMEM; |
| } |
| sb->s_root = dentry; |
| return 0; |
| } |
| |
| static int cgroup_get_sb(struct file_system_type *fs_type, |
| int flags, const char *unused_dev_name, |
| void *data, struct vfsmount *mnt) |
| { |
| struct cgroup_sb_opts opts; |
| struct cgroupfs_root *root; |
| int ret = 0; |
| struct super_block *sb; |
| struct cgroupfs_root *new_root; |
| |
| /* First find the desired set of subsystems */ |
| ret = parse_cgroupfs_options(data, &opts); |
| if (ret) |
| goto out_err; |
| |
| /* |
| * Allocate a new cgroup root. We may not need it if we're |
| * reusing an existing hierarchy. |
| */ |
| new_root = cgroup_root_from_opts(&opts); |
| if (IS_ERR(new_root)) { |
| ret = PTR_ERR(new_root); |
| goto out_err; |
| } |
| opts.new_root = new_root; |
| |
| /* Locate an existing or new sb for this hierarchy */ |
| sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); |
| if (IS_ERR(sb)) { |
| ret = PTR_ERR(sb); |
| cgroup_drop_root(opts.new_root); |
| goto out_err; |
| } |
| |
| root = sb->s_fs_info; |
| BUG_ON(!root); |
| if (root == opts.new_root) { |
| /* We used the new root structure, so this is a new hierarchy */ |
| struct list_head tmp_cg_links; |
| struct cgroup *root_cgrp = &root->top_cgroup; |
| struct inode *inode; |
| struct cgroupfs_root *existing_root; |
| int i; |
| |
| BUG_ON(sb->s_root != NULL); |
| |
| ret = cgroup_get_rootdir(sb); |
| if (ret) |
| goto drop_new_super; |
| inode = sb->s_root->d_inode; |
| |
| mutex_lock(&inode->i_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| if (strlen(root->name)) { |
| /* Check for name clashes with existing mounts */ |
| for_each_active_root(existing_root) { |
| if (!strcmp(existing_root->name, root->name)) { |
| ret = -EBUSY; |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&inode->i_mutex); |
| goto drop_new_super; |
| } |
| } |
| } |
| |
| /* |
| * We're accessing css_set_count without locking |
| * css_set_lock here, but that's OK - it can only be |
| * increased by someone holding cgroup_lock, and |
| * that's us. The worst that can happen is that we |
| * have some link structures left over |
| */ |
| ret = allocate_cg_links(css_set_count, &tmp_cg_links); |
| if (ret) { |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&inode->i_mutex); |
| goto drop_new_super; |
| } |
| |
| ret = rebind_subsystems(root, root->subsys_bits); |
| if (ret == -EBUSY) { |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&inode->i_mutex); |
| free_cg_links(&tmp_cg_links); |
| goto drop_new_super; |
| } |
| |
| /* EBUSY should be the only error here */ |
| BUG_ON(ret); |
| |
| list_add(&root->root_list, &roots); |
| root_count++; |
| |
| sb->s_root->d_fsdata = root_cgrp; |
| root->top_cgroup.dentry = sb->s_root; |
| |
| /* Link the top cgroup in this hierarchy into all |
| * the css_set objects */ |
| write_lock(&css_set_lock); |
| for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { |
| struct hlist_head *hhead = &css_set_table[i]; |
| struct hlist_node *node; |
| struct css_set *cg; |
| |
| hlist_for_each_entry(cg, node, hhead, hlist) |
| link_css_set(&tmp_cg_links, cg, root_cgrp); |
| } |
| write_unlock(&css_set_lock); |
| |
| free_cg_links(&tmp_cg_links); |
| |
| BUG_ON(!list_empty(&root_cgrp->sibling)); |
| BUG_ON(!list_empty(&root_cgrp->children)); |
| BUG_ON(root->number_of_cgroups != 1); |
| |
| cgroup_populate_dir(root_cgrp); |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&inode->i_mutex); |
| } else { |
| /* |
| * We re-used an existing hierarchy - the new root (if |
| * any) is not needed |
| */ |
| cgroup_drop_root(opts.new_root); |
| } |
| |
| simple_set_mnt(mnt, sb); |
| kfree(opts.release_agent); |
| kfree(opts.name); |
| return 0; |
| |
| drop_new_super: |
| deactivate_locked_super(sb); |
| out_err: |
| kfree(opts.release_agent); |
| kfree(opts.name); |
| |
| return ret; |
| } |
| |
| static void cgroup_kill_sb(struct super_block *sb) { |
| struct cgroupfs_root *root = sb->s_fs_info; |
| struct cgroup *cgrp = &root->top_cgroup; |
| int ret; |
| struct cg_cgroup_link *link; |
| struct cg_cgroup_link *saved_link; |
| |
| BUG_ON(!root); |
| |
| BUG_ON(root->number_of_cgroups != 1); |
| BUG_ON(!list_empty(&cgrp->children)); |
| BUG_ON(!list_empty(&cgrp->sibling)); |
| |
| mutex_lock(&cgroup_mutex); |
| |
| /* Rebind all subsystems back to the default hierarchy */ |
| ret = rebind_subsystems(root, 0); |
| /* Shouldn't be able to fail ... */ |
| BUG_ON(ret); |
| |
| /* |
| * Release all the links from css_sets to this hierarchy's |
| * root cgroup |
| */ |
| write_lock(&css_set_lock); |
| |
| list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, |
| cgrp_link_list) { |
| list_del(&link->cg_link_list); |
| list_del(&link->cgrp_link_list); |
| kfree(link); |
| } |
| write_unlock(&css_set_lock); |
| |
| if (!list_empty(&root->root_list)) { |
| list_del(&root->root_list); |
| root_count--; |
| } |
| |
| mutex_unlock(&cgroup_mutex); |
| |
| kill_litter_super(sb); |
| cgroup_drop_root(root); |
| } |
| |
| static struct file_system_type cgroup_fs_type = { |
| .name = "cgroup", |
| .get_sb = cgroup_get_sb, |
| .kill_sb = cgroup_kill_sb, |
| }; |
| |
| static inline struct cgroup *__d_cgrp(struct dentry *dentry) |
| { |
| return dentry->d_fsdata; |
| } |
| |
| static inline struct cftype *__d_cft(struct dentry *dentry) |
| { |
| return dentry->d_fsdata; |
| } |
| |
| /** |
| * cgroup_path - generate the path of a cgroup |
| * @cgrp: the cgroup in question |
| * @buf: the buffer to write the path into |
| * @buflen: the length of the buffer |
| * |
| * Called with cgroup_mutex held or else with an RCU-protected cgroup |
| * reference. Writes path of cgroup into buf. Returns 0 on success, |
| * -errno on error. |
| */ |
| int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) |
| { |
| char *start; |
| struct dentry *dentry = rcu_dereference(cgrp->dentry); |
| |
| if (!dentry || cgrp == dummytop) { |
| /* |
| * Inactive subsystems have no dentry for their root |
| * cgroup |
| */ |
| strcpy(buf, "/"); |
| return 0; |
| } |
| |
| start = buf + buflen; |
| |
| *--start = '\0'; |
| for (;;) { |
| int len = dentry->d_name.len; |
| if ((start -= len) < buf) |
| return -ENAMETOOLONG; |
| memcpy(start, cgrp->dentry->d_name.name, len); |
| cgrp = cgrp->parent; |
| if (!cgrp) |
| break; |
| dentry = rcu_dereference(cgrp->dentry); |
| if (!cgrp->parent) |
| continue; |
| if (--start < buf) |
| return -ENAMETOOLONG; |
| *start = '/'; |
| } |
| memmove(buf, start, buf + buflen - start); |
| return 0; |
| } |
| |
| /** |
| * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' |
| * @cgrp: the cgroup the task is attaching to |
| * @tsk: the task to be attached |
| * |
| * Call holding cgroup_mutex. May take task_lock of |
| * the task 'tsk' during call. |
| */ |
| int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
| { |
| int retval = 0; |
| struct cgroup_subsys *ss; |
| struct cgroup *oldcgrp; |
| struct css_set *cg; |
| struct css_set *newcg; |
| struct cgroupfs_root *root = cgrp->root; |
| |
| /* Nothing to do if the task is already in that cgroup */ |
| oldcgrp = task_cgroup_from_root(tsk, root); |
| if (cgrp == oldcgrp) |
| return 0; |
| |
| for_each_subsys(root, ss) { |
| if (ss->can_attach) { |
| retval = ss->can_attach(ss, cgrp, tsk, false); |
| if (retval) |
| return retval; |
| } |
| } |
| |
| task_lock(tsk); |
| cg = tsk->cgroups; |
| get_css_set(cg); |
| task_unlock(tsk); |
| /* |
| * Locate or allocate a new css_set for this task, |
| * based on its final set of cgroups |
| */ |
| newcg = find_css_set(cg, cgrp); |
| put_css_set(cg); |
| if (!newcg) |
| return -ENOMEM; |
| |
| task_lock(tsk); |
| if (tsk->flags & PF_EXITING) { |
| task_unlock(tsk); |
| put_css_set(newcg); |
| return -ESRCH; |
| } |
| rcu_assign_pointer(tsk->cgroups, newcg); |
| task_unlock(tsk); |
| |
| /* Update the css_set linked lists if we're using them */ |
| write_lock(&css_set_lock); |
| if (!list_empty(&tsk->cg_list)) { |
| list_del(&tsk->cg_list); |
| list_add(&tsk->cg_list, &newcg->tasks); |
| } |
| write_unlock(&css_set_lock); |
| |
| for_each_subsys(root, ss) { |
| if (ss->attach) |
| ss->attach(ss, cgrp, oldcgrp, tsk, false); |
| } |
| set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
| synchronize_rcu(); |
| put_css_set(cg); |
| |
| /* |
| * wake up rmdir() waiter. the rmdir should fail since the cgroup |
| * is no longer empty. |
| */ |
| cgroup_wakeup_rmdir_waiter(cgrp); |
| return 0; |
| } |
| |
| /* |
| * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex |
| * held. May take task_lock of task |
| */ |
| static int attach_task_by_pid(struct cgroup *cgrp, u64 pid) |
| { |
| struct task_struct *tsk; |
| const struct cred *cred = current_cred(), *tcred; |
| int ret; |
| |
| if (pid) { |
| rcu_read_lock(); |
| tsk = find_task_by_vpid(pid); |
| if (!tsk || tsk->flags & PF_EXITING) { |
| rcu_read_unlock(); |
| return -ESRCH; |
| } |
| |
| tcred = __task_cred(tsk); |
| if (cred->euid && |
| cred->euid != tcred->uid && |
| cred->euid != tcred->suid) { |
| rcu_read_unlock(); |
| return -EACCES; |
| } |
| get_task_struct(tsk); |
| rcu_read_unlock(); |
| } else { |
| tsk = current; |
| get_task_struct(tsk); |
| } |
| |
| ret = cgroup_attach_task(cgrp, tsk); |
| put_task_struct(tsk); |
| return ret; |
| } |
| |
| static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) |
| { |
| int ret; |
| if (!cgroup_lock_live_group(cgrp)) |
| return -ENODEV; |
| ret = attach_task_by_pid(cgrp, pid); |
| cgroup_unlock(); |
| return ret; |
| } |
| |
| /** |
| * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
| * @cgrp: the cgroup to be checked for liveness |
| * |
| * On success, returns true; the lock should be later released with |
| * cgroup_unlock(). On failure returns false with no lock held. |
| */ |
| bool cgroup_lock_live_group(struct cgroup *cgrp) |
| { |
| mutex_lock(&cgroup_mutex); |
| if (cgroup_is_removed(cgrp)) { |
| mutex_unlock(&cgroup_mutex); |
| return false; |
| } |
| return true; |
| } |
| |
| static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, |
| const char *buffer) |
| { |
| BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); |
| if (!cgroup_lock_live_group(cgrp)) |
| return -ENODEV; |
| strcpy(cgrp->root->release_agent_path, buffer); |
| cgroup_unlock(); |
| return 0; |
| } |
| |
| static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, |
| struct seq_file *seq) |
| { |
| if (!cgroup_lock_live_group(cgrp)) |
| return -ENODEV; |
| seq_puts(seq, cgrp->root->release_agent_path); |
| seq_putc(seq, '\n'); |
| cgroup_unlock(); |
| return 0; |
| } |
| |
| /* A buffer size big enough for numbers or short strings */ |
| #define CGROUP_LOCAL_BUFFER_SIZE 64 |
| |
| static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, |
| struct file *file, |
| const char __user *userbuf, |
| size_t nbytes, loff_t *unused_ppos) |
| { |
| char buffer[CGROUP_LOCAL_BUFFER_SIZE]; |
| int retval = 0; |
| char *end; |
| |
| if (!nbytes) |
| return -EINVAL; |
| if (nbytes >= sizeof(buffer)) |
| return -E2BIG; |
| if (copy_from_user(buffer, userbuf, nbytes)) |
| return -EFAULT; |
| |
| buffer[nbytes] = 0; /* nul-terminate */ |
| if (cft->write_u64) { |
| u64 val = simple_strtoull(strstrip(buffer), &end, 0); |
| if (*end) |
| return -EINVAL; |
| retval = cft->write_u64(cgrp, cft, val); |
| } else { |
| s64 val = simple_strtoll(strstrip(buffer), &end, 0); |
| if (*end) |
| return -EINVAL; |
| retval = cft->write_s64(cgrp, cft, val); |
| } |
| if (!retval) |
| retval = nbytes; |
| return retval; |
| } |
| |
| static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, |
| struct file *file, |
| const char __user *userbuf, |
| size_t nbytes, loff_t *unused_ppos) |
| { |
| char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; |
| int retval = 0; |
| size_t max_bytes = cft->max_write_len; |
| char *buffer = local_buffer; |
| |
| if (!max_bytes) |
| max_bytes = sizeof(local_buffer) - 1; |
| if (nbytes >= max_bytes) |
| return -E2BIG; |
| /* Allocate a dynamic buffer if we need one */ |
| if (nbytes >= sizeof(local_buffer)) { |
| buffer = kmalloc(nbytes + 1, GFP_KERNEL); |
| if (buffer == NULL) |
| return -ENOMEM; |
| } |
| if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { |
| retval = -EFAULT; |
| goto out; |
| } |
| |
| buffer[nbytes] = 0; /* nul-terminate */ |
| retval = cft->write_string(cgrp, cft, strstrip(buffer)); |
| if (!retval) |
| retval = nbytes; |
| out: |
| if (buffer != local_buffer) |
| kfree(buffer); |
| return retval; |
| } |
| |
| static ssize_t cgroup_file_write(struct file *file, const char __user *buf, |
| size_t nbytes, loff_t *ppos) |
| { |
| struct cftype *cft = __d_cft(file->f_dentry); |
| struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
| |
| if (cgroup_is_removed(cgrp)) |
| return -ENODEV; |
| if (cft->write) |
| return cft->write(cgrp, cft, file, buf, nbytes, ppos); |
| if (cft->write_u64 || cft->write_s64) |
| return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); |
| if (cft->write_string) |
| return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); |
| if (cft->trigger) { |
| int ret = cft->trigger(cgrp, (unsigned int)cft->private); |
| return ret ? ret : nbytes; |
| } |
| return -EINVAL; |
| } |
| |
| static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, |
| struct file *file, |
| char __user *buf, size_t nbytes, |
| loff_t *ppos) |
| { |
| char tmp[CGROUP_LOCAL_BUFFER_SIZE]; |
| u64 val = cft->read_u64(cgrp, cft); |
| int len = sprintf(tmp, "%llu\n", (unsigned long long) val); |
| |
| return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); |
| } |
| |
| static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, |
| struct file *file, |
| char __user *buf, size_t nbytes, |
| loff_t *ppos) |
| { |
| char tmp[CGROUP_LOCAL_BUFFER_SIZE]; |
| s64 val = cft->read_s64(cgrp, cft); |
| int len = sprintf(tmp, "%lld\n", (long long) val); |
| |
| return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); |
| } |
| |
| static ssize_t cgroup_file_read(struct file *file, char __user *buf, |
| size_t nbytes, loff_t *ppos) |
| { |
| struct cftype *cft = __d_cft(file->f_dentry); |
| struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
| |
| if (cgroup_is_removed(cgrp)) |
| return -ENODEV; |
| |
| if (cft->read) |
| return cft->read(cgrp, cft, file, buf, nbytes, ppos); |
| if (cft->read_u64) |
| return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); |
| if (cft->read_s64) |
| return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); |
| return -EINVAL; |
| } |
| |
| /* |
| * seqfile ops/methods for returning structured data. Currently just |
| * supports string->u64 maps, but can be extended in future. |
| */ |
| |
| struct cgroup_seqfile_state { |
| struct cftype *cft; |
| struct cgroup *cgroup; |
| }; |
| |
| static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) |
| { |
| struct seq_file *sf = cb->state; |
| return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); |
| } |
| |
| static int cgroup_seqfile_show(struct seq_file *m, void *arg) |
| { |
| struct cgroup_seqfile_state *state = m->private; |
| struct cftype *cft = state->cft; |
| if (cft->read_map) { |
| struct cgroup_map_cb cb = { |
| .fill = cgroup_map_add, |
| .state = m, |
| }; |
| return cft->read_map(state->cgroup, cft, &cb); |
| } |
| return cft->read_seq_string(state->cgroup, cft, m); |
| } |
| |
| static int cgroup_seqfile_release(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq = file->private_data; |
| kfree(seq->private); |
| return single_release(inode, file); |
| } |
| |
| static const struct file_operations cgroup_seqfile_operations = { |
| .read = seq_read, |
| .write = cgroup_file_write, |
| .llseek = seq_lseek, |
| .release = cgroup_seqfile_release, |
| }; |
| |
| static int cgroup_file_open(struct inode *inode, struct file *file) |
| { |
| int err; |
| struct cftype *cft; |
| |
| err = generic_file_open(inode, file); |
| if (err) |
| return err; |
| cft = __d_cft(file->f_dentry); |
| |
| if (cft->read_map || cft->read_seq_string) { |
| struct cgroup_seqfile_state *state = |
| kzalloc(sizeof(*state), GFP_USER); |
| if (!state) |
| return -ENOMEM; |
| state->cft = cft; |
| state->cgroup = __d_cgrp(file->f_dentry->d_parent); |
| file->f_op = &cgroup_seqfile_operations; |
| err = single_open(file, cgroup_seqfile_show, state); |
| if (err < 0) |
| kfree(state); |
| } else if (cft->open) |
| err = cft->open(inode, file); |
| else |
| err = 0; |
| |
| return err; |
| } |
| |
| static int cgroup_file_release(struct inode *inode, struct file *file) |
| { |
| struct cftype *cft = __d_cft(file->f_dentry); |
| if (cft->release) |
| return cft->release(inode, file); |
| return 0; |
| } |
| |
| /* |
| * cgroup_rename - Only allow simple rename of directories in place. |
| */ |
| static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry) |
| { |
| if (!S_ISDIR(old_dentry->d_inode->i_mode)) |
| return -ENOTDIR; |
| if (new_dentry->d_inode) |
| return -EEXIST; |
| if (old_dir != new_dir) |
| return -EIO; |
| return simple_rename(old_dir, old_dentry, new_dir, new_dentry); |
| } |
| |
| static const struct file_operations cgroup_file_operations = { |
| .read = cgroup_file_read, |
| .write = cgroup_file_write, |
| .llseek = generic_file_llseek, |
| .open = cgroup_file_open, |
| .release = cgroup_file_release, |
| }; |
| |
| static const struct inode_operations cgroup_dir_inode_operations = { |
| .lookup = simple_lookup, |
| .mkdir = cgroup_mkdir, |
| .rmdir = cgroup_rmdir, |
| .rename = cgroup_rename, |
| }; |
| |
| static int cgroup_create_file(struct dentry *dentry, mode_t mode, |
| struct super_block *sb) |
| { |
| static const struct dentry_operations cgroup_dops = { |
| .d_iput = cgroup_diput, |
| }; |
| |
| struct inode *inode; |
| |
| if (!dentry) |
| return -ENOENT; |
| if (dentry->d_inode) |
| return -EEXIST; |
| |
| inode = cgroup_new_inode(mode, sb); |
| if (!inode) |
| return -ENOMEM; |
| |
| if (S_ISDIR(mode)) { |
| inode->i_op = &cgroup_dir_inode_operations; |
| inode->i_fop = &simple_dir_operations; |
| |
| /* start off with i_nlink == 2 (for "." entry) */ |
| inc_nlink(inode); |
| |
| /* start with the directory inode held, so that we can |
| * populate it without racing with another mkdir */ |
| mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); |
| } else if (S_ISREG(mode)) { |
| inode->i_size = 0; |
| inode->i_fop = &cgroup_file_operations; |
| } |
| dentry->d_op = &cgroup_dops; |
| d_instantiate(dentry, inode); |
| dget(dentry); /* Extra count - pin the dentry in core */ |
| return 0; |
| } |
| |
| /* |
| * cgroup_create_dir - create a directory for an object. |
| * @cgrp: the cgroup we create the directory for. It must have a valid |
| * ->parent field. And we are going to fill its ->dentry field. |
| * @dentry: dentry of the new cgroup |
| * @mode: mode to set on new directory. |
| */ |
| static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, |
| mode_t mode) |
| { |
| struct dentry *parent; |
| int error = 0; |
| |
| parent = cgrp->parent->dentry; |
| error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); |
| if (!error) { |
| dentry->d_fsdata = cgrp; |
| inc_nlink(parent->d_inode); |
| rcu_assign_pointer(cgrp->dentry, dentry); |
| dget(dentry); |
| } |
| dput(dentry); |
| |
| return error; |
| } |
| |
| /** |
| * cgroup_file_mode - deduce file mode of a control file |
| * @cft: the control file in question |
| * |
| * returns cft->mode if ->mode is not 0 |
| * returns S_IRUGO|S_IWUSR if it has both a read and a write handler |
| * returns S_IRUGO if it has only a read handler |
| * returns S_IWUSR if it has only a write hander |
| */ |
| static mode_t cgroup_file_mode(const struct cftype *cft) |
| { |
| mode_t mode = 0; |
| |
| if (cft->mode) |
| return cft->mode; |
| |
| if (cft->read || cft->read_u64 || cft->read_s64 || |
| cft->read_map || cft->read_seq_string) |
| mode |= S_IRUGO; |
| |
| if (cft->write || cft->write_u64 || cft->write_s64 || |
| cft->write_string || cft->trigger) |
| mode |= S_IWUSR; |
| |
| return mode; |
| } |
| |
| int cgroup_add_file(struct cgroup *cgrp, |
| struct cgroup_subsys *subsys, |
| const struct cftype *cft) |
| { |
| struct dentry *dir = cgrp->dentry; |
| struct dentry *dentry; |
| int error; |
| mode_t mode; |
| |
| char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; |
| if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { |
| strcpy(name, subsys->name); |
| strcat(name, "."); |
| } |
| strcat(name, cft->name); |
| BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); |
| dentry = lookup_one_len(name, dir, strlen(name)); |
| if (!IS_ERR(dentry)) { |
| mode = cgroup_file_mode(cft); |
| error = cgroup_create_file(dentry, mode | S_IFREG, |
| cgrp->root->sb); |
| if (!error) |
| dentry->d_fsdata = (void *)cft; |
| dput(dentry); |
| } else |
| error = PTR_ERR(dentry); |
| return error; |
| } |
| |
| int cgroup_add_files(struct cgroup *cgrp, |
| struct cgroup_subsys *subsys, |
| const struct cftype cft[], |
| int count) |
| { |
| int i, err; |
| for (i = 0; i < count; i++) { |
| err = cgroup_add_file(cgrp, subsys, &cft[i]); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| /** |
| * cgroup_task_count - count the number of tasks in a cgroup. |
| * @cgrp: the cgroup in question |
| * |
| * Return the number of tasks in the cgroup. |
| */ |
| int cgroup_task_count(const struct cgroup *cgrp) |
| { |
| int count = 0; |
| struct cg_cgroup_link *link; |
| |
| read_lock(&css_set_lock); |
| list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { |
| count += atomic_read(&link->cg->refcount); |
| } |
| read_unlock(&css_set_lock); |
| return count; |
| } |
| |
| /* |
| * Advance a list_head iterator. The iterator should be positioned at |
| * the start of a css_set |
| */ |
| static void cgroup_advance_iter(struct cgroup *cgrp, |
| struct cgroup_iter *it) |
| { |
| struct list_head *l = it->cg_link; |
| struct cg_cgroup_link *link; |
| struct css_set *cg; |
| |
| /* Advance to the next non-empty css_set */ |
| do { |
| l = l->next; |
| if (l == &cgrp->css_sets) { |
| it->cg_link = NULL; |
| return; |
| } |
| link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); |
| cg = link->cg; |
| } while (list_empty(&cg->tasks)); |
| it->cg_link = l; |
| it->task = cg->tasks.next; |
| } |
| |
| /* |
| * To reduce the fork() overhead for systems that are not actually |
| * using their cgroups capability, we don't maintain the lists running |
| * through each css_set to its tasks until we see the list actually |
| * used - in other words after the first call to cgroup_iter_start(). |
| * |
| * The tasklist_lock is not held here, as do_each_thread() and |
| * while_each_thread() are protected by RCU. |
| */ |
| static void cgroup_enable_task_cg_lists(void) |
| { |
| struct task_struct *p, *g; |
| write_lock(&css_set_lock); |
| use_task_css_set_links = 1; |
| do_each_thread(g, p) { |
| task_lock(p); |
| /* |
| * We should check if the process is exiting, otherwise |
| * it will race with cgroup_exit() in that the list |
| * entry won't be deleted though the process has exited. |
| */ |
| if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) |
| list_add(&p->cg_list, &p->cgroups->tasks); |
| task_unlock(p); |
| } while_each_thread(g, p); |
| write_unlock(&css_set_lock); |
| } |
| |
| void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) |
| { |
| /* |
| * The first time anyone tries to iterate across a cgroup, |
| * we need to enable the list linking each css_set to its |
| * tasks, and fix up all existing tasks. |
| */ |
| if (!use_task_css_set_links) |
| cgroup_enable_task_cg_lists(); |
| |
| read_lock(&css_set_lock); |
| it->cg_link = &cgrp->css_sets; |
| cgroup_advance_iter(cgrp, it); |
| } |
| |
| struct task_struct *cgroup_iter_next(struct cgroup *cgrp, |
| struct cgroup_iter *it) |
| { |
| struct task_struct *res; |
| struct list_head *l = it->task; |
| struct cg_cgroup_link *link; |
| |
| /* If the iterator cg is NULL, we have no tasks */ |
| if (!it->cg_link) |
| return NULL; |
| res = list_entry(l, struct task_struct, cg_list); |
| /* Advance iterator to find next entry */ |
| l = l->next; |
| link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); |
| if (l == &link->cg->tasks) { |
| /* We reached the end of this task list - move on to |
| * the next cg_cgroup_link */ |
| cgroup_advance_iter(cgrp, it); |
| } else { |
| it->task = l; |
| } |
| return res; |
| } |
| |
| void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) |
| { |
| read_unlock(&css_set_lock); |
| } |
| |
| static inline int started_after_time(struct task_struct *t1, |
| struct timespec *time, |
| struct task_struct *t2) |
| { |
| int start_diff = timespec_compare(&t1->start_time, time); |
| if (start_diff > 0) { |
| return 1; |
| } else if (start_diff < 0) { |
| return 0; |
| } else { |
| /* |
| * Arbitrarily, if two processes started at the same |
| * time, we'll say that the lower pointer value |
| * started first. Note that t2 may have exited by now |
| * so this may not be a valid pointer any longer, but |
| * that's fine - it still serves to distinguish |
| * between two tasks started (effectively) simultaneously. |
| */ |
| return t1 > t2; |
| } |
| } |
| |
| /* |
| * This function is a callback from heap_insert() and is used to order |
| * the heap. |
| * In this case we order the heap in descending task start time. |
| */ |
| static inline int started_after(void *p1, void *p2) |
| { |
| struct task_struct *t1 = p1; |
| struct task_struct *t2 = p2; |
| return started_after_time(t1, &t2->start_time, t2); |
| } |
| |
| /** |
| * cgroup_scan_tasks - iterate though all the tasks in a cgroup |
| * @scan: struct cgroup_scanner containing arguments for the scan |
| * |
| * Arguments include pointers to callback functions test_task() and |
| * process_task(). |
| * Iterate through all the tasks in a cgroup, calling test_task() for each, |
| * and if it returns true, call process_task() for it also. |
| * The test_task pointer may be NULL, meaning always true (select all tasks). |
| * Effectively duplicates cgroup_iter_{start,next,end}() |
| * but does not lock css_set_lock for the call to process_task(). |
| * The struct cgroup_scanner may be embedded in any structure of the caller's |
| * creation. |
| * It is guaranteed that process_task() will act on every task that |
| * is a member of the cgroup for the duration of this call. This |
| * function may or may not call process_task() for tasks that exit |
| * or move to a different cgroup during the call, or are forked or |
| * move into the cgroup during the call. |
| * |
| * Note that test_task() may be called with locks held, and may in some |
| * situations be called multiple times for the same task, so it should |
| * be cheap. |
| * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been |
| * pre-allocated and will be used for heap operations (and its "gt" member will |
| * be overwritten), else a temporary heap will be used (allocation of which |
| * may cause this function to fail). |
| */ |
| int cgroup_scan_tasks(struct cgroup_scanner *scan) |
| { |
| int retval, i; |
| struct cgroup_iter it; |
| struct task_struct *p, *dropped; |
| /* Never dereference latest_task, since it's not refcounted */ |
| struct task_struct *latest_task = NULL; |
| struct ptr_heap tmp_heap; |
| struct ptr_heap *heap; |
| struct timespec latest_time = { 0, 0 }; |
| |
| if (scan->heap) { |
| /* The caller supplied our heap and pre-allocated its memory */ |
| heap = scan->heap; |
| heap->gt = &started_after; |
| } else { |
| /* We need to allocate our own heap memory */ |
| heap = &tmp_heap; |
| retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); |
| if (retval) |
| /* cannot allocate the heap */ |
| return retval; |
| } |
| |
| again: |
| /* |
| * Scan tasks in the cgroup, using the scanner's "test_task" callback |
| * to determine which are of interest, and using the scanner's |
| * "process_task" callback to process any of them that need an update. |
| * Since we don't want to hold any locks during the task updates, |
| * gather tasks to be processed in a heap structure. |
| * The heap is sorted by descending task start time. |
| * If the statically-sized heap fills up, we overflow tasks that |
| * started later, and in future iterations only consider tasks that |
| * started after the latest task in the previous pass. This |
| * guarantees forward progress and that we don't miss any tasks. |
| */ |
| heap->size = 0; |
| cgroup_iter_start(scan->cg, &it); |
| while ((p = cgroup_iter_next(scan->cg, &it))) { |
| /* |
| * Only affect tasks that qualify per the caller's callback, |
| * if he provided one |
| */ |
| if (scan->test_task && !scan->test_task(p, scan)) |
| continue; |
| /* |
| * Only process tasks that started after the last task |
| * we processed |
| */ |
| if (!started_after_time(p, &latest_time, latest_task)) |
| continue; |
| dropped = heap_insert(heap, p); |
| if (dropped == NULL) { |
| /* |
| * The new task was inserted; the heap wasn't |
| * previously full |
| */ |
| get_task_struct(p); |
| } else if (dropped != p) { |
| /* |
| * The new task was inserted, and pushed out a |
| * different task |
| */ |
| get_task_struct(p); |
| put_task_struct(dropped); |
| } |
| /* |
| * Else the new task was newer than anything already in |
| * the heap and wasn't inserted |
| */ |
| } |
| cgroup_iter_end(scan->cg, &it); |
| |
| if (heap->size) { |
| for (i = 0; i < heap->size; i++) { |
| struct task_struct *q = heap->ptrs[i]; |
| if (i == 0) { |
| latest_time = q->start_time; |
| latest_task = q; |
| } |
| /* Process the task per the caller's callback */ |
| scan->process_task(q, scan); |
| put_task_struct(q); |
| } |
| /* |
| * If we had to process any tasks at all, scan again |
| * in case some of them were in the middle of forking |
| * children that didn't get processed. |
| * Not the most efficient way to do it, but it avoids |
| * having to take callback_mutex in the fork path |
| */ |
| goto again; |
| } |
| if (heap == &tmp_heap) |
| heap_free(&tmp_heap); |
| return 0; |
| } |
| |
| /* |
| * Stuff for reading the 'tasks'/'procs' files. |
| * |
| * Reading this file can return large amounts of data if a cgroup has |
| * *lots* of attached tasks. So it may need several calls to read(), |
| * but we cannot guarantee that the information we produce is correct |
| * unless we produce it entirely atomically. |
| * |
| */ |
| |
| /* |
| * The following two functions "fix" the issue where there are more pids |
| * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
| * TODO: replace with a kernel-wide solution to this problem |
| */ |
| #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
| static void *pidlist_allocate(int count) |
| { |
| if (PIDLIST_TOO_LARGE(count)) |
| return vmalloc(count * sizeof(pid_t)); |
| else |
| return kmalloc(count * sizeof(pid_t), GFP_KERNEL); |
| } |
| static void pidlist_free(void *p) |
| { |
| if (is_vmalloc_addr(p)) |
| vfree(p); |
| else |
| kfree(p); |
| } |
| static void *pidlist_resize(void *p, int newcount) |
| { |
| void *newlist; |
| /* note: if new alloc fails, old p will still be valid either way */ |
| if (is_vmalloc_addr(p)) { |
| newlist = vmalloc(newcount * sizeof(pid_t)); |
| if (!newlist) |
| return NULL; |
| memcpy(newlist, p, newcount * sizeof(pid_t)); |
| vfree(p); |
| } else { |
| newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); |
| } |
| return newlist; |
| } |
| |
| /* |
| * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries |
| * If the new stripped list is sufficiently smaller and there's enough memory |
| * to allocate a new buffer, will let go of the unneeded memory. Returns the |
| * number of unique elements. |
| */ |
| /* is the size difference enough that we should re-allocate the array? */ |
| #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) |
| static int pidlist_uniq(pid_t **p, int length) |
| { |
| int src, dest = 1; |
| pid_t *list = *p; |
| pid_t *newlist; |
| |
| /* |
| * we presume the 0th element is unique, so i starts at 1. trivial |
| * edge cases first; no work needs to be done for either |
| */ |
| if (length == 0 || length == 1) |
| return length; |
| /* src and dest walk down the list; dest counts unique elements */ |
| for (src = 1; src < length; src++) { |
| /* find next unique element */ |
| while (list[src] == list[src-1]) { |
| src++; |
| if (src == length) |
| goto after; |
| } |
| /* dest always points to where the next unique element goes */ |
| list[dest] = list[src]; |
| dest++; |
| } |
| after: |
| /* |
| * if the length difference is large enough, we want to allocate a |
| * smaller buffer to save memory. if this fails due to out of memory, |
| * we'll just stay with what we've got. |
| */ |
| if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { |
| newlist = pidlist_resize(list, dest); |
| if (newlist) |
| *p = newlist; |
| } |
| return dest; |
| } |
| |
| static int cmppid(const void *a, const void *b) |
| { |
| return *(pid_t *)a - *(pid_t *)b; |
| } |
| |
| /* |
| * find the appropriate pidlist for our purpose (given procs vs tasks) |
| * returns with the lock on that pidlist already held, and takes care |
| * of the use count, or returns NULL with no locks held if we're out of |
| * memory. |
| */ |
| static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
| enum cgroup_filetype type) |
| { |
| struct cgroup_pidlist *l; |
| /* don't need task_nsproxy() if we're looking at ourself */ |
| struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns); |
| /* |
| * We can't drop the pidlist_mutex before taking the l->mutex in case |
| * the last ref-holder is trying to remove l from the list at the same |
| * time. Holding the pidlist_mutex precludes somebody taking whichever |
| * list we find out from under us - compare release_pid_array(). |
| */ |
| mutex_lock(&cgrp->pidlist_mutex); |
| list_for_each_entry(l, &cgrp->pidlists, links) { |
| if (l->key.type == type && l->key.ns == ns) { |
| /* found a matching list - drop the extra refcount */ |
| put_pid_ns(ns); |
| /* make sure l doesn't vanish out from under us */ |
| down_write(&l->mutex); |
| mutex_unlock(&cgrp->pidlist_mutex); |
| return l; |
| } |
| } |
| /* entry not found; create a new one */ |
| l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); |
| if (!l) { |
| mutex_unlock(&cgrp->pidlist_mutex); |
| put_pid_ns(ns); |
| return l; |
| } |
| init_rwsem(&l->mutex); |
| down_write(&l->mutex); |
| l->key.type = type; |
| l->key.ns = ns; |
| l->use_count = 0; /* don't increment here */ |
| l->list = NULL; |
| l->owner = cgrp; |
| list_add(&l->links, &cgrp->pidlists); |
| mutex_unlock(&cgrp->pidlist_mutex); |
| return l; |
| } |
| |
| /* |
| * Load a cgroup's pidarray with either procs' tgids or tasks' pids |
| */ |
| static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, |
| struct cgroup_pidlist **lp) |
| { |
| pid_t *array; |
| int length; |
| int pid, n = 0; /* used for populating the array */ |
| struct cgroup_iter it; |
| struct task_struct *tsk; |
| struct cgroup_pidlist *l; |
| |
| /* |
| * If cgroup gets more users after we read count, we won't have |
| * enough space - tough. This race is indistinguishable to the |
| * caller from the case that the additional cgroup users didn't |
| * show up until sometime later on. |
| */ |
| length = cgroup_task_count(cgrp); |
| array = pidlist_allocate(length); |
| if (!array) |
| return -ENOMEM; |
| /* now, populate the array */ |
| cgroup_iter_start(cgrp, &it); |
| while ((tsk = cgroup_iter_next(cgrp, &it))) { |
| if (unlikely(n == length)) |
| break; |
| /* get tgid or pid for procs or tasks file respectively */ |
| if (type == CGROUP_FILE_PROCS) |
| pid = task_tgid_vnr(tsk); |
| else |
| pid = task_pid_vnr(tsk); |
| if (pid > 0) /* make sure to only use valid results */ |
| array[n++] = pid; |
| } |
| cgroup_iter_end(cgrp, &it); |
| length = n; |
| /* now sort & (if procs) strip out duplicates */ |
| sort(array, length, sizeof(pid_t), cmppid, NULL); |
| if (type == CGROUP_FILE_PROCS) |
| length = pidlist_uniq(&array, length); |
| l = cgroup_pidlist_find(cgrp, type); |
| if (!l) { |
| pidlist_free(array); |
| return -ENOMEM; |
| } |
| /* store array, freeing old if necessary - lock already held */ |
| pidlist_free(l->list); |
| l->list = array; |
| l->length = length; |
| l->use_count++; |
| up_write(&l->mutex); |
| *lp = l; |
| return 0; |
| } |
| |
| /** |
| * cgroupstats_build - build and fill cgroupstats |
| * @stats: cgroupstats to fill information into |
| * @dentry: A dentry entry belonging to the cgroup for which stats have |
| * been requested. |
| * |
| * Build and fill cgroupstats so that taskstats can export it to user |
| * space. |
| */ |
| int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) |
| { |
| int ret = -EINVAL; |
| struct cgroup *cgrp; |
| struct cgroup_iter it; |
| struct task_struct *tsk; |
| |
| /* |
| * Validate dentry by checking the superblock operations, |
| * and make sure it's a directory. |
| */ |
| if (dentry->d_sb->s_op != &cgroup_ops || |
| !S_ISDIR(dentry->d_inode->i_mode)) |
| goto err; |
| |
| ret = 0; |
| cgrp = dentry->d_fsdata; |
| |
| cgroup_iter_start(cgrp, &it); |
| while ((tsk = cgroup_iter_next(cgrp, &it))) { |
| switch (tsk->state) { |
| case TASK_RUNNING: |
| stats->nr_running++; |
| break; |
| case TASK_INTERRUPTIBLE: |
| stats->nr_sleeping++; |
| break; |
| case TASK_UNINTERRUPTIBLE: |
| stats->nr_uninterruptible++; |
| break; |
| case TASK_STOPPED: |
| stats->nr_stopped++; |
| break; |
| default: |
| if (delayacct_is_task_waiting_on_io(tsk)) |
| stats->nr_io_wait++; |
| break; |
| } |
| } |
| cgroup_iter_end(cgrp, &it); |
| |
| err: |
| return ret; |
| } |
| |
| |
| /* |
| * seq_file methods for the tasks/procs files. The seq_file position is the |
| * next pid to display; the seq_file iterator is a pointer to the pid |
| * in the cgroup->l->list array. |
| */ |
| |
| static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
| { |
| /* |
| * Initially we receive a position value that corresponds to |
| * one more than the last pid shown (or 0 on the first call or |
| * after a seek to the start). Use a binary-search to find the |
| * next pid to display, if any |
| */ |
| struct cgroup_pidlist *l = s->private; |
| int index = 0, pid = *pos; |
| int *iter; |
| |
| down_read(&l->mutex); |
| if (pid) { |
| int end = l->length; |
| |
| while (index < end) { |
| int mid = (index + end) / 2; |
| if (l->list[mid] == pid) { |
| index = mid; |
| break; |
| } else if (l->list[mid] <= pid) |
| index = mid + 1; |
| else |
| end = mid; |
| } |
| } |
| /* If we're off the end of the array, we're done */ |
| if (index >= l->length) |
| return NULL; |
| /* Update the abstract position to be the actual pid that we found */ |
| iter = l->list + index; |
| *pos = *iter; |
| return iter; |
| } |
| |
| static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
| { |
| struct cgroup_pidlist *l = s->private; |
| up_read(&l->mutex); |
| } |
| |
| static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
| { |
| struct cgroup_pidlist *l = s->private; |
| pid_t *p = v; |
| pid_t *end = l->list + l->length; |
| /* |
| * Advance to the next pid in the array. If this goes off the |
| * end, we're done |
| */ |
| p++; |
| if (p >= end) { |
| return NULL; |
| } else { |
| *pos = *p; |
| return p; |
| } |
| } |
| |
| static int cgroup_pidlist_show(struct seq_file *s, void *v) |
| { |
| return seq_printf(s, "%d\n", *(int *)v); |
| } |
| |
| /* |
| * seq_operations functions for iterating on pidlists through seq_file - |
| * independent of whether it's tasks or procs |
| */ |
| static const struct seq_operations cgroup_pidlist_seq_operations = { |
| .start = cgroup_pidlist_start, |
| .stop = cgroup_pidlist_stop, |
| .next = cgroup_pidlist_next, |
| .show = cgroup_pidlist_show, |
| }; |
| |
| static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
| { |
| /* |
| * the case where we're the last user of this particular pidlist will |
| * have us remove it from the cgroup's list, which entails taking the |
| * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> |
| * pidlist_mutex, we have to take pidlist_mutex first. |
| */ |
| mutex_lock(&l->owner->pidlist_mutex); |
| down_write(&l->mutex); |
| BUG_ON(!l->use_count); |
| if (!--l->use_count) { |
| /* we're the last user if refcount is 0; remove and free */ |
| list_del(&l->links); |
| mutex_unlock(&l->owner->pidlist_mutex); |
| pidlist_free(l->list); |
| put_pid_ns(l->key.ns); |
| up_write(&l->mutex); |
| kfree(l); |
| return; |
| } |
| mutex_unlock(&l->owner->pidlist_mutex); |
| up_write(&l->mutex); |
| } |
| |
| static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
| { |
| struct cgroup_pidlist *l; |
| if (!(file->f_mode & FMODE_READ)) |
| return 0; |
| /* |
| * the seq_file will only be initialized if the file was opened for |
| * reading; hence we check if it's not null only in that case. |
| */ |
| l = ((struct seq_file *)file->private_data)->private; |
| cgroup_release_pid_array(l); |
| return seq_release(inode, file); |
| } |
| |
| static const struct file_operations cgroup_pidlist_operations = { |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .write = cgroup_file_write, |
| .release = cgroup_pidlist_release, |
| }; |
| |
| /* |
| * The following functions handle opens on a file that displays a pidlist |
| * (tasks or procs). Prepare an array of the process/thread IDs of whoever's |
| * in the cgroup. |
| */ |
| /* helper function for the two below it */ |
| static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
| { |
| struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
| struct cgroup_pidlist *l; |
| int retval; |
| |
| /* Nothing to do for write-only files */ |
| if (!(file->f_mode & FMODE_READ)) |
| return 0; |
| |
| /* have the array populated */ |
| retval = pidlist_array_load(cgrp, type, &l); |
| if (retval) |
| return retval; |
| /* configure file information */ |
| file->f_op = &cgroup_pidlist_operations; |
| |
| retval = seq_open(file, &cgroup_pidlist_seq_operations); |
| if (retval) { |
| cgroup_release_pid_array(l); |
| return retval; |
| } |
| ((struct seq_file *)file->private_data)->private = l; |
| return 0; |
| } |
| static int cgroup_tasks_open(struct inode *unused, struct file *file) |
| { |
| return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); |
| } |
| static int cgroup_procs_open(struct inode *unused, struct file *file) |
| { |
| return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); |
| } |
| |
| static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
| struct cftype *cft) |
| { |
| return notify_on_release(cgrp); |
| } |
| |
| static int cgroup_write_notify_on_release(struct cgroup *cgrp, |
| struct cftype *cft, |
| u64 val) |
| { |
| clear_bit(CGRP_RELEASABLE, &cgrp->flags); |
| if (val) |
| set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
| else |
| clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
| return 0; |
| } |
| |
| /* |
| * for the common functions, 'private' gives the type of file |
| */ |
| /* for hysterical raisins, we can't put this on the older files */ |
| #define CGROUP_FILE_GENERIC_PREFIX "cgroup." |
| static struct cftype files[] = { |
| { |
| .name = "tasks", |
| .open = cgroup_tasks_open, |
| .write_u64 = cgroup_tasks_write, |
| .release = cgroup_pidlist_release, |
| .mode = S_IRUGO | S_IWUSR, |
| }, |
| { |
| .name = CGROUP_FILE_GENERIC_PREFIX "procs", |
| .open = cgroup_procs_open, |
| /* .write_u64 = cgroup_procs_write, TODO */ |
| .release = cgroup_pidlist_release, |
| .mode = S_IRUGO, |
| }, |
| { |
| .name = "notify_on_release", |
| .read_u64 = cgroup_read_notify_on_release, |
| .write_u64 = cgroup_write_notify_on_release, |
| }, |
| }; |
| |
| static struct cftype cft_release_agent = { |
| .name = "release_agent", |
| .read_seq_string = cgroup_release_agent_show, |
| .write_string = cgroup_release_agent_write, |
| .max_write_len = PATH_MAX, |
| }; |
| |
| static int cgroup_populate_dir(struct cgroup *cgrp) |
| { |
| int err; |
| struct cgroup_subsys *ss; |
| |
| /* First clear out any existing files */ |
| cgroup_clear_directory(cgrp->dentry); |
| |
| err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); |
| if (err < 0) |
| return err; |
| |
| if (cgrp == cgrp->top_cgroup) { |
| if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) |
| return err; |
| } |
| |
| for_each_subsys(cgrp->root, ss) { |
| if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) |
| return err; |
| } |
| /* This cgroup is ready now */ |
| for_each_subsys(cgrp->root, ss) { |
| struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; |
| /* |
| * Update id->css pointer and make this css visible from |
| * CSS ID functions. This pointer will be dereferened |
| * from RCU-read-side without locks. |
| */ |
| if (css->id) |
| rcu_assign_pointer(css->id->css, css); |
| } |
| |
| return 0; |
| } |
| |
| static void init_cgroup_css(struct cgroup_subsys_state *css, |
| struct cgroup_subsys *ss, |
| struct cgroup *cgrp) |
| { |
| css->cgroup = cgrp; |
| atomic_set(&css->refcnt, 1); |
| css->flags = 0; |
| css->id = NULL; |
| if (cgrp == dummytop) |
| set_bit(CSS_ROOT, &css->flags); |
| BUG_ON(cgrp->subsys[ss->subsys_id]); |
| cgrp->subsys[ss->subsys_id] = css; |
| } |
| |
| static void cgroup_lock_hierarchy(struct cgroupfs_root *root) |
| { |
| /* We need to take each hierarchy_mutex in a consistent order */ |
| int i; |
| |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| struct cgroup_subsys *ss = subsys[i]; |
| if (ss->root == root) |
| mutex_lock(&ss->hierarchy_mutex); |
| } |
| } |
| |
| static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) |
| { |
| int i; |
| |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| struct cgroup_subsys *ss = subsys[i]; |
| if (ss->root == root) |
| mutex_unlock(&ss->hierarchy_mutex); |
| } |
| } |
| |
| /* |
| * cgroup_create - create a cgroup |
| * @parent: cgroup that will be parent of the new cgroup |
| * @dentry: dentry of the new cgroup |
| * @mode: mode to set on new inode |
| * |
| * Must be called with the mutex on the parent inode held |
| */ |
| static long cgroup_create(struct cgroup *parent, struct dentry *dentry, |
| mode_t mode) |
| { |
| struct cgroup *cgrp; |
| struct cgroupfs_root *root = parent->root; |
| int err = 0; |
| struct cgroup_subsys *ss; |
| struct super_block *sb = root->sb; |
| |
| cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); |
| if (!cgrp) |
| return -ENOMEM; |
| |
| /* Grab a reference on the superblock so the hierarchy doesn't |
| * get deleted on unmount if there are child cgroups. This |
| * can be done outside cgroup_mutex, since the sb can't |
| * disappear while someone has an open control file on the |
| * fs */ |
| atomic_inc(&sb->s_active); |
| |
| mutex_lock(&cgroup_mutex); |
| |
| init_cgroup_housekeeping(cgrp); |
| |
| cgrp->parent = parent; |
| cgrp->root = parent->root; |
| cgrp->top_cgroup = parent->top_cgroup; |
| |
| if (notify_on_release(parent)) |
| set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
| |
| for_each_subsys(root, ss) { |
| struct cgroup_subsys_state *css = ss->create(ss, cgrp); |
| if (IS_ERR(css)) { |
| err = PTR_ERR(css); |
| goto err_destroy; |
| } |
| init_cgroup_css(css, ss, cgrp); |
| if (ss->use_id) |
| if (alloc_css_id(ss, parent, cgrp)) |
| goto err_destroy; |
| /* At error, ->destroy() callback has to free assigned ID. */ |
| } |
| |
| cgroup_lock_hierarchy(root); |
| list_add(&cgrp->sibling, &cgrp->parent->children); |
| cgroup_unlock_hierarchy(root); |
| root->number_of_cgroups++; |
| |
| err = cgroup_create_dir(cgrp, dentry, mode); |
| if (err < 0) |
| goto err_remove; |
| |
| /* The cgroup directory was pre-locked for us */ |
| BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); |
| |
| err = cgroup_populate_dir(cgrp); |
| /* If err < 0, we have a half-filled directory - oh well ;) */ |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
| |
| return 0; |
| |
| err_remove: |
| |
| cgroup_lock_hierarchy(root); |
| list_del(&cgrp->sibling); |
| cgroup_unlock_hierarchy(root); |
| root->number_of_cgroups--; |
| |
| err_destroy: |
| |
| for_each_subsys(root, ss) { |
| if (cgrp->subsys[ss->subsys_id]) |
| ss->destroy(ss, cgrp); |
| } |
| |
| mutex_unlock(&cgroup_mutex); |
| |
| /* Release the reference count that we took on the superblock */ |
| deactivate_super(sb); |
| |
| kfree(cgrp); |
| return err; |
| } |
| |
| static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode) |
| { |
| struct cgroup *c_parent = dentry->d_parent->d_fsdata; |
| |
| /* the vfs holds inode->i_mutex already */ |
| return cgroup_create(c_parent, dentry, mode | S_IFDIR); |
| } |
| |
| static int cgroup_has_css_refs(struct cgroup *cgrp) |
| { |
| /* Check the reference count on each subsystem. Since we |
| * already established that there are no tasks in the |
| * cgroup, if the css refcount is also 1, then there should |
| * be no outstanding references, so the subsystem is safe to |
| * destroy. We scan across all subsystems rather than using |
| * the per-hierarchy linked list of mounted subsystems since |
| * we can be called via check_for_release() with no |
| * synchronization other than RCU, and the subsystem linked |
| * list isn't RCU-safe */ |
| int i; |
| for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| struct cgroup_subsys *ss = subsys[i]; |
| struct cgroup_subsys_state *css; |
| /* Skip subsystems not in this hierarchy */ |
| if (ss->root != cgrp->root) |
| continue; |
| css = cgrp->subsys[ss->subsys_id]; |
| /* When called from check_for_release() it's possible |
| * that by this point the cgroup has been removed |
| * and the css deleted. But a false-positive doesn't |
| * matter, since it can only happen if the cgroup |
| * has been deleted and hence no longer needs the |
| * release agent to be called anyway. */ |
| if (css && (atomic_read(&css->refcnt) > 1)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Atomically mark all (or else none) of the cgroup's CSS objects as |
| * CSS_REMOVED. Return true on success, or false if the cgroup has |
| * busy subsystems. Call with cgroup_mutex held |
| */ |
| |
| static int cgroup_clear_css_refs(struct cgroup *cgrp) |
| { |
| struct cgroup_subsys *ss; |
| unsigned long flags; |
| bool failed = false; |
| local_irq_save(flags); |
| for_each_subsys(cgrp->root, ss) { |
| struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; |
| int refcnt; |
| while (1) { |
| /* We can only remove a CSS with a refcnt==1 */ |
| refcnt = atomic_read(&css->refcnt); |
| if (refcnt > 1) { |
| failed = true; |
| goto done; |
| } |
| BUG_ON(!refcnt); |
| /* |
| * Drop the refcnt to 0 while we check other |
| * subsystems. This will cause any racing |
| * css_tryget() to spin until we set the |
| * CSS_REMOVED bits or abort |
| */ |
| if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt) |
| break; |
| cpu_relax(); |
| } |
| } |
| done: |
| for_each_subsys(cgrp->root, ss) { |
| struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; |
| if (failed) { |
| /* |
| * Restore old refcnt if we previously managed |
| * to clear it from 1 to 0 |
| */ |
| if (!atomic_read(&css->refcnt)) |
| atomic_set(&css->refcnt, 1); |
| } else { |
| /* Commit the fact that the CSS is removed */ |
| set_bit(CSS_REMOVED, &css->flags); |
| } |
| } |
| local_irq_restore(flags); |
| return !failed; |
| } |
| |
| static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) |
| { |
| struct cgroup *cgrp = dentry->d_fsdata; |
| struct dentry *d; |
| struct cgroup *parent; |
| DEFINE_WAIT(wait); |
| int ret; |
| |
| /* the vfs holds both inode->i_mutex already */ |
| again: |
| mutex_lock(&cgroup_mutex); |
| if (atomic_read(&cgrp->count) != 0) { |
| mutex_unlock(&cgroup_mutex); |
| return -EBUSY; |
| } |
| if (!list_empty(&cgrp->children)) { |
| mutex_unlock(&cgroup_mutex); |
| return -EBUSY; |
| } |
| mutex_unlock(&cgroup_mutex); |
| |
| /* |
| * In general, subsystem has no css->refcnt after pre_destroy(). But |
| * in racy cases, subsystem may have to get css->refcnt after |
| * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes |
| * make rmdir return -EBUSY too often. To avoid that, we use waitqueue |
| * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir |
| * and subsystem's reference count handling. Please see css_get/put |
| * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. |
| */ |
| set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
| |
| /* |
| * Call pre_destroy handlers of subsys. Notify subsystems |
| * that rmdir() request comes. |
| */ |
| ret = cgroup_call_pre_destroy(cgrp); |
| if (ret) { |
| clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
| return ret; |
| } |
| |
| mutex_lock(&cgroup_mutex); |
| parent = cgrp->parent; |
| if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { |
| clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
| mutex_unlock(&cgroup_mutex); |
| return -EBUSY; |
| } |
| prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); |
| if (!cgroup_clear_css_refs(cgrp)) { |
| mutex_unlock(&cgroup_mutex); |
| /* |
| * Because someone may call cgroup_wakeup_rmdir_waiter() before |
| * prepare_to_wait(), we need to check this flag. |
| */ |
| if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) |
| schedule(); |
| finish_wait(&cgroup_rmdir_waitq, &wait); |
| clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
| if (signal_pending(current)) |
| return -EINTR; |
| goto again; |
| } |
| /* NO css_tryget() can success after here. */ |
| finish_wait(&cgroup_rmdir_waitq, &wait); |
| clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
| |
| spin_lock(&release_list_lock); |
| set_bit(CGRP_REMOVED, &cgrp->flags); |
| if (!list_empty(&cgrp->release_list)) |
| list_del(&cgrp->release_list); |
| spin_unlock(&release_list_lock); |
| |
| cgroup_lock_hierarchy(cgrp->root); |
| /* delete this cgroup from parent->children */ |
| list_del(&cgrp->sibling); |
| cgroup_unlock_hierarchy(cgrp->root); |
| |
| spin_lock(&cgrp->dentry->d_lock); |
| d = dget(cgrp->dentry); |
| spin_unlock(&d->d_lock); |
| |
| cgroup_d_remove_dir(d); |
| dput(d); |
| |
| set_bit(CGRP_RELEASABLE, &parent->flags); |
| check_for_release(parent); |
| |
| mutex_unlock(&cgroup_mutex); |
| return 0; |
| } |
| |
|