Daniel Mentz | 94787a1 | 2013-05-29 21:12:04 -0700 | [diff] [blame] | 1 | /* |
| 2 | * edac_mc kernel module |
| 3 | * (C) 2005, 2006 Linux Networx (http://lnxi.com) |
| 4 | * This file may be distributed under the terms of the |
| 5 | * GNU General Public License. |
| 6 | * |
| 7 | * Written by Thayne Harbaugh |
| 8 | * Based on work by Dan Hollis <goemon at anime dot net> and others. |
| 9 | * http://www.anime.net/~goemon/linux-ecc/ |
| 10 | * |
| 11 | * Modified by Dave Peterson and Doug Thompson |
| 12 | * |
| 13 | */ |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/proc_fs.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/types.h> |
| 19 | #include <linux/smp.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/sysctl.h> |
| 22 | #include <linux/highmem.h> |
| 23 | #include <linux/timer.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/jiffies.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/list.h> |
| 28 | #include <linux/sysdev.h> |
| 29 | #include <linux/ctype.h> |
| 30 | #include <linux/edac.h> |
| 31 | #include <asm/uaccess.h> |
| 32 | #include <asm/page.h> |
| 33 | #include <asm/edac.h> |
| 34 | #include "edac_core.h" |
| 35 | #include "edac_module.h" |
| 36 | |
| 37 | /* lock to memory controller's control array */ |
| 38 | static DEFINE_MUTEX(mem_ctls_mutex); |
| 39 | static LIST_HEAD(mc_devices); |
| 40 | |
| 41 | #ifdef CONFIG_EDAC_DEBUG |
| 42 | |
| 43 | static void edac_mc_dump_channel(struct channel_info *chan) |
| 44 | { |
| 45 | debugf4("\tchannel = %p\n", chan); |
| 46 | debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); |
| 47 | debugf4("\tchannel->ce_count = %d\n", chan->ce_count); |
| 48 | debugf4("\tchannel->label = '%s'\n", chan->label); |
| 49 | debugf4("\tchannel->csrow = %p\n\n", chan->csrow); |
| 50 | } |
| 51 | |
| 52 | static void edac_mc_dump_csrow(struct csrow_info *csrow) |
| 53 | { |
| 54 | debugf4("\tcsrow = %p\n", csrow); |
| 55 | debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); |
| 56 | debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page); |
| 57 | debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); |
| 58 | debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); |
| 59 | debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); |
| 60 | debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels); |
| 61 | debugf4("\tcsrow->channels = %p\n", csrow->channels); |
| 62 | debugf4("\tcsrow->mci = %p\n\n", csrow->mci); |
| 63 | } |
| 64 | |
| 65 | static void edac_mc_dump_mci(struct mem_ctl_info *mci) |
| 66 | { |
| 67 | debugf3("\tmci = %p\n", mci); |
| 68 | debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); |
| 69 | debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); |
| 70 | debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); |
| 71 | debugf4("\tmci->edac_check = %p\n", mci->edac_check); |
| 72 | debugf3("\tmci->nr_csrows = %d, csrows = %p\n", |
| 73 | mci->nr_csrows, mci->csrows); |
| 74 | debugf3("\tdev = %p\n", mci->dev); |
| 75 | debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name); |
| 76 | debugf3("\tpvt_info = %p\n\n", mci->pvt_info); |
| 77 | } |
| 78 | |
| 79 | #endif /* CONFIG_EDAC_DEBUG */ |
| 80 | |
| 81 | /* |
| 82 | * keep those in sync with the enum mem_type |
| 83 | */ |
| 84 | const char *edac_mem_types[] = { |
| 85 | "Empty csrow", |
| 86 | "Reserved csrow type", |
| 87 | "Unknown csrow type", |
| 88 | "Fast page mode RAM", |
| 89 | "Extended data out RAM", |
| 90 | "Burst Extended data out RAM", |
| 91 | "Single data rate SDRAM", |
| 92 | "Registered single data rate SDRAM", |
| 93 | "Double data rate SDRAM", |
| 94 | "Registered Double data rate SDRAM", |
| 95 | "Rambus DRAM", |
| 96 | "Unbuffered DDR2 RAM", |
| 97 | "Fully buffered DDR2", |
| 98 | "Registered DDR2 RAM", |
| 99 | "Rambus XDR", |
| 100 | "Unbuffered DDR3 RAM", |
| 101 | "Registered DDR3 RAM", |
| 102 | }; |
| 103 | EXPORT_SYMBOL_GPL(edac_mem_types); |
| 104 | |
| 105 | /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. |
| 106 | * Adjust 'ptr' so that its alignment is at least as stringent as what the |
| 107 | * compiler would provide for X and return the aligned result. |
| 108 | * |
| 109 | * If 'size' is a constant, the compiler will optimize this whole function |
| 110 | * down to either a no-op or the addition of a constant to the value of 'ptr'. |
| 111 | */ |
| 112 | void *edac_align_ptr(void *ptr, unsigned size) |
| 113 | { |
| 114 | unsigned align, r; |
| 115 | |
| 116 | /* Here we assume that the alignment of a "long long" is the most |
| 117 | * stringent alignment that the compiler will ever provide by default. |
| 118 | * As far as I know, this is a reasonable assumption. |
| 119 | */ |
| 120 | if (size > sizeof(long)) |
| 121 | align = sizeof(long long); |
| 122 | else if (size > sizeof(int)) |
| 123 | align = sizeof(long); |
| 124 | else if (size > sizeof(short)) |
| 125 | align = sizeof(int); |
| 126 | else if (size > sizeof(char)) |
| 127 | align = sizeof(short); |
| 128 | else |
| 129 | return (char *)ptr; |
| 130 | |
| 131 | r = size % align; |
| 132 | |
| 133 | if (r == 0) |
| 134 | return (char *)ptr; |
| 135 | |
| 136 | return (void *)(((unsigned long)ptr) + align - r); |
| 137 | } |
| 138 | |
| 139 | /** |
| 140 | * edac_mc_alloc: Allocate a struct mem_ctl_info structure |
| 141 | * @size_pvt: size of private storage needed |
| 142 | * @nr_csrows: Number of CWROWS needed for this MC |
| 143 | * @nr_chans: Number of channels for the MC |
| 144 | * |
| 145 | * Everything is kmalloc'ed as one big chunk - more efficient. |
| 146 | * Only can be used if all structures have the same lifetime - otherwise |
| 147 | * you have to allocate and initialize your own structures. |
| 148 | * |
| 149 | * Use edac_mc_free() to free mc structures allocated by this function. |
| 150 | * |
| 151 | * Returns: |
| 152 | * NULL allocation failed |
| 153 | * struct mem_ctl_info pointer |
| 154 | */ |
| 155 | struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, |
| 156 | unsigned nr_chans, int edac_index) |
| 157 | { |
| 158 | struct mem_ctl_info *mci; |
| 159 | struct csrow_info *csi, *csrow; |
| 160 | struct channel_info *chi, *chp, *chan; |
| 161 | void *pvt; |
| 162 | unsigned size; |
| 163 | int row, chn; |
| 164 | int err; |
| 165 | |
| 166 | /* Figure out the offsets of the various items from the start of an mc |
| 167 | * structure. We want the alignment of each item to be at least as |
| 168 | * stringent as what the compiler would provide if we could simply |
| 169 | * hardcode everything into a single struct. |
| 170 | */ |
| 171 | mci = (struct mem_ctl_info *)0; |
| 172 | csi = edac_align_ptr(&mci[1], sizeof(*csi)); |
| 173 | chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi)); |
| 174 | pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); |
| 175 | size = ((unsigned long)pvt) + sz_pvt; |
| 176 | |
| 177 | mci = kzalloc(size, GFP_KERNEL); |
| 178 | if (mci == NULL) |
| 179 | return NULL; |
| 180 | |
| 181 | /* Adjust pointers so they point within the memory we just allocated |
| 182 | * rather than an imaginary chunk of memory located at address 0. |
| 183 | */ |
| 184 | csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi)); |
| 185 | chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi)); |
| 186 | pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; |
| 187 | |
| 188 | /* setup index and various internal pointers */ |
| 189 | mci->mc_idx = edac_index; |
| 190 | mci->csrows = csi; |
| 191 | mci->pvt_info = pvt; |
| 192 | mci->nr_csrows = nr_csrows; |
| 193 | |
| 194 | for (row = 0; row < nr_csrows; row++) { |
| 195 | csrow = &csi[row]; |
| 196 | csrow->csrow_idx = row; |
| 197 | csrow->mci = mci; |
| 198 | csrow->nr_channels = nr_chans; |
| 199 | chp = &chi[row * nr_chans]; |
| 200 | csrow->channels = chp; |
| 201 | |
| 202 | for (chn = 0; chn < nr_chans; chn++) { |
| 203 | chan = &chp[chn]; |
| 204 | chan->chan_idx = chn; |
| 205 | chan->csrow = csrow; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | mci->op_state = OP_ALLOC; |
| 210 | INIT_LIST_HEAD(&mci->grp_kobj_list); |
| 211 | |
| 212 | /* |
| 213 | * Initialize the 'root' kobj for the edac_mc controller |
| 214 | */ |
| 215 | err = edac_mc_register_sysfs_main_kobj(mci); |
| 216 | if (err) { |
| 217 | kfree(mci); |
| 218 | return NULL; |
| 219 | } |
| 220 | |
| 221 | /* at this point, the root kobj is valid, and in order to |
| 222 | * 'free' the object, then the function: |
| 223 | * edac_mc_unregister_sysfs_main_kobj() must be called |
| 224 | * which will perform kobj unregistration and the actual free |
| 225 | * will occur during the kobject callback operation |
| 226 | */ |
| 227 | return mci; |
| 228 | } |
| 229 | EXPORT_SYMBOL_GPL(edac_mc_alloc); |
| 230 | |
| 231 | /** |
| 232 | * edac_mc_free |
| 233 | * 'Free' a previously allocated 'mci' structure |
| 234 | * @mci: pointer to a struct mem_ctl_info structure |
| 235 | */ |
| 236 | void edac_mc_free(struct mem_ctl_info *mci) |
| 237 | { |
| 238 | debugf1("%s()\n", __func__); |
| 239 | |
| 240 | edac_mc_unregister_sysfs_main_kobj(mci); |
| 241 | |
| 242 | /* free the mci instance memory here */ |
| 243 | kfree(mci); |
| 244 | } |
| 245 | EXPORT_SYMBOL_GPL(edac_mc_free); |
| 246 | |
| 247 | |
| 248 | /** |
| 249 | * find_mci_by_dev |
| 250 | * |
| 251 | * scan list of controllers looking for the one that manages |
| 252 | * the 'dev' device |
| 253 | * @dev: pointer to a struct device related with the MCI |
| 254 | */ |
| 255 | struct mem_ctl_info *find_mci_by_dev(struct device *dev) |
| 256 | { |
| 257 | struct mem_ctl_info *mci; |
| 258 | struct list_head *item; |
| 259 | |
| 260 | debugf3("%s()\n", __func__); |
| 261 | |
| 262 | list_for_each(item, &mc_devices) { |
| 263 | mci = list_entry(item, struct mem_ctl_info, link); |
| 264 | |
| 265 | if (mci->dev == dev) |
| 266 | return mci; |
| 267 | } |
| 268 | |
| 269 | return NULL; |
| 270 | } |
| 271 | EXPORT_SYMBOL_GPL(find_mci_by_dev); |
| 272 | |
| 273 | /* |
| 274 | * handler for EDAC to check if NMI type handler has asserted interrupt |
| 275 | */ |
| 276 | static int edac_mc_assert_error_check_and_clear(void) |
| 277 | { |
| 278 | int old_state; |
| 279 | |
| 280 | if (edac_op_state == EDAC_OPSTATE_POLL) |
| 281 | return 1; |
| 282 | |
| 283 | old_state = edac_err_assert; |
| 284 | edac_err_assert = 0; |
| 285 | |
| 286 | return old_state; |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * edac_mc_workq_function |
| 291 | * performs the operation scheduled by a workq request |
| 292 | */ |
| 293 | static void edac_mc_workq_function(struct work_struct *work_req) |
| 294 | { |
| 295 | struct delayed_work *d_work = to_delayed_work(work_req); |
| 296 | struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); |
| 297 | |
| 298 | mutex_lock(&mem_ctls_mutex); |
| 299 | |
| 300 | /* if this control struct has movd to offline state, we are done */ |
| 301 | if (mci->op_state == OP_OFFLINE) { |
| 302 | mutex_unlock(&mem_ctls_mutex); |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | /* Only poll controllers that are running polled and have a check */ |
| 307 | if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) |
| 308 | mci->edac_check(mci); |
| 309 | |
| 310 | mutex_unlock(&mem_ctls_mutex); |
| 311 | |
| 312 | /* Reschedule */ |
| 313 | queue_delayed_work(edac_workqueue, &mci->work, |
| 314 | msecs_to_jiffies(edac_mc_get_poll_msec())); |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * edac_mc_workq_setup |
| 319 | * initialize a workq item for this mci |
| 320 | * passing in the new delay period in msec |
| 321 | * |
| 322 | * locking model: |
| 323 | * |
| 324 | * called with the mem_ctls_mutex held |
| 325 | */ |
| 326 | static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) |
| 327 | { |
| 328 | debugf0("%s()\n", __func__); |
| 329 | |
| 330 | /* if this instance is not in the POLL state, then simply return */ |
| 331 | if (mci->op_state != OP_RUNNING_POLL) |
| 332 | return; |
| 333 | |
| 334 | INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); |
| 335 | queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * edac_mc_workq_teardown |
| 340 | * stop the workq processing on this mci |
| 341 | * |
| 342 | * locking model: |
| 343 | * |
| 344 | * called WITHOUT lock held |
| 345 | */ |
| 346 | static void edac_mc_workq_teardown(struct mem_ctl_info *mci) |
| 347 | { |
| 348 | int status; |
| 349 | |
| 350 | if (mci->op_state != OP_RUNNING_POLL) |
| 351 | return; |
| 352 | |
| 353 | status = cancel_delayed_work(&mci->work); |
| 354 | if (status == 0) { |
| 355 | debugf0("%s() not canceled, flush the queue\n", |
| 356 | __func__); |
| 357 | |
| 358 | /* workq instance might be running, wait for it */ |
| 359 | flush_workqueue(edac_workqueue); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * edac_mc_reset_delay_period(unsigned long value) |
| 365 | * |
| 366 | * user space has updated our poll period value, need to |
| 367 | * reset our workq delays |
| 368 | */ |
| 369 | void edac_mc_reset_delay_period(int value) |
| 370 | { |
| 371 | struct mem_ctl_info *mci; |
| 372 | struct list_head *item; |
| 373 | |
| 374 | mutex_lock(&mem_ctls_mutex); |
| 375 | |
| 376 | /* scan the list and turn off all workq timers, doing so under lock |
| 377 | */ |
| 378 | list_for_each(item, &mc_devices) { |
| 379 | mci = list_entry(item, struct mem_ctl_info, link); |
| 380 | |
| 381 | if (mci->op_state == OP_RUNNING_POLL) |
| 382 | cancel_delayed_work(&mci->work); |
| 383 | } |
| 384 | |
| 385 | mutex_unlock(&mem_ctls_mutex); |
| 386 | |
| 387 | |
| 388 | /* re-walk the list, and reset the poll delay */ |
| 389 | mutex_lock(&mem_ctls_mutex); |
| 390 | |
| 391 | list_for_each(item, &mc_devices) { |
| 392 | mci = list_entry(item, struct mem_ctl_info, link); |
| 393 | |
| 394 | edac_mc_workq_setup(mci, (unsigned long) value); |
| 395 | } |
| 396 | |
| 397 | mutex_unlock(&mem_ctls_mutex); |
| 398 | } |
| 399 | |
| 400 | |
| 401 | |
| 402 | /* Return 0 on success, 1 on failure. |
| 403 | * Before calling this function, caller must |
| 404 | * assign a unique value to mci->mc_idx. |
| 405 | * |
| 406 | * locking model: |
| 407 | * |
| 408 | * called with the mem_ctls_mutex lock held |
| 409 | */ |
| 410 | static int add_mc_to_global_list(struct mem_ctl_info *mci) |
| 411 | { |
| 412 | struct list_head *item, *insert_before; |
| 413 | struct mem_ctl_info *p; |
| 414 | |
| 415 | insert_before = &mc_devices; |
| 416 | |
| 417 | p = find_mci_by_dev(mci->dev); |
| 418 | if (unlikely(p != NULL)) |
| 419 | goto fail0; |
| 420 | |
| 421 | list_for_each(item, &mc_devices) { |
| 422 | p = list_entry(item, struct mem_ctl_info, link); |
| 423 | |
| 424 | if (p->mc_idx >= mci->mc_idx) { |
| 425 | if (unlikely(p->mc_idx == mci->mc_idx)) |
| 426 | goto fail1; |
| 427 | |
| 428 | insert_before = item; |
| 429 | break; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | list_add_tail_rcu(&mci->link, insert_before); |
| 434 | atomic_inc(&edac_handlers); |
| 435 | return 0; |
| 436 | |
| 437 | fail0: |
| 438 | edac_printk(KERN_WARNING, EDAC_MC, |
| 439 | "%s (%s) %s %s already assigned %d\n", dev_name(p->dev), |
| 440 | edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); |
| 441 | return 1; |
| 442 | |
| 443 | fail1: |
| 444 | edac_printk(KERN_WARNING, EDAC_MC, |
| 445 | "bug in low-level driver: attempt to assign\n" |
| 446 | " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); |
| 447 | return 1; |
| 448 | } |
| 449 | |
| 450 | static void del_mc_from_global_list(struct mem_ctl_info *mci) |
| 451 | { |
| 452 | atomic_dec(&edac_handlers); |
| 453 | list_del_rcu(&mci->link); |
| 454 | |
| 455 | /* these are for safe removal of devices from global list while |
| 456 | * NMI handlers may be traversing list |
| 457 | */ |
| 458 | synchronize_rcu(); |
| 459 | INIT_LIST_HEAD(&mci->link); |
| 460 | } |
| 461 | |
| 462 | /** |
| 463 | * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. |
| 464 | * |
| 465 | * If found, return a pointer to the structure. |
| 466 | * Else return NULL. |
| 467 | * |
| 468 | * Caller must hold mem_ctls_mutex. |
| 469 | */ |
| 470 | struct mem_ctl_info *edac_mc_find(int idx) |
| 471 | { |
| 472 | struct list_head *item; |
| 473 | struct mem_ctl_info *mci; |
| 474 | |
| 475 | list_for_each(item, &mc_devices) { |
| 476 | mci = list_entry(item, struct mem_ctl_info, link); |
| 477 | |
| 478 | if (mci->mc_idx >= idx) { |
| 479 | if (mci->mc_idx == idx) |
| 480 | return mci; |
| 481 | |
| 482 | break; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | return NULL; |
| 487 | } |
| 488 | EXPORT_SYMBOL(edac_mc_find); |
| 489 | |
| 490 | /** |
| 491 | * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and |
| 492 | * create sysfs entries associated with mci structure |
| 493 | * @mci: pointer to the mci structure to be added to the list |
| 494 | * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure. |
| 495 | * |
| 496 | * Return: |
| 497 | * 0 Success |
| 498 | * !0 Failure |
| 499 | */ |
| 500 | |
| 501 | /* FIXME - should a warning be printed if no error detection? correction? */ |
| 502 | int edac_mc_add_mc(struct mem_ctl_info *mci) |
| 503 | { |
| 504 | debugf0("%s()\n", __func__); |
| 505 | |
| 506 | #ifdef CONFIG_EDAC_DEBUG |
| 507 | if (edac_debug_level >= 3) |
| 508 | edac_mc_dump_mci(mci); |
| 509 | |
| 510 | if (edac_debug_level >= 4) { |
| 511 | int i; |
| 512 | |
| 513 | for (i = 0; i < mci->nr_csrows; i++) { |
| 514 | int j; |
| 515 | |
| 516 | edac_mc_dump_csrow(&mci->csrows[i]); |
| 517 | for (j = 0; j < mci->csrows[i].nr_channels; j++) |
| 518 | edac_mc_dump_channel(&mci->csrows[i]. |
| 519 | channels[j]); |
| 520 | } |
| 521 | } |
| 522 | #endif |
| 523 | mutex_lock(&mem_ctls_mutex); |
| 524 | |
| 525 | if (add_mc_to_global_list(mci)) |
| 526 | goto fail0; |
| 527 | |
| 528 | /* set load time so that error rate can be tracked */ |
| 529 | mci->start_time = jiffies; |
| 530 | |
| 531 | if (edac_create_sysfs_mci_device(mci)) { |
| 532 | edac_mc_printk(mci, KERN_WARNING, |
| 533 | "failed to create sysfs device\n"); |
| 534 | goto fail1; |
| 535 | } |
| 536 | |
| 537 | /* If there IS a check routine, then we are running POLLED */ |
| 538 | if (mci->edac_check != NULL) { |
| 539 | /* This instance is NOW RUNNING */ |
| 540 | mci->op_state = OP_RUNNING_POLL; |
| 541 | |
| 542 | edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); |
| 543 | } else { |
| 544 | mci->op_state = OP_RUNNING_INTERRUPT; |
| 545 | } |
| 546 | |
| 547 | /* Report action taken */ |
| 548 | edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" |
| 549 | " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); |
| 550 | |
| 551 | mutex_unlock(&mem_ctls_mutex); |
| 552 | return 0; |
| 553 | |
| 554 | fail1: |
| 555 | del_mc_from_global_list(mci); |
| 556 | |
| 557 | fail0: |
| 558 | mutex_unlock(&mem_ctls_mutex); |
| 559 | return 1; |
| 560 | } |
| 561 | EXPORT_SYMBOL_GPL(edac_mc_add_mc); |
| 562 | |
| 563 | /** |
| 564 | * edac_mc_del_mc: Remove sysfs entries for specified mci structure and |
| 565 | * remove mci structure from global list |
| 566 | * @pdev: Pointer to 'struct device' representing mci structure to remove. |
| 567 | * |
| 568 | * Return pointer to removed mci structure, or NULL if device not found. |
| 569 | */ |
| 570 | struct mem_ctl_info *edac_mc_del_mc(struct device *dev) |
| 571 | { |
| 572 | struct mem_ctl_info *mci; |
| 573 | |
| 574 | debugf0("%s()\n", __func__); |
| 575 | |
| 576 | mutex_lock(&mem_ctls_mutex); |
| 577 | |
| 578 | /* find the requested mci struct in the global list */ |
| 579 | mci = find_mci_by_dev(dev); |
| 580 | if (mci == NULL) { |
| 581 | mutex_unlock(&mem_ctls_mutex); |
| 582 | return NULL; |
| 583 | } |
| 584 | |
| 585 | del_mc_from_global_list(mci); |
| 586 | mutex_unlock(&mem_ctls_mutex); |
| 587 | |
| 588 | /* flush workq processes */ |
| 589 | edac_mc_workq_teardown(mci); |
| 590 | |
| 591 | /* marking MCI offline */ |
| 592 | mci->op_state = OP_OFFLINE; |
| 593 | |
| 594 | /* remove from sysfs */ |
| 595 | edac_remove_sysfs_mci_device(mci); |
| 596 | |
| 597 | edac_printk(KERN_INFO, EDAC_MC, |
| 598 | "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, |
| 599 | mci->mod_name, mci->ctl_name, edac_dev_name(mci)); |
| 600 | |
| 601 | return mci; |
| 602 | } |
| 603 | EXPORT_SYMBOL_GPL(edac_mc_del_mc); |
| 604 | |
| 605 | static void edac_mc_scrub_block(unsigned long page, unsigned long offset, |
| 606 | u32 size) |
| 607 | { |
| 608 | struct page *pg; |
| 609 | void *virt_addr; |
| 610 | unsigned long flags = 0; |
| 611 | |
| 612 | debugf3("%s()\n", __func__); |
| 613 | |
| 614 | /* ECC error page was not in our memory. Ignore it. */ |
| 615 | if (!pfn_valid(page)) |
| 616 | return; |
| 617 | |
| 618 | /* Find the actual page structure then map it and fix */ |
| 619 | pg = pfn_to_page(page); |
| 620 | |
| 621 | if (PageHighMem(pg)) |
| 622 | local_irq_save(flags); |
| 623 | |
| 624 | virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); |
| 625 | |
| 626 | /* Perform architecture specific atomic scrub operation */ |
| 627 | atomic_scrub(virt_addr + offset, size); |
| 628 | |
| 629 | /* Unmap and complete */ |
| 630 | kunmap_atomic(virt_addr, KM_BOUNCE_READ); |
| 631 | |
| 632 | if (PageHighMem(pg)) |
| 633 | local_irq_restore(flags); |
| 634 | } |
| 635 | |
| 636 | /* FIXME - should return -1 */ |
| 637 | int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) |
| 638 | { |
| 639 | struct csrow_info *csrows = mci->csrows; |
| 640 | int row, i; |
| 641 | |
| 642 | debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page); |
| 643 | row = -1; |
| 644 | |
| 645 | for (i = 0; i < mci->nr_csrows; i++) { |
| 646 | struct csrow_info *csrow = &csrows[i]; |
| 647 | |
| 648 | if (csrow->nr_pages == 0) |
| 649 | continue; |
| 650 | |
| 651 | debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) " |
| 652 | "mask(0x%lx)\n", mci->mc_idx, __func__, |
| 653 | csrow->first_page, page, csrow->last_page, |
| 654 | csrow->page_mask); |
| 655 | |
| 656 | if ((page >= csrow->first_page) && |
| 657 | (page <= csrow->last_page) && |
| 658 | ((page & csrow->page_mask) == |
| 659 | (csrow->first_page & csrow->page_mask))) { |
| 660 | row = i; |
| 661 | break; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | if (row == -1) |
| 666 | edac_mc_printk(mci, KERN_ERR, |
| 667 | "could not look up page error address %lx\n", |
| 668 | (unsigned long)page); |
| 669 | |
| 670 | return row; |
| 671 | } |
| 672 | EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); |
| 673 | |
| 674 | /* FIXME - setable log (warning/emerg) levels */ |
| 675 | /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ |
| 676 | void edac_mc_handle_ce(struct mem_ctl_info *mci, |
| 677 | unsigned long page_frame_number, |
| 678 | unsigned long offset_in_page, unsigned long syndrome, |
| 679 | int row, int channel, const char *msg) |
| 680 | { |
| 681 | unsigned long remapped_page; |
| 682 | |
| 683 | debugf3("MC%d: %s()\n", mci->mc_idx, __func__); |
| 684 | |
| 685 | /* FIXME - maybe make panic on INTERNAL ERROR an option */ |
| 686 | if (row >= mci->nr_csrows || row < 0) { |
| 687 | /* something is wrong */ |
| 688 | edac_mc_printk(mci, KERN_ERR, |
| 689 | "INTERNAL ERROR: row out of range " |
| 690 | "(%d >= %d)\n", row, mci->nr_csrows); |
| 691 | edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); |
| 692 | return; |
| 693 | } |
| 694 | |
| 695 | if (channel >= mci->csrows[row].nr_channels || channel < 0) { |
| 696 | /* something is wrong */ |
| 697 | edac_mc_printk(mci, KERN_ERR, |
| 698 | "INTERNAL ERROR: channel out of range " |
| 699 | "(%d >= %d)\n", channel, |
| 700 | mci->csrows[row].nr_channels); |
| 701 | edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); |
| 702 | return; |
| 703 | } |
| 704 | |
| 705 | if (edac_mc_get_log_ce()) |
| 706 | /* FIXME - put in DIMM location */ |
| 707 | edac_mc_printk(mci, KERN_WARNING, |
| 708 | "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " |
| 709 | "0x%lx, row %d, channel %d, label \"%s\": %s\n", |
| 710 | page_frame_number, offset_in_page, |
| 711 | mci->csrows[row].grain, syndrome, row, channel, |
| 712 | mci->csrows[row].channels[channel].label, msg); |
| 713 | |
| 714 | mci->ce_count++; |
| 715 | mci->csrows[row].ce_count++; |
| 716 | mci->csrows[row].channels[channel].ce_count++; |
| 717 | |
| 718 | if (mci->scrub_mode & SCRUB_SW_SRC) { |
| 719 | /* |
| 720 | * Some MC's can remap memory so that it is still available |
| 721 | * at a different address when PCI devices map into memory. |
| 722 | * MC's that can't do this lose the memory where PCI devices |
| 723 | * are mapped. This mapping is MC dependent and so we call |
| 724 | * back into the MC driver for it to map the MC page to |
| 725 | * a physical (CPU) page which can then be mapped to a virtual |
| 726 | * page - which can then be scrubbed. |
| 727 | */ |
| 728 | remapped_page = mci->ctl_page_to_phys ? |
| 729 | mci->ctl_page_to_phys(mci, page_frame_number) : |
| 730 | page_frame_number; |
| 731 | |
| 732 | edac_mc_scrub_block(remapped_page, offset_in_page, |
| 733 | mci->csrows[row].grain); |
| 734 | } |
| 735 | } |
| 736 | EXPORT_SYMBOL_GPL(edac_mc_handle_ce); |
| 737 | |
| 738 | void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) |
| 739 | { |
| 740 | if (edac_mc_get_log_ce()) |
| 741 | edac_mc_printk(mci, KERN_WARNING, |
| 742 | "CE - no information available: %s\n", msg); |
| 743 | |
| 744 | mci->ce_noinfo_count++; |
| 745 | mci->ce_count++; |
| 746 | } |
| 747 | EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info); |
| 748 | |
| 749 | void edac_mc_handle_ue(struct mem_ctl_info *mci, |
| 750 | unsigned long page_frame_number, |
| 751 | unsigned long offset_in_page, int row, const char *msg) |
| 752 | { |
| 753 | int len = EDAC_MC_LABEL_LEN * 4; |
| 754 | char labels[len + 1]; |
| 755 | char *pos = labels; |
| 756 | int chan; |
| 757 | int chars; |
| 758 | |
| 759 | debugf3("MC%d: %s()\n", mci->mc_idx, __func__); |
| 760 | |
| 761 | /* FIXME - maybe make panic on INTERNAL ERROR an option */ |
| 762 | if (row >= mci->nr_csrows || row < 0) { |
| 763 | /* something is wrong */ |
| 764 | edac_mc_printk(mci, KERN_ERR, |
| 765 | "INTERNAL ERROR: row out of range " |
| 766 | "(%d >= %d)\n", row, mci->nr_csrows); |
| 767 | edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); |
| 768 | return; |
| 769 | } |
| 770 | |
| 771 | chars = snprintf(pos, len + 1, "%s", |
| 772 | mci->csrows[row].channels[0].label); |
| 773 | len -= chars; |
| 774 | pos += chars; |
| 775 | |
| 776 | for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); |
| 777 | chan++) { |
| 778 | chars = snprintf(pos, len + 1, ":%s", |
| 779 | mci->csrows[row].channels[chan].label); |
| 780 | len -= chars; |
| 781 | pos += chars; |
| 782 | } |
| 783 | |
| 784 | if (edac_mc_get_log_ue()) |
| 785 | edac_mc_printk(mci, KERN_EMERG, |
| 786 | "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " |
| 787 | "labels \"%s\": %s\n", page_frame_number, |
| 788 | offset_in_page, mci->csrows[row].grain, row, |
| 789 | labels, msg); |
| 790 | |
| 791 | if (edac_mc_get_panic_on_ue()) |
| 792 | panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " |
| 793 | "row %d, labels \"%s\": %s\n", mci->mc_idx, |
| 794 | page_frame_number, offset_in_page, |
| 795 | mci->csrows[row].grain, row, labels, msg); |
| 796 | |
| 797 | mci->ue_count++; |
| 798 | mci->csrows[row].ue_count++; |
| 799 | } |
| 800 | EXPORT_SYMBOL_GPL(edac_mc_handle_ue); |
| 801 | |
| 802 | void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) |
| 803 | { |
| 804 | if (edac_mc_get_panic_on_ue()) |
| 805 | panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); |
| 806 | |
| 807 | if (edac_mc_get_log_ue()) |
| 808 | edac_mc_printk(mci, KERN_WARNING, |
| 809 | "UE - no information available: %s\n", msg); |
| 810 | mci->ue_noinfo_count++; |
| 811 | mci->ue_count++; |
| 812 | } |
| 813 | EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info); |
| 814 | |
| 815 | /************************************************************* |
| 816 | * On Fully Buffered DIMM modules, this help function is |
| 817 | * called to process UE events |
| 818 | */ |
| 819 | void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, |
| 820 | unsigned int csrow, |
| 821 | unsigned int channela, |
| 822 | unsigned int channelb, char *msg) |
| 823 | { |
| 824 | int len = EDAC_MC_LABEL_LEN * 4; |
| 825 | char labels[len + 1]; |
| 826 | char *pos = labels; |
| 827 | int chars; |
| 828 | |
| 829 | if (csrow >= mci->nr_csrows) { |
| 830 | /* something is wrong */ |
| 831 | edac_mc_printk(mci, KERN_ERR, |
| 832 | "INTERNAL ERROR: row out of range (%d >= %d)\n", |
| 833 | csrow, mci->nr_csrows); |
| 834 | edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); |
| 835 | return; |
| 836 | } |
| 837 | |
| 838 | if (channela >= mci->csrows[csrow].nr_channels) { |
| 839 | /* something is wrong */ |
| 840 | edac_mc_printk(mci, KERN_ERR, |
| 841 | "INTERNAL ERROR: channel-a out of range " |
| 842 | "(%d >= %d)\n", |
| 843 | channela, mci->csrows[csrow].nr_channels); |
| 844 | edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); |
| 845 | return; |
| 846 | } |
| 847 | |
| 848 | if (channelb >= mci->csrows[csrow].nr_channels) { |
| 849 | /* something is wrong */ |
| 850 | edac_mc_printk(mci, KERN_ERR, |
| 851 | "INTERNAL ERROR: channel-b out of range " |
| 852 | "(%d >= %d)\n", |
| 853 | channelb, mci->csrows[csrow].nr_channels); |
| 854 | edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); |
| 855 | return; |
| 856 | } |
| 857 | |
| 858 | mci->ue_count++; |
| 859 | mci->csrows[csrow].ue_count++; |
| 860 | |
| 861 | /* Generate the DIMM labels from the specified channels */ |
| 862 | chars = snprintf(pos, len + 1, "%s", |
| 863 | mci->csrows[csrow].channels[channela].label); |
| 864 | len -= chars; |
| 865 | pos += chars; |
| 866 | chars = snprintf(pos, len + 1, "-%s", |
| 867 | mci->csrows[csrow].channels[channelb].label); |
| 868 | |
| 869 | if (edac_mc_get_log_ue()) |
| 870 | edac_mc_printk(mci, KERN_EMERG, |
| 871 | "UE row %d, channel-a= %d channel-b= %d " |
| 872 | "labels \"%s\": %s\n", csrow, channela, channelb, |
| 873 | labels, msg); |
| 874 | |
| 875 | if (edac_mc_get_panic_on_ue()) |
| 876 | panic("UE row %d, channel-a= %d channel-b= %d " |
| 877 | "labels \"%s\": %s\n", csrow, channela, |
| 878 | channelb, labels, msg); |
| 879 | } |
| 880 | EXPORT_SYMBOL(edac_mc_handle_fbd_ue); |
| 881 | |
| 882 | /************************************************************* |
| 883 | * On Fully Buffered DIMM modules, this help function is |
| 884 | * called to process CE events |
| 885 | */ |
| 886 | void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, |
| 887 | unsigned int csrow, unsigned int channel, char *msg) |
| 888 | { |
| 889 | |
| 890 | /* Ensure boundary values */ |
| 891 | if (csrow >= mci->nr_csrows) { |
| 892 | /* something is wrong */ |
| 893 | edac_mc_printk(mci, KERN_ERR, |
| 894 | "INTERNAL ERROR: row out of range (%d >= %d)\n", |
| 895 | csrow, mci->nr_csrows); |
| 896 | edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); |
| 897 | return; |
| 898 | } |
| 899 | if (channel >= mci->csrows[csrow].nr_channels) { |
| 900 | /* something is wrong */ |
| 901 | edac_mc_printk(mci, KERN_ERR, |
| 902 | "INTERNAL ERROR: channel out of range (%d >= %d)\n", |
| 903 | channel, mci->csrows[csrow].nr_channels); |
| 904 | edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); |
| 905 | return; |
| 906 | } |
| 907 | |
| 908 | if (edac_mc_get_log_ce()) |
| 909 | /* FIXME - put in DIMM location */ |
| 910 | edac_mc_printk(mci, KERN_WARNING, |
| 911 | "CE row %d, channel %d, label \"%s\": %s\n", |
| 912 | csrow, channel, |
| 913 | mci->csrows[csrow].channels[channel].label, msg); |
| 914 | |
| 915 | mci->ce_count++; |
| 916 | mci->csrows[csrow].ce_count++; |
| 917 | mci->csrows[csrow].channels[channel].ce_count++; |
| 918 | } |
| 919 | EXPORT_SYMBOL(edac_mc_handle_fbd_ce); |