blob: 7a1c161625e5c97f67b3ca8ae563ee139e7f87e1 [file] [log] [blame]
/*
* linux/drivers/mtd/nand/comcerto-nand.c
*
* Copyright (C) Mindspeed Technologies, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Overview:
* This is a device driver for the NAND flash device found on the
* Comcerto board which utilizes the Toshiba TC58V64AFT part. This is
* a 128Mibit (8MiB x 8 bits) NAND flash device.
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/platform_device.h>
#include <mach/ecc.h>
/*
* MTD structure for Comcerto board
*/
struct comcerto_nand_info {
struct mtd_partition *parts;
struct mtd_info *mtd;
};
static void __iomem *ecc_base_addr;
/*
* Define partitions for flash device
*/
/* Partitions coming from command line*/
static const char *part_probes[] = { "cmdlinepart", NULL };
uint32_t COMCERTO_NAND_ALE = 0x00000200;
uint32_t COMCERTO_NAND_CLE = 0x00000400;
#ifdef CONFIG_NAND_COMCERTO_ECC_24_HW_BCH
/*
* spare area layout for BCH ECC bytes calculated over 512-Bytes ECC block size
*/
static struct nand_ecclayout comcerto_ecc_info_512_bch = {
.eccbytes = 42,
.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41},
.oobfree = {
{.offset = 43, .length = 13}
}
};
/*
* spare area layout for BCH ECC bytes calculated over 1024-Bytes ECC block size
*/
static struct nand_ecclayout comcerto_ecc_info_1024_bch = {
.eccbytes = 42,
.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41},
.oobfree = {
{.offset = 43, .length = 13}
}
};
#elif CONFIG_NAND_COMCERTO_ECC_8_HW_BCH
/*
* spare area layout for BCH ECC bytes calculated over 512-Bytes ECC block size
*/
static struct nand_ecclayout comcerto_ecc_info_512_bch = {
.eccbytes = 14,
.eccpos = {0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13},
.oobfree = {
{.offset = 15, .length = 1}
}
};
/*
* spare area layout for BCH ECC bytes calculated over 1024-Bytes ECC block size
*/
static struct nand_ecclayout comcerto_ecc_info_1024_bch = {
.eccbytes = 14,
.eccpos = {0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13},
.oobfree = {
{.offset = 15, .length = 17}
}
};
#else
/*
* spare area layout for Hamming ECC bytes calculated over 512-Bytes ECC block
* size
*/
static struct nand_ecclayout comcerto_ecc_info_512_hamm = {
.eccbytes = 4,
.eccpos = {0, 1, 2, 3},
.oobfree = {
{.offset = 5, .length = 12}
}
};
/*
* spare area layout for Hamming ECC bytes calculated over 1024-Bytes ECC block
* size
*/
static struct nand_ecclayout comcerto_ecc_info_1024_hamm = {
.eccbytes = 4,
.eccpos = {0, 1, 2, 3},
.oobfree = {
{.offset = 5, .length = 28}
}
};
#endif
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_8BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 44,
.len = 4,
.veroffs = 48,
.maxblocks = 8,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_8BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 44,
.len = 4,
.veroffs = 48,
.maxblocks = 8,
.pattern = mirror_pattern,
};
static uint8_t scan_ff_pattern[] = { 0xff };
#ifdef CONFIG_NAND_COMCERTO_ECC_24_HW_BCH
static struct nand_bbt_descr c2000_badblock_pattern = {
.offs = 42,
.len = 1,
.pattern = scan_ff_pattern
};
#elif CONFIG_NAND_COMCERTO_ECC_8_HW_BCH
static struct nand_bbt_descr c2000_badblock_pattern = {
.offs = 14,
.len = 1,
.pattern = scan_ff_pattern
};
#endif
/** Disable/Enable shifting of data to parity module
*
* @param[in] en_dis_shift Enable or disable shift to parity module.
*
*/
static void comcerto_ecc_shift(uint8_t en_dis_shift)
{
writel_relaxed(en_dis_shift, ecc_base_addr + ECC_SHIFT_EN_CFG);
}
/** Initializes h/w ECC with proper configuration values.
*
* @param[in] mtd MTD device structure
* @param[in] mode Select between BCH and Hamming
*
*/
static void comcerto_enable_hw_ecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *nand_device = (struct nand_chip *)(mtd->priv);
uint32_t ecc_gen_cfg_val = 0;
/* CS4 will have the option for ECC calculation */
writel_relaxed(ECC_CS4_SEL, ecc_base_addr + ECC_CS_SEL_CFG);
/* parity calculation for write, syndrome calculation for read.*/
(mode == NAND_ECC_WRITE) ? (ecc_gen_cfg_val |= PRTY_CALC) : (ecc_gen_cfg_val &= SYNDROME_CALC);
#if defined (CONFIG_NAND_COMCERTO_ECC_8_HW_BCH) || defined (CONFIG_NAND_COMCERTO_ECC_24_HW_BCH)
ecc_gen_cfg_val &= BCH_MODE;
ecc_gen_cfg_val = (ecc_gen_cfg_val & ~(ECC_LVL_MASK)) | (ECC_LVL_VAL << ECC_LVL_SHIFT);
#else
ecc_gen_cfg_val |= HAMM_MODE;
#endif
ecc_gen_cfg_val = (ecc_gen_cfg_val & ~(BLK_SIZE_MASK)) | nand_device->ecc.size;
writel_relaxed(ecc_gen_cfg_val, ecc_base_addr + ECC_GEN_CFG);
/* Reset parity module and latch configured values */
writel_relaxed(ECC_INIT, ecc_base_addr + ECC_INIT_CFG);
comcerto_ecc_shift(ECC_SHIFT_ENABLE);
return;
}
/** writes ECC bytes generated by the parity module into the flash
*
* @param[in] mtd MTD device structure
* @param[in] dat raw data
* @param[in] ecc_code buffer for ECC
*
*/
static int comcerto_calculate_ecc(struct mtd_info *mtd,
const uint8_t *dat,
uint8_t *ecc_code)
{
struct nand_chip *nand_device = mtd->priv;
uint32_t ecc_bytes = nand_device->ecc.bytes;
uint8_t dummy_var = 0xFF;
unsigned long timeo = jiffies + 2;
comcerto_ecc_shift(ECC_SHIFT_DISABLE);
do {
if ((readl_relaxed(ecc_base_addr + ECC_IDLE_STAT)) & ECC_IDLE)
break;
touch_softlockup_watchdog();
} while (time_before(jiffies, timeo));
comcerto_ecc_shift(ECC_SHIFT_ENABLE);
writel_relaxed(ECC_PARITY_OUT_EN, ecc_base_addr + ECC_PRTY_OUT_SEL_CFG);
/* Even though we do a dummy write to NAND flash, actual ECC bytes are
* written to the ECC location in the flash. */
for ( ; ecc_bytes; ecc_bytes--)
writeb(dummy_var, nand_device->IO_ADDR_W);
comcerto_ecc_shift(ECC_SHIFT_DISABLE);
writel_relaxed(ECC_PARITY_OUT_DISABLE, ecc_base_addr + ECC_PRTY_OUT_SEL_CFG);
return 0;
}
/** Checks ECC registers for errors and will correct them, if correctable
*
* @param[in] mtd MTD device structure
* @param[in] dat raw data
* @param[in] read_ecc ECC read out from flash
* @param[in] calc_ecc ECC calculated over the raw data
*
*/
static int comcerto_correct_ecc(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct nand_chip *nand_device = mtd->priv;
#if defined (CONFIG_NAND_COMCERTO_ECC_8_HW_BCH) || defined (CONFIG_NAND_COMCERTO_ECC_24_HW_BCH)
uint8_t err_count = 0;
uint32_t err_corr_data_prev;
#endif
uint32_t err_corr_data;
uint16_t mask, index;
uint32_t temp_nand_ecc_errors[4];
unsigned long timeo = jiffies + 2;
/* Wait for syndrome calculation to complete */
while (!(readl_relaxed(ecc_base_addr + ECC_IDLE_STAT) & ECC_IDLE)) {
touch_softlockup_watchdog();
if (time_after_eq(jiffies, timeo)) {
pr_warn_ratelimited("Timeout waiting for parity module to become idle");
return -EIO;
}
}
/* If no correction is required */
if (likely(!((readl_relaxed(ecc_base_addr + ECC_POLY_STAT)) & ECC_CORR_REQ))) {
return 0;
}
/* Error found! Correction required */
#if defined (CONFIG_NAND_COMCERTO_ECC_8_HW_BCH) || defined (CONFIG_NAND_COMCERTO_ECC_24_HW_BCH)
/* Initiate correction operation */
writel_relaxed(ECC_POLY_START, ecc_base_addr + ECC_POLY_START_CFG);
udelay(25);
timeo = jiffies + 2;
err_corr_data_prev = 0;
/* Read Correction data status register till header is 0x7FD */
while(1) {
err_corr_data_prev = readl_relaxed(ecc_base_addr + ECC_CORR_DATA_STAT);
if ((err_corr_data_prev >> ECC_BCH_INDEX_SHIFT) == 0x87FD)
break;
touch_softlockup_watchdog();
if (time_after_eq(jiffies, timeo)) {
pr_warn_ratelimited("Timeout waiting for ECC correction data");
return -EIO;
}
}
udelay(25);
err_corr_data = 0x0;
/* start reading error locations */
while (((err_corr_data >> 16) != 0x87FE)) {
err_corr_data = readl_relaxed(ecc_base_addr + ECC_CORR_DATA_STAT);
if ((err_corr_data >> 16) == 0x87FE)
break;
if (err_corr_data == err_corr_data_prev)
continue;
err_corr_data_prev = err_corr_data;
index = (err_corr_data >> 16) & 0x7FF;
mask = err_corr_data & 0xFFFF;
if (index * 2 >= nand_device->ecc.size) {
pr_warn_ratelimited("ECC correction index out of "
"bounds. ECC_CORR_DATA_STAT %08x",
err_corr_data);
continue;
}
*((uint16_t *)(dat + (index * 2))) ^= mask;
while (mask) {
if (mask & 1)
err_count++;
mask >>= 1;
}
}
if (!((readl_relaxed(ecc_base_addr + ECC_CORR_DONE_STAT)) & ECC_DONE)) {
temp_nand_ecc_errors[0] += 1 ;
printk_ratelimited(KERN_WARNING "ECC: uncorrectable error 1 !!!\n");
return -1;
}
/* Check if the block has uncorrectable number of errors */
if ((readl_relaxed(ecc_base_addr + ECC_CORR_STAT)) & ECC_UNCORR) {
printk_ratelimited(KERN_WARNING "ECC: uncorrectable error 2 !!!\n");
temp_nand_ecc_errors[1] += 1 ;
return -EIO;
}
temp_nand_ecc_errors[3] += err_count;
#else /* Hamming Mode */
if (readl_relaxed(ecc_base_addr + ECC_POLY_STAT) == ECC_UNCORR_ERR_HAMM) {
/* 2 or more errors detected and hence cannot
be corrected */
return -1; /* uncorrectable */
} else { /* 1-bit correctable error */
err_corr_data = readl_relaxed(ecc_base_addr + ECC_CORR_DATA_STAT);
index = (err_corr_data >> 16) & 0x1FF;
if (nand_device->options & NAND_BUSWIDTH_16) {
mask = 1 << (err_corr_data & 0xF);
*((uint16_t *)(dat + index)) ^= mask;
} else {
mask = 1 << (err_corr_data & 0x7);
*(dat + index) ^= mask;
}
return 1;
}
#endif
return err_count;
}
/** writes single page to the NAND device along with the ECC bytes
*
* @param[in] mtd MTD device structure
* @param[in] chip nand chip info structure
* @param[in] buf data buffer
*
*/
static void comcerto_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
/* CS4 will have the option for ECC calculation */
writel_relaxed(ECC_CS4_SEL, ecc_base_addr + ECC_CS_SEL_CFG);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
chip->write_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, oob);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->write_buf(mtd, oob, i);
}
/** reads single page from the NAND device and will read ECC bytes from flash. A
* function call to comcerto_correct_ecc() will be used to validate the data.
*
* @param[in] mtd MTD device structure
* @param[in] chip nand chip info structure
* @param[in] buf data buffer
*
*/
static int comcerto_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int page)
{
struct nand_chip *nand_device = mtd->priv;
int i, eccsize = nand_device->ecc.size;
int eccbytes = nand_device->ecc.bytes;
int eccsteps = nand_device->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = nand_device->buffers->ecccode;
uint8_t ecc_bytes = nand_device->ecc.bytes;
uint8_t stat;
uint8_t *oob = nand_device->oob_poi;
for (; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->read_buf(mtd, ecc_code, ecc_bytes);
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else {
int idx = eccsteps;
if (idx >= MTD_ECC_STAT_SUBPAGES) {
idx = MTD_ECC_STAT_SUBPAGES - 1;
}
mtd->ecc_stats.corrected += stat;
mtd->ecc_subpage_stats.subpage_corrected[idx] += stat;
}
comcerto_ecc_shift(ECC_SHIFT_DISABLE);
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->read_buf(mtd, oob, i);
return 0;
}
/*********************************************************************
* NAND Hardware functions
*
*********************************************************************/
/*
* hardware specific access to control-lines
*/
void comcerto_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *chip = mtd->priv;
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_NCE)
comcerto_gpio_set_0(COMCERTO_NAND_CE);
else
comcerto_gpio_set_1(COMCERTO_NAND_CE);
}
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, chip->IO_ADDR_W + COMCERTO_NAND_CLE);
else if (ctrl & NAND_ALE)
writeb(cmd, chip->IO_ADDR_W + COMCERTO_NAND_ALE);
else
return;
}
int comcerto_nand_ready(struct mtd_info *mtd)
{
return comcerto_gpio_read(COMCERTO_NAND_BR) ? 1 : 0;
}
/*********************************************************************
* NAND Probe
*
*********************************************************************/
static int comcerto_nand_probe(struct platform_device *pdev)
{
struct comcerto_nand_info *info;
struct mtd_info *mtd;
struct nand_chip *nand_device;
int err = 0;
/* Allocate memory for info structure */
info = kmalloc(sizeof(struct comcerto_nand_info), GFP_KERNEL);
if (!info) {
printk(KERN_ERR
"comcerto nand: unable to allocate info structure\n");
err = -ENOMEM;
goto out;
}
memset(info, 0, sizeof(struct comcerto_nand_info));
/* Allocate memory for MTD device structure */
mtd = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd) {
printk(KERN_ERR
"comcerto nand: unable to allocate mtd info structure\n");
err = -ENOMEM;
goto out_info;
}
memset(mtd, 0, sizeof(struct mtd_info));
/* Link the private data with the MTD structure */
info->mtd = mtd;
mtd->owner = THIS_MODULE;
/* Allocate pointer to nand_device data */
nand_device = kmalloc(sizeof(struct nand_chip), GFP_KERNEL);
if (!nand_device) {
printk(KERN_ERR
"comcerto nand: unable to allocate nand chip structure\n");
err = -ENOMEM;
goto out_mtd;
}
memset(nand_device, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
mtd->priv = nand_device;
printk(KERN_INFO "pdev->resource->start = %x, pdev->resource->end = %x\n", pdev->resource->start, pdev->resource->end);
/*Map physical address of nand into virtual space */
nand_device->IO_ADDR_R = ioremap_nocache(pdev->resource->start, pdev->resource->end - pdev->resource->start + 1);
if (nand_device->IO_ADDR_R == NULL) {
printk(KERN_ERR "comcerto nand: cannot map nand memory\n");
err = -EIO;
goto out_ior;
}
ecc_base_addr = ioremap(COMCERTO_AXI_EXP_ECC_BASE, 0xFFFF);
if (!ecc_base_addr) {
printk(KERN_ERR "comcerto nand: cannot map ecc config\n");
err = -EIO;
goto out_ior;
}
/* This is the same address to read and write */
nand_device->IO_ADDR_W = nand_device->IO_ADDR_R;
printk(KERN_INFO "nand_probe: %s base: 0x%08x \n", pdev->name, (resource_size_t) nand_device->IO_ADDR_R);
/* Set address of hardware control function */
nand_device->cmd_ctrl = comcerto_nand_hwcontrol;
nand_device->dev_ready = comcerto_nand_ready;
/* 20 us command delay time */
nand_device->chip_delay = 20;
nand_device->ecc.mode = NAND_ECC_HW_SYNDROME;
// nand_device->ecc.mode = NAND_ECC_SOFT_BCH;
#if defined(CONFIG_C2K_ASIC) && defined(CONFIG_NAND_TYPE_SLC)
nand_device->options = NAND_BUSWIDTH_16;
#else
nand_device->options = 0;
#endif
/* Scan to find existence of the device */
if (nand_scan_ident(mtd, 1, NULL)) {
err = -ENXIO;
goto out_nand;
}
#if 1
if (nand_device->ecc.mode == NAND_ECC_HW_SYNDROME) {
nand_device->ecc.hwctl = comcerto_enable_hw_ecc;
nand_device->ecc.write_page = comcerto_nand_write_page_hwecc;
nand_device->ecc.read_page = comcerto_nand_read_page_hwecc;
nand_device->ecc.calculate = comcerto_calculate_ecc;
nand_device->ecc.correct = comcerto_correct_ecc;
printk("hw_syndrome correction %d.\n", mtd->writesize);
switch (mtd->writesize) {
case 512:
nand_device->ecc.size = mtd->writesize;
#if defined (CONFIG_NAND_COMCERTO_ECC_24_HW_BCH)
nand_device->ecc.layout = &comcerto_ecc_info_512_bch;
nand_device->ecc.bytes = 42;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 14;
#elif defined (CONFIG_NAND_COMCERTO_ECC_8_HW_BCH)
nand_device->ecc.layout = &comcerto_ecc_info_512_bch;
nand_device->ecc.bytes = 14;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 2;
#else
nand_device->ecc.layout = &comcerto_ecc_info_512_hamm;
nand_device->ecc.bytes = 4;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 2;
#endif
break;
case 1024:
nand_device->ecc.size = mtd->writesize;
#ifdef CONFIG_NAND_COMCERTO_ECC_24_HW_BCH
nand_device->ecc.layout = &comcerto_ecc_info_1024_bch;
nand_device->ecc.bytes = 42;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 14;
#elif CONFIG_NAND_COMCERTO_ECC_8_HW_BCH
nand_device->ecc.layout = &comcerto_ecc_info_1024_bch;
nand_device->ecc.bytes = 14;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 18;
#else
nand_device->ecc.layout = &comcerto_ecc_info_1024_hamm;
nand_device->ecc.bytes = 4;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 18;
#endif
break;
default:
printk(KERN_ERR "Using default values for hw ecc\n");
nand_device->ecc.size = 1024;
#ifdef CONFIG_NAND_COMCERTO_ECC_24_HW_BCH
nand_device->ecc.layout = &comcerto_ecc_info_1024_bch;
nand_device->ecc.bytes = 42;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 14;
#elif CONFIG_NAND_COMCERTO_ECC_8_HW_BCH
nand_device->ecc.layout = &comcerto_ecc_info_1024_bch;
nand_device->ecc.bytes = 14;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 18;
#else
nand_device->ecc.layout = &comcerto_ecc_info_1024_hamm;
nand_device->ecc.bytes = 4;
nand_device->ecc.prepad = 0;
nand_device->ecc.postpad = 18;
#endif
break;
}
nand_device->ecc.steps = mtd->writesize / nand_device->ecc.size;
if(nand_device->ecc.steps * nand_device->ecc.size != mtd->writesize) {
printk(KERN_ERR "Invalid ecc parameters\n");
BUG();
}
nand_device->ecc.total = nand_device->ecc.steps * nand_device->ecc.bytes;
nand_device->bbt_td = &bbt_main_descr;
nand_device->bbt_md = &bbt_mirror_descr;
nand_device->badblock_pattern = &c2000_badblock_pattern;
nand_device->bbt_options |= NAND_BBT_USE_FLASH;
} else {
printk("using soft ecc.\n");
nand_device->ecc.mode = NAND_ECC_SOFT_BCH;
}
#endif
nand_device->options |= NAND_NO_SUBPAGE_WRITE;
if(nand_scan_tail(mtd)) {
printk(KERN_ERR "nand_scan_tail returned error\n");
err = -ENXIO;
goto out_ior;
}
/*Name of the mtd device */
mtd->name = dev_name(&pdev->dev);
/* Link the info stucture with platform_device */
platform_set_drvdata(pdev, info);
err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 4);
if (err) {
printk(KERN_ERR "Could not parse partitions\n");
return err;
}
goto out;
out_ior:
iounmap(nand_device->IO_ADDR_R);
iounmap(ecc_base_addr);
out_nand:
kfree(nand_device);
out_mtd:
kfree(mtd);
out_info:
kfree(info);
out:
return err;
}
/*********************************************************************
* NAND Remove
*
*********************************************************************/
static int comcerto_nand_remove(struct platform_device *pdev)
{
struct comcerto_nand_info *info =
(struct comcerto_nand_info *)platform_get_drvdata(pdev);
struct mtd_info *mtd = info->mtd;
struct nand_chip *nand_device = (struct nand_chip *)mtd->priv;
platform_set_drvdata(pdev, NULL);
/* Release resources, unregister device */
nand_release(info->mtd);
/*Deregister virtual address */
iounmap(nand_device->IO_ADDR_R);
iounmap(ecc_base_addr);
kfree(nand_device);
/* Free the MTD device structure */
kfree(mtd);
kfree(info);
return 0;
}
/*********************************************************************
* Driver Registration
*
*********************************************************************/
static struct platform_driver comcerto_nand_driver = {
.probe = comcerto_nand_probe,
.remove = __devexit_p(comcerto_nand_remove),
.driver = {
.name = "comcertonand",
},
};
int __init comcerto_nand_init(void)
{
return platform_driver_register(&comcerto_nand_driver);
}
static void __exit comcerto_nand_exit(void)
{
platform_driver_unregister(&comcerto_nand_driver);
}
module_init(comcerto_nand_init);
module_exit(comcerto_nand_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Comcerto board");