blob: e28437e0f70880c2ce8d96604b7631b0edd94aa4 [file] [log] [blame] [edit]
/*
* misc.c
*
* This is a collection of several routines from gzip-1.0.3
* adapted for Linux.
*
* malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
* puts by Nick Holloway 1993, better puts by Martin Mares 1995
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
*/
#include "misc.h"
#include "../string.h"
/* WARNING!!
* This code is compiled with -fPIC and it is relocated dynamically
* at run time, but no relocation processing is performed.
* This means that it is not safe to place pointers in static structures.
*/
/*
* Getting to provable safe in place decompression is hard.
* Worst case behaviours need to be analyzed.
* Background information:
*
* The file layout is:
* magic[2]
* method[1]
* flags[1]
* timestamp[4]
* extraflags[1]
* os[1]
* compressed data blocks[N]
* crc[4] orig_len[4]
*
* resulting in 18 bytes of non compressed data overhead.
*
* Files divided into blocks
* 1 bit (last block flag)
* 2 bits (block type)
*
* 1 block occurs every 32K -1 bytes or when there 50% compression
* has been achieved. The smallest block type encoding is always used.
*
* stored:
* 32 bits length in bytes.
*
* fixed:
* magic fixed tree.
* symbols.
*
* dynamic:
* dynamic tree encoding.
* symbols.
*
*
* The buffer for decompression in place is the length of the
* uncompressed data, plus a small amount extra to keep the algorithm safe.
* The compressed data is placed at the end of the buffer. The output
* pointer is placed at the start of the buffer and the input pointer
* is placed where the compressed data starts. Problems will occur
* when the output pointer overruns the input pointer.
*
* The output pointer can only overrun the input pointer if the input
* pointer is moving faster than the output pointer. A condition only
* triggered by data whose compressed form is larger than the uncompressed
* form.
*
* The worst case at the block level is a growth of the compressed data
* of 5 bytes per 32767 bytes.
*
* The worst case internal to a compressed block is very hard to figure.
* The worst case can at least be boundined by having one bit that represents
* 32764 bytes and then all of the rest of the bytes representing the very
* very last byte.
*
* All of which is enough to compute an amount of extra data that is required
* to be safe. To avoid problems at the block level allocating 5 extra bytes
* per 32767 bytes of data is sufficient. To avoind problems internal to a
* block adding an extra 32767 bytes (the worst case uncompressed block size)
* is sufficient, to ensure that in the worst case the decompressed data for
* block will stop the byte before the compressed data for a block begins.
* To avoid problems with the compressed data's meta information an extra 18
* bytes are needed. Leading to the formula:
*
* extra_bytes = (uncompressed_size >> 12) + 32768 + 18 + decompressor_size.
*
* Adding 8 bytes per 32K is a bit excessive but much easier to calculate.
* Adding 32768 instead of 32767 just makes for round numbers.
* Adding the decompressor_size is necessary as it musht live after all
* of the data as well. Last I measured the decompressor is about 14K.
* 10K of actual data and 4K of bss.
*
*/
/*
* gzip declarations
*/
#define STATIC static
#undef memcpy
/*
* Use a normal definition of memset() from string.c. There are already
* included header files which expect a definition of memset() and by
* the time we define memset macro, it is too late.
*/
#undef memset
#define memzero(s, n) memset((s), 0, (n))
static void error(char *m);
/*
* This is set up by the setup-routine at boot-time
*/
struct boot_params *real_mode; /* Pointer to real-mode data */
memptr free_mem_ptr;
memptr free_mem_end_ptr;
static char *vidmem;
static int vidport;
static int lines, cols;
#ifdef CONFIG_KERNEL_GZIP
#include "../../../../lib/decompress_inflate.c"
#endif
#ifdef CONFIG_KERNEL_BZIP2
#include "../../../../lib/decompress_bunzip2.c"
#endif
#ifdef CONFIG_KERNEL_LZMA
#include "../../../../lib/decompress_unlzma.c"
#endif
#ifdef CONFIG_KERNEL_XZ
#include "../../../../lib/decompress_unxz.c"
#endif
#ifdef CONFIG_KERNEL_LZO
#include "../../../../lib/decompress_unlzo.c"
#endif
#ifdef CONFIG_KERNEL_LZ4
#include "../../../../lib/decompress_unlz4.c"
#endif
static void scroll(void)
{
int i;
memcpy(vidmem, vidmem + cols * 2, (lines - 1) * cols * 2);
for (i = (lines - 1) * cols * 2; i < lines * cols * 2; i += 2)
vidmem[i] = ' ';
}
#define XMTRDY 0x20
#define TXR 0 /* Transmit register (WRITE) */
#define LSR 5 /* Line Status */
static void serial_putchar(int ch)
{
unsigned timeout = 0xffff;
while ((inb(early_serial_base + LSR) & XMTRDY) == 0 && --timeout)
cpu_relax();
outb(ch, early_serial_base + TXR);
}
void __putstr(const char *s)
{
int x, y, pos;
char c;
if (early_serial_base) {
const char *str = s;
while (*str) {
if (*str == '\n')
serial_putchar('\r');
serial_putchar(*str++);
}
}
if (real_mode->screen_info.orig_video_mode == 0 &&
lines == 0 && cols == 0)
return;
x = real_mode->screen_info.orig_x;
y = real_mode->screen_info.orig_y;
while ((c = *s++) != '\0') {
if (c == '\n') {
x = 0;
if (++y >= lines) {
scroll();
y--;
}
} else {
vidmem[(x + cols * y) * 2] = c;
if (++x >= cols) {
x = 0;
if (++y >= lines) {
scroll();
y--;
}
}
}
}
real_mode->screen_info.orig_x = x;
real_mode->screen_info.orig_y = y;
pos = (x + cols * y) * 2; /* Update cursor position */
outb(14, vidport);
outb(0xff & (pos >> 9), vidport+1);
outb(15, vidport);
outb(0xff & (pos >> 1), vidport+1);
}
static void error(char *x)
{
error_putstr("\n\n");
error_putstr(x);
error_putstr("\n\n -- System halted");
while (1)
asm("hlt");
}
#if CONFIG_X86_NEED_RELOCS
static void handle_relocations(void *output, unsigned long output_len)
{
int *reloc;
unsigned long delta, map, ptr;
unsigned long min_addr = (unsigned long)output;
unsigned long max_addr = min_addr + output_len;
/*
* Calculate the delta between where vmlinux was linked to load
* and where it was actually loaded.
*/
delta = min_addr - LOAD_PHYSICAL_ADDR;
if (!delta) {
debug_putstr("No relocation needed... ");
return;
}
debug_putstr("Performing relocations... ");
/*
* The kernel contains a table of relocation addresses. Those
* addresses have the final load address of the kernel in virtual
* memory. We are currently working in the self map. So we need to
* create an adjustment for kernel memory addresses to the self map.
* This will involve subtracting out the base address of the kernel.
*/
map = delta - __START_KERNEL_map;
/*
* Process relocations: 32 bit relocations first then 64 bit after.
* Three sets of binary relocations are added to the end of the kernel
* before compression. Each relocation table entry is the kernel
* address of the location which needs to be updated stored as a
* 32-bit value which is sign extended to 64 bits.
*
* Format is:
*
* kernel bits...
* 0 - zero terminator for 64 bit relocations
* 64 bit relocation repeated
* 0 - zero terminator for inverse 32 bit relocations
* 32 bit inverse relocation repeated
* 0 - zero terminator for 32 bit relocations
* 32 bit relocation repeated
*
* So we work backwards from the end of the decompressed image.
*/
for (reloc = output + output_len - sizeof(*reloc); *reloc; reloc--) {
int extended = *reloc;
extended += map;
ptr = (unsigned long)extended;
if (ptr < min_addr || ptr > max_addr)
error("32-bit relocation outside of kernel!\n");
*(uint32_t *)ptr += delta;
}
#ifdef CONFIG_X86_64
while (*--reloc) {
long extended = *reloc;
extended += map;
ptr = (unsigned long)extended;
if (ptr < min_addr || ptr > max_addr)
error("inverse 32-bit relocation outside of kernel!\n");
*(int32_t *)ptr -= delta;
}
for (reloc--; *reloc; reloc--) {
long extended = *reloc;
extended += map;
ptr = (unsigned long)extended;
if (ptr < min_addr || ptr > max_addr)
error("64-bit relocation outside of kernel!\n");
*(uint64_t *)ptr += delta;
}
#endif
}
#else
static inline void handle_relocations(void *output, unsigned long output_len)
{ }
#endif
static void parse_elf(void *output)
{
#ifdef CONFIG_X86_64
Elf64_Ehdr ehdr;
Elf64_Phdr *phdrs, *phdr;
#else
Elf32_Ehdr ehdr;
Elf32_Phdr *phdrs, *phdr;
#endif
void *dest;
int i;
memcpy(&ehdr, output, sizeof(ehdr));
if (ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
ehdr.e_ident[EI_MAG3] != ELFMAG3) {
error("Kernel is not a valid ELF file");
return;
}
debug_putstr("Parsing ELF... ");
phdrs = malloc(sizeof(*phdrs) * ehdr.e_phnum);
if (!phdrs)
error("Failed to allocate space for phdrs");
memcpy(phdrs, output + ehdr.e_phoff, sizeof(*phdrs) * ehdr.e_phnum);
for (i = 0; i < ehdr.e_phnum; i++) {
phdr = &phdrs[i];
switch (phdr->p_type) {
case PT_LOAD:
#ifdef CONFIG_RELOCATABLE
dest = output;
dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR);
#else
dest = (void *)(phdr->p_paddr);
#endif
memcpy(dest,
output + phdr->p_offset,
phdr->p_filesz);
break;
default: /* Ignore other PT_* */ break;
}
}
free(phdrs);
}
asmlinkage __visible void *decompress_kernel(void *rmode, memptr heap,
unsigned char *input_data,
unsigned long input_len,
unsigned char *output,
unsigned long output_len,
unsigned long run_size)
{
unsigned char *output_orig = output;
real_mode = rmode;
/* Clear it for solely in-kernel use */
real_mode->hdr.loadflags &= ~KASLR_FLAG;
sanitize_boot_params(real_mode);
if (real_mode->screen_info.orig_video_mode == 7) {
vidmem = (char *) 0xb0000;
vidport = 0x3b4;
} else {
vidmem = (char *) 0xb8000;
vidport = 0x3d4;
}
lines = real_mode->screen_info.orig_video_lines;
cols = real_mode->screen_info.orig_video_cols;
console_init();
debug_putstr("early console in decompress_kernel\n");
free_mem_ptr = heap; /* Heap */
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;
/*
* The memory hole needed for the kernel is the larger of either
* the entire decompressed kernel plus relocation table, or the
* entire decompressed kernel plus .bss and .brk sections.
*/
output = choose_kernel_location(real_mode, input_data, input_len, output,
output_len > run_size ? output_len
: run_size);
/* Validate memory location choices. */
if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))
error("Destination address inappropriately aligned");
#ifdef CONFIG_X86_64
if (heap > 0x3fffffffffffUL)
error("Destination address too large");
#else
if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))
error("Destination address too large");
#endif
#ifndef CONFIG_RELOCATABLE
if ((unsigned long)output != LOAD_PHYSICAL_ADDR)
error("Wrong destination address");
#endif
debug_putstr("\nDecompressing Linux... ");
__decompress(input_data, input_len, NULL, NULL, output, output_len,
NULL, error);
parse_elf(output);
/*
* 32-bit always performs relocations. 64-bit relocations are only
* needed if kASLR has chosen a different load address.
*/
if (!IS_ENABLED(CONFIG_X86_64) || output != output_orig)
handle_relocations(output, output_len);
debug_putstr("done.\nBooting the kernel.\n");
return output;
}