blob: 9125bbeacd4dcc6fa49043b7fe795b1c1c78b013 [file] [log] [blame]
/*
* Disk Array driver for Compaq SMART2 Controllers
* Copyright 1998 Compaq Computer Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/bio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/scatterlist.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define SMART2_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "Compaq SMART2 Driver (v 2.6.0)"
#define DRIVER_VERSION SMART2_DRIVER_VERSION(2,6,0)
/* Embedded module documentation macros - see modules.h */
/* Original author Chris Frantz - Compaq Computer Corporation */
MODULE_AUTHOR("Compaq Computer Corporation");
MODULE_DESCRIPTION("Driver for Compaq Smart2 Array Controllers version 2.6.0");
MODULE_LICENSE("GPL");
#include "cpqarray.h"
#include "ida_cmd.h"
#include "smart1,2.h"
#include "ida_ioctl.h"
#define READ_AHEAD 128
#define NR_CMDS 128 /* This could probably go as high as ~400 */
#define MAX_CTLR 8
#define CTLR_SHIFT 8
#define CPQARRAY_DMA_MASK 0xFFFFFFFF /* 32 bit DMA */
static DEFINE_MUTEX(cpqarray_mutex);
static int nr_ctlr;
static ctlr_info_t *hba[MAX_CTLR];
static int eisa[8];
#define NR_PRODUCTS ARRAY_SIZE(products)
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{ 0x0040110E, "IDA", &smart1_access },
{ 0x0140110E, "IDA-2", &smart1_access },
{ 0x1040110E, "IAES", &smart1_access },
{ 0x2040110E, "SMART", &smart1_access },
{ 0x3040110E, "SMART-2/E", &smart2e_access },
{ 0x40300E11, "SMART-2/P", &smart2_access },
{ 0x40310E11, "SMART-2SL", &smart2_access },
{ 0x40320E11, "Smart Array 3200", &smart2_access },
{ 0x40330E11, "Smart Array 3100ES", &smart2_access },
{ 0x40340E11, "Smart Array 221", &smart2_access },
{ 0x40400E11, "Integrated Array", &smart4_access },
{ 0x40480E11, "Compaq Raid LC2", &smart4_access },
{ 0x40500E11, "Smart Array 4200", &smart4_access },
{ 0x40510E11, "Smart Array 4250ES", &smart4_access },
{ 0x40580E11, "Smart Array 431", &smart4_access },
};
/* define the PCI info for the PCI cards this driver can control */
static const struct pci_device_id cpqarray_pci_device_id[] =
{
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX,
0x0E11, 0x4058, 0, 0, 0}, /* SA431 */
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX,
0x0E11, 0x4051, 0, 0, 0}, /* SA4250ES */
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX,
0x0E11, 0x4050, 0, 0, 0}, /* SA4200 */
{ PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510,
0x0E11, 0x4048, 0, 0, 0}, /* LC2 */
{ PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510,
0x0E11, 0x4040, 0, 0, 0}, /* Integrated Array */
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P,
0x0E11, 0x4034, 0, 0, 0}, /* SA 221 */
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P,
0x0E11, 0x4033, 0, 0, 0}, /* SA 3100ES*/
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P,
0x0E11, 0x4032, 0, 0, 0}, /* SA 3200*/
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P,
0x0E11, 0x4031, 0, 0, 0}, /* SA 2SL*/
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P,
0x0E11, 0x4030, 0, 0, 0}, /* SA 2P */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, cpqarray_pci_device_id);
static struct gendisk *ida_gendisk[MAX_CTLR][NWD];
/* Debug... */
#define DBG(s) do { s } while(0)
/* Debug (general info)... */
#define DBGINFO(s) do { } while(0)
/* Debug Paranoid... */
#define DBGP(s) do { } while(0)
/* Debug Extra Paranoid... */
#define DBGPX(s) do { } while(0)
static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev);
static void __iomem *remap_pci_mem(ulong base, ulong size);
static int cpqarray_eisa_detect(void);
static int pollcomplete(int ctlr);
static void getgeometry(int ctlr);
static void start_fwbk(int ctlr);
static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool);
static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool);
static void free_hba(int i);
static int alloc_cpqarray_hba(void);
static int sendcmd(
__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int blk,
unsigned int blkcnt,
unsigned int log_unit );
static int ida_unlocked_open(struct block_device *bdev, fmode_t mode);
static int ida_release(struct gendisk *disk, fmode_t mode);
static int ida_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg);
static int ida_getgeo(struct block_device *bdev, struct hd_geometry *geo);
static int ida_ctlr_ioctl(ctlr_info_t *h, int dsk, ida_ioctl_t *io);
static void do_ida_request(struct request_queue *q);
static void start_io(ctlr_info_t *h);
static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c);
static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c);
static inline void complete_command(cmdlist_t *cmd, int timeout);
static irqreturn_t do_ida_intr(int irq, void *dev_id);
static void ida_timer(unsigned long tdata);
static int ida_revalidate(struct gendisk *disk);
static int revalidate_allvol(ctlr_info_t *host);
static int cpqarray_register_ctlr(int ctlr, struct pci_dev *pdev);
#ifdef CONFIG_PROC_FS
static void ida_procinit(int i);
#else
static void ida_procinit(int i) {}
#endif
static inline drv_info_t *get_drv(struct gendisk *disk)
{
return disk->private_data;
}
static inline ctlr_info_t *get_host(struct gendisk *disk)
{
return disk->queue->queuedata;
}
static const struct block_device_operations ida_fops = {
.owner = THIS_MODULE,
.open = ida_unlocked_open,
.release = ida_release,
.ioctl = ida_ioctl,
.getgeo = ida_getgeo,
.revalidate_disk= ida_revalidate,
};
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *proc_array;
static const struct file_operations ida_proc_fops;
/*
* Get us a file in /proc/array that says something about each controller.
* Create /proc/array if it doesn't exist yet.
*/
static void __init ida_procinit(int i)
{
if (proc_array == NULL) {
proc_array = proc_mkdir("driver/cpqarray", NULL);
if (!proc_array) return;
}
proc_create_data(hba[i]->devname, 0, proc_array, &ida_proc_fops, hba[i]);
}
/*
* Report information about this controller.
*/
static int ida_proc_show(struct seq_file *m, void *v)
{
int i, ctlr;
ctlr_info_t *h = (ctlr_info_t*)m->private;
drv_info_t *drv;
#ifdef CPQ_PROC_PRINT_QUEUES
cmdlist_t *c;
unsigned long flags;
#endif
ctlr = h->ctlr;
seq_printf(m, "%s: Compaq %s Controller\n"
" Board ID: 0x%08lx\n"
" Firmware Revision: %c%c%c%c\n"
" Controller Sig: 0x%08lx\n"
" Memory Address: 0x%08lx\n"
" I/O Port: 0x%04x\n"
" IRQ: %d\n"
" Logical drives: %d\n"
" Physical drives: %d\n\n"
" Current Q depth: %d\n"
" Max Q depth since init: %d\n\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_rev[0], h->firm_rev[1], h->firm_rev[2], h->firm_rev[3],
(unsigned long)h->ctlr_sig, (unsigned long)h->vaddr,
(unsigned int) h->io_mem_addr, (unsigned int)h->intr,
h->log_drives, h->phys_drives,
h->Qdepth, h->maxQsinceinit);
seq_puts(m, "Logical Drive Info:\n");
for(i=0; i<h->log_drives; i++) {
drv = &h->drv[i];
seq_printf(m, "ida/c%dd%d: blksz=%d nr_blks=%d\n",
ctlr, i, drv->blk_size, drv->nr_blks);
}
#ifdef CPQ_PROC_PRINT_QUEUES
spin_lock_irqsave(IDA_LOCK(h->ctlr), flags);
seq_puts(m, "\nCurrent Queues:\n");
c = h->reqQ;
seq_printf(m, "reqQ = %p", c);
if (c) c=c->next;
while(c && c != h->reqQ) {
seq_printf(m, "->%p", c);
c=c->next;
}
c = h->cmpQ;
seq_printf(m, "\ncmpQ = %p", c);
if (c) c=c->next;
while(c && c != h->cmpQ) {
seq_printf(m, "->%p", c);
c=c->next;
}
seq_putc(m, '\n');
spin_unlock_irqrestore(IDA_LOCK(h->ctlr), flags);
#endif
seq_printf(m, "nr_allocs = %d\nnr_frees = %d\n",
h->nr_allocs, h->nr_frees);
return 0;
}
static int ida_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, ida_proc_show, PDE(inode)->data);
}
static const struct file_operations ida_proc_fops = {
.owner = THIS_MODULE,
.open = ida_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_PROC_FS */
module_param_array(eisa, int, NULL, 0);
static void release_io_mem(ctlr_info_t *c)
{
/* if IO mem was not protected do nothing */
if( c->io_mem_addr == 0)
return;
release_region(c->io_mem_addr, c->io_mem_length);
c->io_mem_addr = 0;
c->io_mem_length = 0;
}
static void __devexit cpqarray_remove_one(int i)
{
int j;
char buff[4];
/* sendcmd will turn off interrupt, and send the flush...
* To write all data in the battery backed cache to disks
* no data returned, but don't want to send NULL to sendcmd */
if( sendcmd(FLUSH_CACHE, i, buff, 4, 0, 0, 0))
{
printk(KERN_WARNING "Unable to flush cache on controller %d\n",
i);
}
free_irq(hba[i]->intr, hba[i]);
iounmap(hba[i]->vaddr);
unregister_blkdev(COMPAQ_SMART2_MAJOR+i, hba[i]->devname);
del_timer(&hba[i]->timer);
remove_proc_entry(hba[i]->devname, proc_array);
pci_free_consistent(hba[i]->pci_dev,
NR_CMDS * sizeof(cmdlist_t), (hba[i]->cmd_pool),
hba[i]->cmd_pool_dhandle);
kfree(hba[i]->cmd_pool_bits);
for(j = 0; j < NWD; j++) {
if (ida_gendisk[i][j]->flags & GENHD_FL_UP)
del_gendisk(ida_gendisk[i][j]);
put_disk(ida_gendisk[i][j]);
}
blk_cleanup_queue(hba[i]->queue);
release_io_mem(hba[i]);
free_hba(i);
}
static void __devexit cpqarray_remove_one_pci (struct pci_dev *pdev)
{
int i;
ctlr_info_t *tmp_ptr;
if (pci_get_drvdata(pdev) == NULL) {
printk( KERN_ERR "cpqarray: Unable to remove device \n");
return;
}
tmp_ptr = pci_get_drvdata(pdev);
i = tmp_ptr->ctlr;
if (hba[i] == NULL) {
printk(KERN_ERR "cpqarray: controller %d appears to have"
"already been removed \n", i);
return;
}
pci_set_drvdata(pdev, NULL);
cpqarray_remove_one(i);
}
/* removing an instance that was not removed automatically..
* must be an eisa card.
*/
static void __devexit cpqarray_remove_one_eisa (int i)
{
if (hba[i] == NULL) {
printk(KERN_ERR "cpqarray: controller %d appears to have"
"already been removed \n", i);
return;
}
cpqarray_remove_one(i);
}
/* pdev is NULL for eisa */
static int __devinit cpqarray_register_ctlr( int i, struct pci_dev *pdev)
{
struct request_queue *q;
int j;
/*
* register block devices
* Find disks and fill in structs
* Get an interrupt, set the Q depth and get into /proc
*/
/* If this successful it should insure that we are the only */
/* instance of the driver */
if (register_blkdev(COMPAQ_SMART2_MAJOR+i, hba[i]->devname)) {
goto Enomem4;
}
hba[i]->access.set_intr_mask(hba[i], 0);
if (request_irq(hba[i]->intr, do_ida_intr,
IRQF_DISABLED|IRQF_SHARED, hba[i]->devname, hba[i]))
{
printk(KERN_ERR "cpqarray: Unable to get irq %d for %s\n",
hba[i]->intr, hba[i]->devname);
goto Enomem3;
}
for (j=0; j<NWD; j++) {
ida_gendisk[i][j] = alloc_disk(1 << NWD_SHIFT);
if (!ida_gendisk[i][j])
goto Enomem2;
}
hba[i]->cmd_pool = pci_alloc_consistent(
hba[i]->pci_dev, NR_CMDS * sizeof(cmdlist_t),
&(hba[i]->cmd_pool_dhandle));
hba[i]->cmd_pool_bits = kcalloc(
DIV_ROUND_UP(NR_CMDS, BITS_PER_LONG), sizeof(unsigned long),
GFP_KERNEL);
if (!hba[i]->cmd_pool_bits || !hba[i]->cmd_pool)
goto Enomem1;
memset(hba[i]->cmd_pool, 0, NR_CMDS * sizeof(cmdlist_t));
printk(KERN_INFO "cpqarray: Finding drives on %s",
hba[i]->devname);
spin_lock_init(&hba[i]->lock);
q = blk_init_queue(do_ida_request, &hba[i]->lock);
if (!q)
goto Enomem1;
hba[i]->queue = q;
q->queuedata = hba[i];
getgeometry(i);
start_fwbk(i);
ida_procinit(i);
if (pdev)
blk_queue_bounce_limit(q, hba[i]->pci_dev->dma_mask);
/* This is a hardware imposed limit. */
blk_queue_max_segments(q, SG_MAX);
init_timer(&hba[i]->timer);
hba[i]->timer.expires = jiffies + IDA_TIMER;
hba[i]->timer.data = (unsigned long)hba[i];
hba[i]->timer.function = ida_timer;
add_timer(&hba[i]->timer);
/* Enable IRQ now that spinlock and rate limit timer are set up */
hba[i]->access.set_intr_mask(hba[i], FIFO_NOT_EMPTY);
for(j=0; j<NWD; j++) {
struct gendisk *disk = ida_gendisk[i][j];
drv_info_t *drv = &hba[i]->drv[j];
sprintf(disk->disk_name, "ida/c%dd%d", i, j);
disk->major = COMPAQ_SMART2_MAJOR + i;
disk->first_minor = j<<NWD_SHIFT;
disk->fops = &ida_fops;
if (j && !drv->nr_blks)
continue;
blk_queue_logical_block_size(hba[i]->queue, drv->blk_size);
set_capacity(disk, drv->nr_blks);
disk->queue = hba[i]->queue;
disk->private_data = drv;
add_disk(disk);
}
/* done ! */
return(i);
Enomem1:
nr_ctlr = i;
kfree(hba[i]->cmd_pool_bits);
if (hba[i]->cmd_pool)
pci_free_consistent(hba[i]->pci_dev, NR_CMDS*sizeof(cmdlist_t),
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
Enomem2:
while (j--) {
put_disk(ida_gendisk[i][j]);
ida_gendisk[i][j] = NULL;
}
free_irq(hba[i]->intr, hba[i]);
Enomem3:
unregister_blkdev(COMPAQ_SMART2_MAJOR+i, hba[i]->devname);
Enomem4:
if (pdev)
pci_set_drvdata(pdev, NULL);
release_io_mem(hba[i]);
free_hba(i);
printk( KERN_ERR "cpqarray: out of memory");
return -1;
}
static int __devinit cpqarray_init_one( struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int i;
printk(KERN_DEBUG "cpqarray: Device 0x%x has been found at"
" bus %d dev %d func %d\n",
pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn));
i = alloc_cpqarray_hba();
if( i < 0 )
return (-1);
memset(hba[i], 0, sizeof(ctlr_info_t));
sprintf(hba[i]->devname, "ida%d", i);
hba[i]->ctlr = i;
/* Initialize the pdev driver private data */
pci_set_drvdata(pdev, hba[i]);
if (cpqarray_pci_init(hba[i], pdev) != 0) {
pci_set_drvdata(pdev, NULL);
release_io_mem(hba[i]);
free_hba(i);
return -1;
}
return (cpqarray_register_ctlr(i, pdev));
}
static struct pci_driver cpqarray_pci_driver = {
.name = "cpqarray",
.probe = cpqarray_init_one,
.remove = __devexit_p(cpqarray_remove_one_pci),
.id_table = cpqarray_pci_device_id,
};
/*
* This is it. Find all the controllers and register them.
* returns the number of block devices registered.
*/
static int __init cpqarray_init(void)
{
int num_cntlrs_reg = 0;
int i;
int rc = 0;
/* detect controllers */
printk(DRIVER_NAME "\n");
rc = pci_register_driver(&cpqarray_pci_driver);
if (rc)
return rc;
cpqarray_eisa_detect();
for (i=0; i < MAX_CTLR; i++) {
if (hba[i] != NULL)
num_cntlrs_reg++;
}
if (num_cntlrs_reg)
return 0;
else {
pci_unregister_driver(&cpqarray_pci_driver);
return -ENODEV;
}
}
/* Function to find the first free pointer into our hba[] array */
/* Returns -1 if no free entries are left. */
static int alloc_cpqarray_hba(void)
{
int i;
for(i=0; i< MAX_CTLR; i++) {
if (hba[i] == NULL) {
hba[i] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
if(hba[i]==NULL) {
printk(KERN_ERR "cpqarray: out of memory.\n");
return (-1);
}
return (i);
}
}
printk(KERN_WARNING "cpqarray: This driver supports a maximum"
" of 8 controllers.\n");
return(-1);
}
static void free_hba(int i)
{
kfree(hba[i]);
hba[i]=NULL;
}
/*
* Find the IO address of the controller, its IRQ and so forth. Fill
* in some basic stuff into the ctlr_info_t structure.
*/
static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
{
ushort vendor_id, device_id, command;
unchar cache_line_size, latency_timer;
unchar irq, revision;
unsigned long addr[6];
__u32 board_id;
int i;
c->pci_dev = pdev;
pci_set_master(pdev);
if (pci_enable_device(pdev)) {
printk(KERN_ERR "cpqarray: Unable to Enable PCI device\n");
return -1;
}
vendor_id = pdev->vendor;
device_id = pdev->device;
revision = pdev->revision;
irq = pdev->irq;
for(i=0; i<6; i++)
addr[i] = pci_resource_start(pdev, i);
if (pci_set_dma_mask(pdev, CPQARRAY_DMA_MASK) != 0)
{
printk(KERN_ERR "cpqarray: Unable to set DMA mask\n");
return -1;
}
pci_read_config_word(pdev, PCI_COMMAND, &command);
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size);
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer);
pci_read_config_dword(pdev, 0x2c, &board_id);
/* check to see if controller has been disabled */
if(!(command & 0x02)) {
printk(KERN_WARNING
"cpqarray: controller appears to be disabled\n");
return(-1);
}
DBGINFO(
printk("vendor_id = %x\n", vendor_id);
printk("device_id = %x\n", device_id);
printk("command = %x\n", command);
for(i=0; i<6; i++)
printk("addr[%d] = %lx\n", i, addr[i]);
printk("revision = %x\n", revision);
printk("irq = %x\n", irq);
printk("cache_line_size = %x\n", cache_line_size);
printk("latency_timer = %x\n", latency_timer);
printk("board_id = %x\n", board_id);
);
c->intr = irq;
for(i=0; i<6; i++) {
if (pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO)
{ /* IO space */
c->io_mem_addr = addr[i];
c->io_mem_length = pci_resource_end(pdev, i)
- pci_resource_start(pdev, i) + 1;
if(!request_region( c->io_mem_addr, c->io_mem_length,
"cpqarray"))
{
printk( KERN_WARNING "cpqarray I/O memory range already in use addr %lx length = %ld\n", c->io_mem_addr, c->io_mem_length);
c->io_mem_addr = 0;
c->io_mem_length = 0;
}
break;
}
}
c->paddr = 0;
for(i=0; i<6; i++)
if (!(pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_SPACE_IO)) {
c->paddr = pci_resource_start (pdev, i);
break;
}
if (!c->paddr)
return -1;
c->vaddr = remap_pci_mem(c->paddr, 128);
if (!c->vaddr)
return -1;
c->board_id = board_id;
for(i=0; i<NR_PRODUCTS; i++) {
if (board_id == products[i].board_id) {
c->product_name = products[i].product_name;
c->access = *(products[i].access);
break;
}
}
if (i == NR_PRODUCTS) {
printk(KERN_WARNING "cpqarray: Sorry, I don't know how"
" to access the SMART Array controller %08lx\n",
(unsigned long)board_id);
return -1;
}
return 0;
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
void __iomem *page_remapped = ioremap(page_base, page_offs+size);
return (page_remapped ? (page_remapped + page_offs) : NULL);
}
#ifndef MODULE
/*
* Config string is a comma separated set of i/o addresses of EISA cards.
*/
static int cpqarray_setup(char *str)
{
int i, ints[9];
(void)get_options(str, ARRAY_SIZE(ints), ints);
for(i=0; i<ints[0] && i<8; i++)
eisa[i] = ints[i+1];
return 1;
}
__setup("smart2=", cpqarray_setup);
#endif
/*
* Find an EISA controller's signature. Set up an hba if we find it.
*/
static int __devinit cpqarray_eisa_detect(void)
{
int i=0, j;
__u32 board_id;
int intr;
int ctlr;
int num_ctlr = 0;
while(i<8 && eisa[i]) {
ctlr = alloc_cpqarray_hba();
if(ctlr == -1)
break;
board_id = inl(eisa[i]+0xC80);
for(j=0; j < NR_PRODUCTS; j++)
if (board_id == products[j].board_id)
break;
if (j == NR_PRODUCTS) {
printk(KERN_WARNING "cpqarray: Sorry, I don't know how"
" to access the SMART Array controller %08lx\n", (unsigned long)board_id);
continue;
}
memset(hba[ctlr], 0, sizeof(ctlr_info_t));
hba[ctlr]->io_mem_addr = eisa[i];
hba[ctlr]->io_mem_length = 0x7FF;
if(!request_region(hba[ctlr]->io_mem_addr,
hba[ctlr]->io_mem_length,
"cpqarray"))
{
printk(KERN_WARNING "cpqarray: I/O range already in "
"use addr = %lx length = %ld\n",
hba[ctlr]->io_mem_addr,
hba[ctlr]->io_mem_length);
free_hba(ctlr);
continue;
}
/*
* Read the config register to find our interrupt
*/
intr = inb(eisa[i]+0xCC0) >> 4;
if (intr & 1) intr = 11;
else if (intr & 2) intr = 10;
else if (intr & 4) intr = 14;
else if (intr & 8) intr = 15;
hba[ctlr]->intr = intr;
sprintf(hba[ctlr]->devname, "ida%d", nr_ctlr);
hba[ctlr]->product_name = products[j].product_name;
hba[ctlr]->access = *(products[j].access);
hba[ctlr]->ctlr = ctlr;
hba[ctlr]->board_id = board_id;
hba[ctlr]->pci_dev = NULL; /* not PCI */
DBGINFO(
printk("i = %d, j = %d\n", i, j);
printk("irq = %x\n", intr);
printk("product name = %s\n", products[j].product_name);
printk("board_id = %x\n", board_id);
);
num_ctlr++;
i++;
if (cpqarray_register_ctlr(ctlr, NULL) == -1)
printk(KERN_WARNING
"cpqarray: Can't register EISA controller %d\n",
ctlr);
}
return num_ctlr;
}
/*
* Open. Make sure the device is really there.
*/
static int ida_open(struct block_device *bdev, fmode_t mode)
{
drv_info_t *drv = get_drv(bdev->bd_disk);
ctlr_info_t *host = get_host(bdev->bd_disk);
DBGINFO(printk("ida_open %s\n", bdev->bd_disk->disk_name));
/*
* Root is allowed to open raw volume zero even if it's not configured
* so array config can still work. I don't think I really like this,
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (!drv->nr_blks) {
if (!capable(CAP_SYS_RAWIO))
return -ENXIO;
if (!capable(CAP_SYS_ADMIN) && drv != host->drv)
return -ENXIO;
}
host->usage_count++;
return 0;
}
static int ida_unlocked_open(struct block_device *bdev, fmode_t mode)
{
int ret;
mutex_lock(&cpqarray_mutex);
ret = ida_open(bdev, mode);
mutex_unlock(&cpqarray_mutex);
return ret;
}
/*
* Close. Sync first.
*/
static int ida_release(struct gendisk *disk, fmode_t mode)
{
ctlr_info_t *host;
mutex_lock(&cpqarray_mutex);
host = get_host(disk);
host->usage_count--;
mutex_unlock(&cpqarray_mutex);
return 0;
}
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c)
{
if (*Qptr == NULL) {
*Qptr = c;
c->next = c->prev = c;
} else {
c->prev = (*Qptr)->prev;
c->next = (*Qptr);
(*Qptr)->prev->next = c;
(*Qptr)->prev = c;
}
}
static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c)
{
if (c && c->next != c) {
if (*Qptr == c) *Qptr = c->next;
c->prev->next = c->next;
c->next->prev = c->prev;
} else {
*Qptr = NULL;
}
return c;
}
/*
* Get a request and submit it to the controller.
* This routine needs to grab all the requests it possibly can from the
* req Q and submit them. Interrupts are off (and need to be off) when you
* are in here (either via the dummy do_ida_request functions or by being
* called from the interrupt handler
*/
static void do_ida_request(struct request_queue *q)
{
ctlr_info_t *h = q->queuedata;
cmdlist_t *c;
struct request *creq;
struct scatterlist tmp_sg[SG_MAX];
int i, dir, seg;
queue_next:
creq = blk_peek_request(q);
if (!creq)
goto startio;
BUG_ON(creq->nr_phys_segments > SG_MAX);
if ((c = cmd_alloc(h,1)) == NULL)
goto startio;
blk_start_request(creq);
c->ctlr = h->ctlr;
c->hdr.unit = (drv_info_t *)(creq->rq_disk->private_data) - h->drv;
c->hdr.size = sizeof(rblk_t) >> 2;
c->size += sizeof(rblk_t);
c->req.hdr.blk = blk_rq_pos(creq);
c->rq = creq;
DBGPX(
printk("sector=%d, nr_sectors=%u\n",
blk_rq_pos(creq), blk_rq_sectors(creq));
);
sg_init_table(tmp_sg, SG_MAX);
seg = blk_rq_map_sg(q, creq, tmp_sg);
/* Now do all the DMA Mappings */
if (rq_data_dir(creq) == READ)
dir = PCI_DMA_FROMDEVICE;
else
dir = PCI_DMA_TODEVICE;
for( i=0; i < seg; i++)
{
c->req.sg[i].size = tmp_sg[i].length;
c->req.sg[i].addr = (__u32) pci_map_page(h->pci_dev,
sg_page(&tmp_sg[i]),
tmp_sg[i].offset,
tmp_sg[i].length, dir);
}
DBGPX( printk("Submitting %u sectors in %d segments\n", blk_rq_sectors(creq), seg); );
c->req.hdr.sg_cnt = seg;
c->req.hdr.blk_cnt = blk_rq_sectors(creq);
c->req.hdr.cmd = (rq_data_dir(creq) == READ) ? IDA_READ : IDA_WRITE;
c->type = CMD_RWREQ;
/* Put the request on the tail of the request queue */
addQ(&h->reqQ, c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
goto queue_next;
startio:
start_io(h);
}
/*
* start_io submits everything on a controller's request queue
* and moves it to the completion queue.
*
* Interrupts had better be off if you're in here
*/
static void start_io(ctlr_info_t *h)
{
cmdlist_t *c;
while((c = h->reqQ) != NULL) {
/* Can't do anything if we're busy */
if (h->access.fifo_full(h) == 0)
return;
/* Get the first entry from the request Q */
removeQ(&h->reqQ, c);
h->Qdepth--;
/* Tell the controller to do our bidding */
h->access.submit_command(h, c);
/* Get onto the completion Q */
addQ(&h->cmpQ, c);
}
}
/*
* Mark all buffers that cmd was responsible for
*/
static inline void complete_command(cmdlist_t *cmd, int timeout)
{
struct request *rq = cmd->rq;
int error = 0;
int i, ddir;
if (cmd->req.hdr.rcode & RCODE_NONFATAL &&
(hba[cmd->ctlr]->misc_tflags & MISC_NONFATAL_WARN) == 0) {
printk(KERN_NOTICE "Non Fatal error on ida/c%dd%d\n",
cmd->ctlr, cmd->hdr.unit);
hba[cmd->ctlr]->misc_tflags |= MISC_NONFATAL_WARN;
}
if (cmd->req.hdr.rcode & RCODE_FATAL) {
printk(KERN_WARNING "Fatal error on ida/c%dd%d\n",
cmd->ctlr, cmd->hdr.unit);
error = -EIO;
}
if (cmd->req.hdr.rcode & RCODE_INVREQ) {
printk(KERN_WARNING "Invalid request on ida/c%dd%d = (cmd=%x sect=%d cnt=%d sg=%d ret=%x)\n",
cmd->ctlr, cmd->hdr.unit, cmd->req.hdr.cmd,
cmd->req.hdr.blk, cmd->req.hdr.blk_cnt,
cmd->req.hdr.sg_cnt, cmd->req.hdr.rcode);
error = -EIO;
}
if (timeout)
error = -EIO;
/* unmap the DMA mapping for all the scatter gather elements */
if (cmd->req.hdr.cmd == IDA_READ)
ddir = PCI_DMA_FROMDEVICE;
else
ddir = PCI_DMA_TODEVICE;
for(i=0; i<cmd->req.hdr.sg_cnt; i++)
pci_unmap_page(hba[cmd->ctlr]->pci_dev, cmd->req.sg[i].addr,
cmd->req.sg[i].size, ddir);
DBGPX(printk("Done with %p\n", rq););
__blk_end_request_all(rq, error);
}
/*
* The controller will interrupt us upon completion of commands.
* Find the command on the completion queue, remove it, tell the OS and
* try to queue up more IO
*/
static irqreturn_t do_ida_intr(int irq, void *dev_id)
{
ctlr_info_t *h = dev_id;
cmdlist_t *c;
unsigned long istat;
unsigned long flags;
__u32 a,a1;
istat = h->access.intr_pending(h);
/* Is this interrupt for us? */
if (istat == 0)
return IRQ_NONE;
/*
* If there are completed commands in the completion queue,
* we had better do something about it.
*/
spin_lock_irqsave(IDA_LOCK(h->ctlr), flags);
if (istat & FIFO_NOT_EMPTY) {
while((a = h->access.command_completed(h))) {
a1 = a; a &= ~3;
if ((c = h->cmpQ) == NULL)
{
printk(KERN_WARNING "cpqarray: Completion of %08lx ignored\n", (unsigned long)a1);
continue;
}
while(c->busaddr != a) {
c = c->next;
if (c == h->cmpQ)
break;
}
/*
* If we've found the command, take it off the
* completion Q and free it
*/
if (c->busaddr == a) {
removeQ(&h->cmpQ, c);
/* Check for invalid command.
* Controller returns command error,
* But rcode = 0.
*/
if((a1 & 0x03) && (c->req.hdr.rcode == 0))
{
c->req.hdr.rcode = RCODE_INVREQ;
}
if (c->type == CMD_RWREQ) {
complete_command(c, 0);
cmd_free(h, c, 1);
} else if (c->type == CMD_IOCTL_PEND) {
c->type = CMD_IOCTL_DONE;
}
continue;
}
}
}
/*
* See if we can queue up some more IO
*/
do_ida_request(h->queue);
spin_unlock_irqrestore(IDA_LOCK(h->ctlr), flags);
return IRQ_HANDLED;
}
/*
* This timer was for timing out requests that haven't happened after
* IDA_TIMEOUT. That wasn't such a good idea. This timer is used to
* reset a flags structure so we don't flood the user with
* "Non-Fatal error" messages.
*/
static void ida_timer(unsigned long tdata)
{
ctlr_info_t *h = (ctlr_info_t*)tdata;
h->timer.expires = jiffies + IDA_TIMER;
add_timer(&h->timer);
h->misc_tflags = 0;
}
static int ida_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
drv_info_t *drv = get_drv(bdev->bd_disk);
if (drv->cylinders) {
geo->heads = drv->heads;
geo->sectors = drv->sectors;
geo->cylinders = drv->cylinders;
} else {
geo->heads = 0xff;
geo->sectors = 0x3f;
geo->cylinders = drv->nr_blks / (0xff*0x3f);
}
return 0;
}
/*
* ida_ioctl does some miscellaneous stuff like reporting drive geometry,
* setting readahead and submitting commands from userspace to the controller.
*/
static int ida_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
{
drv_info_t *drv = get_drv(bdev->bd_disk);
ctlr_info_t *host = get_host(bdev->bd_disk);
int error;
ida_ioctl_t __user *io = (ida_ioctl_t __user *)arg;
ida_ioctl_t *my_io;
switch(cmd) {
case IDAGETDRVINFO:
if (copy_to_user(&io->c.drv, drv, sizeof(drv_info_t)))
return -EFAULT;
return 0;
case IDAPASSTHRU:
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
my_io = kmalloc(sizeof(ida_ioctl_t), GFP_KERNEL);
if (!my_io)
return -ENOMEM;
error = -EFAULT;
if (copy_from_user(my_io, io, sizeof(*my_io)))
goto out_passthru;
error = ida_ctlr_ioctl(host, drv - host->drv, my_io);
if (error)
goto out_passthru;
error = -EFAULT;
if (copy_to_user(io, my_io, sizeof(*my_io)))
goto out_passthru;
error = 0;
out_passthru:
kfree(my_io);
return error;
case IDAGETCTLRSIG:
if (!arg) return -EINVAL;
if (put_user(host->ctlr_sig, (int __user *)arg))
return -EFAULT;
return 0;
case IDAREVALIDATEVOLS:
if (MINOR(bdev->bd_dev) != 0)
return -ENXIO;
return revalidate_allvol(host);
case IDADRIVERVERSION:
if (!arg) return -EINVAL;
if (put_user(DRIVER_VERSION, (unsigned long __user *)arg))
return -EFAULT;
return 0;
case IDAGETPCIINFO:
{
ida_pci_info_struct pciinfo;
if (!arg) return -EINVAL;
pciinfo.bus = host->pci_dev->bus->number;
pciinfo.dev_fn = host->pci_dev->devfn;
pciinfo.board_id = host->board_id;
if(copy_to_user((void __user *) arg, &pciinfo,
sizeof( ida_pci_info_struct)))
return -EFAULT;
return(0);
}
default:
return -EINVAL;
}
}
static int ida_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long param)
{
int ret;
mutex_lock(&cpqarray_mutex);
ret = ida_locked_ioctl(bdev, mode, cmd, param);
mutex_unlock(&cpqarray_mutex);
return ret;
}
/*
* ida_ctlr_ioctl is for passing commands to the controller from userspace.
* The command block (io) has already been copied to kernel space for us,
* however, any elements in the sglist need to be copied to kernel space
* or copied back to userspace.
*
* Only root may perform a controller passthru command, however I'm not doing
* any serious sanity checking on the arguments. Doing an IDA_WRITE_MEDIA and
* putting a 64M buffer in the sglist is probably a *bad* idea.
*/
static int ida_ctlr_ioctl(ctlr_info_t *h, int dsk, ida_ioctl_t *io)
{
int ctlr = h->ctlr;
cmdlist_t *c;
void *p = NULL;
unsigned long flags;
int error;
if ((c = cmd_alloc(h, 0)) == NULL)
return -ENOMEM;
c->ctlr = ctlr;
c->hdr.unit = (io->unit & UNITVALID) ? (io->unit & ~UNITVALID) : dsk;
c->hdr.size = sizeof(rblk_t) >> 2;
c->size += sizeof(rblk_t);
c->req.hdr.cmd = io->cmd;
c->req.hdr.blk = io->blk;
c->req.hdr.blk_cnt = io->blk_cnt;
c->type = CMD_IOCTL_PEND;
/* Pre submit processing */
switch(io->cmd) {
case PASSTHRU_A:
p = memdup_user(io->sg[0].addr, io->sg[0].size);
if (IS_ERR(p)) {
error = PTR_ERR(p);
cmd_free(h, c, 0);
return error;
}
c->req.hdr.blk = pci_map_single(h->pci_dev, &(io->c),
sizeof(ida_ioctl_t),
PCI_DMA_BIDIRECTIONAL);
c->req.sg[0].size = io->sg[0].size;
c->req.sg[0].addr = pci_map_single(h->pci_dev, p,
c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
c->req.hdr.sg_cnt = 1;
break;
case IDA_READ:
case READ_FLASH_ROM:
case SENSE_CONTROLLER_PERFORMANCE:
p = kmalloc(io->sg[0].size, GFP_KERNEL);
if (!p)
{
error = -ENOMEM;
cmd_free(h, c, 0);
return(error);
}
c->req.sg[0].size = io->sg[0].size;
c->req.sg[0].addr = pci_map_single(h->pci_dev, p,
c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
c->req.hdr.sg_cnt = 1;
break;
case IDA_WRITE:
case IDA_WRITE_MEDIA:
case DIAG_PASS_THRU:
case COLLECT_BUFFER:
case WRITE_FLASH_ROM:
p = memdup_user(io->sg[0].addr, io->sg[0].size);
if (IS_ERR(p)) {
error = PTR_ERR(p);
cmd_free(h, c, 0);
return error;
}
c->req.sg[0].size = io->sg[0].size;
c->req.sg[0].addr = pci_map_single(h->pci_dev, p,
c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
c->req.hdr.sg_cnt = 1;
break;
default:
c->req.sg[0].size = sizeof(io->c);
c->req.sg[0].addr = pci_map_single(h->pci_dev,&io->c,
c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
c->req.hdr.sg_cnt = 1;
}
/* Put the request on the tail of the request queue */
spin_lock_irqsave(IDA_LOCK(ctlr), flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(IDA_LOCK(ctlr), flags);
/* Wait for completion */
while(c->type != CMD_IOCTL_DONE)
schedule();
/* Unmap the DMA */
pci_unmap_single(h->pci_dev, c->req.sg[0].addr, c->req.sg[0].size,
PCI_DMA_BIDIRECTIONAL);
/* Post submit processing */
switch(io->cmd) {
case PASSTHRU_A:
pci_unmap_single(h->pci_dev, c->req.hdr.blk,
sizeof(ida_ioctl_t),
PCI_DMA_BIDIRECTIONAL);
case IDA_READ:
case DIAG_PASS_THRU:
case SENSE_CONTROLLER_PERFORMANCE:
case READ_FLASH_ROM:
if (copy_to_user(io->sg[0].addr, p, io->sg[0].size)) {
kfree(p);
return -EFAULT;
}
/* fall through and free p */
case IDA_WRITE:
case IDA_WRITE_MEDIA:
case COLLECT_BUFFER:
case WRITE_FLASH_ROM:
kfree(p);
break;
default:;
/* Nothing to do */
}
io->rcode = c->req.hdr.rcode;
cmd_free(h, c, 0);
return(0);
}
/*
* Commands are pre-allocated in a large block. Here we use a simple bitmap
* scheme to suballocte them to the driver. Operations that are not time
* critical (and can wait for kmalloc and possibly sleep) can pass in NULL
* as the first argument to get a new command.
*/
static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
cmdlist_t * c;
int i;
dma_addr_t cmd_dhandle;
if (!get_from_pool) {
c = (cmdlist_t*)pci_alloc_consistent(h->pci_dev,
sizeof(cmdlist_t), &cmd_dhandle);
if(c==NULL)
return NULL;
} else {
do {
i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
if (i == NR_CMDS)
return NULL;
} while(test_and_set_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0);
c = h->cmd_pool + i;
cmd_dhandle = h->cmd_pool_dhandle + i*sizeof(cmdlist_t);
h->nr_allocs++;
}
memset(c, 0, sizeof(cmdlist_t));
c->busaddr = cmd_dhandle;
return c;
}
static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool)
{
int i;
if (!got_from_pool) {
pci_free_consistent(h->pci_dev, sizeof(cmdlist_t), c,
c->busaddr);
} else {
i = c - h->cmd_pool;
clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG));
h->nr_frees++;
}
}
/***********************************************************************
name: sendcmd
Send a command to an IDA using the memory mapped FIFO interface
and wait for it to complete.
This routine should only be called at init time.
***********************************************************************/
static int sendcmd(
__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int blk,
unsigned int blkcnt,
unsigned int log_unit )
{
cmdlist_t *c;
int complete;
unsigned long temp;
unsigned long i;
ctlr_info_t *info_p = hba[ctlr];
c = cmd_alloc(info_p, 1);
if(!c)
return IO_ERROR;
c->ctlr = ctlr;
c->hdr.unit = log_unit;
c->hdr.prio = 0;
c->hdr.size = sizeof(rblk_t) >> 2;
c->size += sizeof(rblk_t);
/* The request information. */
c->req.hdr.next = 0;
c->req.hdr.rcode = 0;
c->req.bp = 0;
c->req.hdr.sg_cnt = 1;
c->req.hdr.reserved = 0;
if (size == 0)
c->req.sg[0].size = 512;
else
c->req.sg[0].size = size;
c->req.hdr.blk = blk;
c->req.hdr.blk_cnt = blkcnt;
c->req.hdr.cmd = (unsigned char) cmd;
c->req.sg[0].addr = (__u32) pci_map_single(info_p->pci_dev,
buff, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
/*
* Disable interrupt
*/
info_p->access.set_intr_mask(info_p, 0);
/* Make sure there is room in the command FIFO */
/* Actually it should be completely empty at this time. */
for (i = 200000; i > 0; i--) {
temp = info_p->access.fifo_full(info_p);
if (temp != 0) {
break;
}
udelay(10);
DBG(
printk(KERN_WARNING "cpqarray ida%d: idaSendPciCmd FIFO full,"
" waiting!\n", ctlr);
);
}
/*
* Send the cmd
*/
info_p->access.submit_command(info_p, c);
complete = pollcomplete(ctlr);
pci_unmap_single(info_p->pci_dev, (dma_addr_t) c->req.sg[0].addr,
c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
if (complete != 1) {
if (complete != c->busaddr) {
printk( KERN_WARNING
"cpqarray ida%d: idaSendPciCmd "
"Invalid command list address returned! (%08lx)\n",
ctlr, (unsigned long)complete);
cmd_free(info_p, c, 1);
return (IO_ERROR);
}
} else {
printk( KERN_WARNING
"cpqarray ida%d: idaSendPciCmd Timeout out, "
"No command list address returned!\n",
ctlr);
cmd_free(info_p, c, 1);
return (IO_ERROR);
}
if (c->req.hdr.rcode & 0x00FE) {
if (!(c->req.hdr.rcode & BIG_PROBLEM)) {
printk( KERN_WARNING
"cpqarray ida%d: idaSendPciCmd, error: "
"Controller failed at init time "
"cmd: 0x%x, return code = 0x%x\n",
ctlr, c->req.hdr.cmd, c->req.hdr.rcode);
cmd_free(info_p, c, 1);
return (IO_ERROR);
}
}
cmd_free(info_p, c, 1);
return (IO_OK);
}
/*
* revalidate_allvol is for online array config utilities. After a
* utility reconfigures the drives in the array, it can use this function
* (through an ioctl) to make the driver zap any previous disk structs for
* that controller and get new ones.
*
* Right now I'm using the getgeometry() function to do this, but this
* function should probably be finer grained and allow you to revalidate one
* particualar logical volume (instead of all of them on a particular
* controller).
*/
static int revalidate_allvol(ctlr_info_t *host)
{
int ctlr = host->ctlr;
int i;
unsigned long flags;
spin_lock_irqsave(IDA_LOCK(ctlr), flags);
if (host->usage_count > 1) {
spin_unlock_irqrestore(IDA_LOCK(ctlr), flags);
printk(KERN_WARNING "cpqarray: Device busy for volume"
" revalidation (usage=%d)\n", host->usage_count);
return -EBUSY;
}
host->usage_count++;
spin_unlock_irqrestore(IDA_LOCK(ctlr), flags);
/*
* Set the partition and block size structures for all volumes
* on this controller to zero. We will reread all of this data
*/
set_capacity(ida_gendisk[ctlr][0], 0);
for (i = 1; i < NWD; i++) {
struct gendisk *disk = ida_gendisk[ctlr][i];
if (disk->flags & GENHD_FL_UP)
del_gendisk(disk);
}
memset(host->drv, 0, sizeof(drv_info_t)*NWD);
/*
* Tell the array controller not to give us any interrupts while
* we check the new geometry. Then turn interrupts back on when
* we're done.
*/
host->access.set_intr_mask(host, 0);
getgeometry(ctlr);
host->access.set_intr_mask(host, FIFO_NOT_EMPTY);
for(i=0; i<NWD; i++) {
struct gendisk *disk = ida_gendisk[ctlr][i];
drv_info_t *drv = &host->drv[i];
if (i && !drv->nr_blks)
continue;
blk_queue_logical_block_size(host->queue, drv->blk_size);
set_capacity(disk, drv->nr_blks);
disk->queue = host->queue;
disk->private_data = drv;
if (i)
add_disk(disk);
}
host->usage_count--;
return 0;
}
static int ida_revalidate(struct gendisk *disk)
{
drv_info_t *drv = disk->private_data;
set_capacity(disk, drv->nr_blks);
return 0;
}
/********************************************************************
name: pollcomplete
Wait polling for a command to complete.
The memory mapped FIFO is polled for the completion.
Used only at init time, interrupts disabled.
********************************************************************/
static int pollcomplete(int ctlr)
{
int done;
int i;
/* Wait (up to 2 seconds) for a command to complete */
for (i = 200000; i > 0; i--) {
done = hba[ctlr]->access.command_completed(hba[ctlr]);
if (done == 0) {
udelay(10); /* a short fixed delay */
} else
return (done);
}
/* Invalid address to tell caller we ran out of time */
return 1;
}
/*****************************************************************
start_fwbk
Starts controller firmwares background processing.
Currently only the Integrated Raid controller needs this done.
If the PCI mem address registers are written to after this,
data corruption may occur
*****************************************************************/
static void start_fwbk(int ctlr)
{
id_ctlr_t *id_ctlr_buf;
int ret_code;
if( (hba[ctlr]->board_id != 0x40400E11)
&& (hba[ctlr]->board_id != 0x40480E11) )
/* Not a Integrated Raid, so there is nothing for us to do */
return;
printk(KERN_DEBUG "cpqarray: Starting firmware's background"
" processing\n");
/* Command does not return anything, but idasend command needs a
buffer */
id_ctlr_buf = kmalloc(sizeof(id_ctlr_t), GFP_KERNEL);
if(id_ctlr_buf==NULL)
{
printk(KERN_WARNING "cpqarray: Out of memory. "
"Unable to start background processing.\n");
return;
}
ret_code = sendcmd(RESUME_BACKGROUND_ACTIVITY, ctlr,
id_ctlr_buf, 0, 0, 0, 0);
if(ret_code != IO_OK)
printk(KERN_WARNING "cpqarray: Unable to start"
" background processing\n");
kfree(id_ctlr_buf);
}
/*****************************************************************
getgeometry
Get ida logical volume geometry from the controller
This is a large bit of code which once existed in two flavors,
It is used only at init time.
*****************************************************************/
static void getgeometry(int ctlr)
{
id_log_drv_t *id_ldrive;
id_ctlr_t *id_ctlr_buf;
sense_log_drv_stat_t *id_lstatus_buf;
config_t *sense_config_buf;
unsigned int log_unit, log_index;
int ret_code, size;
drv_info_t *drv;
ctlr_info_t *info_p = hba[ctlr];
int i;
info_p->log_drv_map = 0;
id_ldrive = kzalloc(sizeof(id_log_drv_t), GFP_KERNEL);
if (!id_ldrive) {
printk( KERN_ERR "cpqarray: out of memory.\n");
goto err_0;
}
id_ctlr_buf = kzalloc(sizeof(id_ctlr_t), GFP_KERNEL);
if (!id_ctlr_buf) {
printk( KERN_ERR "cpqarray: out of memory.\n");
goto err_1;
}
id_lstatus_buf = kzalloc(sizeof(sense_log_drv_stat_t), GFP_KERNEL);
if (!id_lstatus_buf) {
printk( KERN_ERR "cpqarray: out of memory.\n");
goto err_2;
}
sense_config_buf = kzalloc(sizeof(config_t), GFP_KERNEL);
if (!sense_config_buf) {
printk( KERN_ERR "cpqarray: out of memory.\n");
goto err_3;
}
info_p->phys_drives = 0;
info_p->log_drv_map = 0;
info_p->drv_assign_map = 0;
info_p->drv_spare_map = 0;
info_p->mp_failed_drv_map = 0; /* only initialized here */
/* Get controllers info for this logical drive */
ret_code = sendcmd(ID_CTLR, ctlr, id_ctlr_buf, 0, 0, 0, 0);
if (ret_code == IO_ERROR) {
/*
* If can't get controller info, set the logical drive map to 0,
* so the idastubopen will fail on all logical drives
* on the controller.
*/
printk(KERN_ERR "cpqarray: error sending ID controller\n");
goto err_4;
}
info_p->log_drives = id_ctlr_buf->nr_drvs;
for(i=0;i<4;i++)
info_p->firm_rev[i] = id_ctlr_buf->firm_rev[i];
info_p->ctlr_sig = id_ctlr_buf->cfg_sig;
printk(" (%s)\n", info_p->product_name);
/*
* Initialize logical drive map to zero
*/
log_index = 0;
/*
* Get drive geometry for all logical drives
*/
if (id_ctlr_buf->nr_drvs > 16)
printk(KERN_WARNING "cpqarray ida%d: This driver supports "
"16 logical drives per controller.\n. "
" Additional drives will not be "
"detected\n", ctlr);
for (log_unit = 0;
(log_index < id_ctlr_buf->nr_drvs)
&& (log_unit < NWD);
log_unit++) {
size = sizeof(sense_log_drv_stat_t);
/*
Send "Identify logical drive status" cmd
*/
ret_code = sendcmd(SENSE_LOG_DRV_STAT,
ctlr, id_lstatus_buf, size, 0, 0, log_unit);
if (ret_code == IO_ERROR) {
/*
If can't get logical drive status, set
the logical drive map to 0, so the
idastubopen will fail for all logical drives
on the controller.
*/
info_p->log_drv_map = 0;
printk( KERN_WARNING
"cpqarray ida%d: idaGetGeometry - Controller"
" failed to report status of logical drive %d\n"
"Access to this controller has been disabled\n",
ctlr, log_unit);
goto err_4;
}
/*
Make sure the logical drive is configured
*/
if (id_lstatus_buf->status != LOG_NOT_CONF) {
ret_code = sendcmd(ID_LOG_DRV, ctlr, id_ldrive,
sizeof(id_log_drv_t), 0, 0, log_unit);
/*
If error, the bit for this
logical drive won't be set and
idastubopen will return error.
*/
if (ret_code != IO_ERROR) {
drv = &info_p->drv[log_unit];
drv->blk_size = id_ldrive->blk_size;
drv->nr_blks = id_ldrive->nr_blks;
drv->cylinders = id_ldrive->drv.cyl;
drv->heads = id_ldrive->drv.heads;
drv->sectors = id_ldrive->drv.sect_per_track;
info_p->log_drv_map |= (1 << log_unit);
printk(KERN_INFO "cpqarray ida/c%dd%d: blksz=%d nr_blks=%d\n",
ctlr, log_unit, drv->blk_size, drv->nr_blks);
ret_code = sendcmd(SENSE_CONFIG,
ctlr, sense_config_buf,
sizeof(config_t), 0, 0, log_unit);
if (ret_code == IO_ERROR) {
info_p->log_drv_map = 0;
printk(KERN_ERR "cpqarray: error sending sense config\n");
goto err_4;
}
info_p->phys_drives =
sense_config_buf->ctlr_phys_drv;
info_p->drv_assign_map
|= sense_config_buf->drv_asgn_map;
info_p->drv_assign_map
|= sense_config_buf->spare_asgn_map;
info_p->drv_spare_map
|= sense_config_buf->spare_asgn_map;
} /* end of if no error on id_ldrive */
log_index = log_index + 1;
} /* end of if logical drive configured */
} /* end of for log_unit */
/* Free all the buffers and return */
err_4:
kfree(sense_config_buf);
err_3:
kfree(id_lstatus_buf);
err_2:
kfree(id_ctlr_buf);
err_1:
kfree(id_ldrive);
err_0:
return;
}
static void __exit cpqarray_exit(void)
{
int i;
pci_unregister_driver(&cpqarray_pci_driver);
/* Double check that all controller entries have been removed */
for(i=0; i<MAX_CTLR; i++) {
if (hba[i] != NULL) {
printk(KERN_WARNING "cpqarray: Removing EISA "
"controller %d\n", i);
cpqarray_remove_one_eisa(i);
}
}
remove_proc_entry("driver/cpqarray", NULL);
}
module_init(cpqarray_init)
module_exit(cpqarray_exit)