| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * This code maintains the "home" for each page in the system. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/list.h> |
| #include <linux/bootmem.h> |
| #include <linux/rmap.h> |
| #include <linux/pagemap.h> |
| #include <linux/mutex.h> |
| #include <linux/interrupt.h> |
| #include <linux/sysctl.h> |
| #include <linux/pagevec.h> |
| #include <linux/ptrace.h> |
| #include <linux/timex.h> |
| #include <linux/cache.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| |
| #include <asm/page.h> |
| #include <asm/sections.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgalloc.h> |
| #include <asm/homecache.h> |
| |
| #include <arch/sim.h> |
| |
| #include "migrate.h" |
| |
| |
| #if CHIP_HAS_COHERENT_LOCAL_CACHE() |
| |
| /* |
| * The noallocl2 option suppresses all use of the L2 cache to cache |
| * locally from a remote home. There's no point in using it if we |
| * don't have coherent local caching, though. |
| */ |
| static int __write_once noallocl2; |
| static int __init set_noallocl2(char *str) |
| { |
| noallocl2 = 1; |
| return 0; |
| } |
| early_param("noallocl2", set_noallocl2); |
| |
| #else |
| |
| #define noallocl2 0 |
| |
| #endif |
| |
| /* Provide no-op versions of these routines to keep flush_remote() cleaner. */ |
| #define mark_caches_evicted_start() 0 |
| #define mark_caches_evicted_finish(mask, timestamp) do {} while (0) |
| |
| |
| /* |
| * Update the irq_stat for cpus that we are going to interrupt |
| * with TLB or cache flushes. Also handle removing dataplane cpus |
| * from the TLB flush set, and setting dataplane_tlb_state instead. |
| */ |
| static void hv_flush_update(const struct cpumask *cache_cpumask, |
| struct cpumask *tlb_cpumask, |
| unsigned long tlb_va, unsigned long tlb_length, |
| HV_Remote_ASID *asids, int asidcount) |
| { |
| struct cpumask mask; |
| int i, cpu; |
| |
| cpumask_clear(&mask); |
| if (cache_cpumask) |
| cpumask_or(&mask, &mask, cache_cpumask); |
| if (tlb_cpumask && tlb_length) { |
| cpumask_or(&mask, &mask, tlb_cpumask); |
| } |
| |
| for (i = 0; i < asidcount; ++i) |
| cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask); |
| |
| /* |
| * Don't bother to update atomically; losing a count |
| * here is not that critical. |
| */ |
| for_each_cpu(cpu, &mask) |
| ++per_cpu(irq_stat, cpu).irq_hv_flush_count; |
| } |
| |
| /* |
| * This wrapper function around hv_flush_remote() does several things: |
| * |
| * - Provides a return value error-checking panic path, since |
| * there's never any good reason for hv_flush_remote() to fail. |
| * - Accepts a 32-bit PFN rather than a 64-bit PA, which generally |
| * is the type that Linux wants to pass around anyway. |
| * - Centralizes the mark_caches_evicted() handling. |
| * - Canonicalizes that lengths of zero make cpumasks NULL. |
| * - Handles deferring TLB flushes for dataplane tiles. |
| * - Tracks remote interrupts in the per-cpu irq_cpustat_t. |
| * |
| * Note that we have to wait until the cache flush completes before |
| * updating the per-cpu last_cache_flush word, since otherwise another |
| * concurrent flush can race, conclude the flush has already |
| * completed, and start to use the page while it's still dirty |
| * remotely (running concurrently with the actual evict, presumably). |
| */ |
| void flush_remote(unsigned long cache_pfn, unsigned long cache_control, |
| const struct cpumask *cache_cpumask_orig, |
| HV_VirtAddr tlb_va, unsigned long tlb_length, |
| unsigned long tlb_pgsize, |
| const struct cpumask *tlb_cpumask_orig, |
| HV_Remote_ASID *asids, int asidcount) |
| { |
| int rc; |
| int timestamp = 0; /* happy compiler */ |
| struct cpumask cache_cpumask_copy, tlb_cpumask_copy; |
| struct cpumask *cache_cpumask, *tlb_cpumask; |
| HV_PhysAddr cache_pa; |
| char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5]; |
| |
| mb(); /* provided just to simplify "magic hypervisor" mode */ |
| |
| /* |
| * Canonicalize and copy the cpumasks. |
| */ |
| if (cache_cpumask_orig && cache_control) { |
| cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig); |
| cache_cpumask = &cache_cpumask_copy; |
| } else { |
| cpumask_clear(&cache_cpumask_copy); |
| cache_cpumask = NULL; |
| } |
| if (cache_cpumask == NULL) |
| cache_control = 0; |
| if (tlb_cpumask_orig && tlb_length) { |
| cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig); |
| tlb_cpumask = &tlb_cpumask_copy; |
| } else { |
| cpumask_clear(&tlb_cpumask_copy); |
| tlb_cpumask = NULL; |
| } |
| |
| hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length, |
| asids, asidcount); |
| cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT; |
| if (cache_control & HV_FLUSH_EVICT_L2) |
| timestamp = mark_caches_evicted_start(); |
| rc = hv_flush_remote(cache_pa, cache_control, |
| cpumask_bits(cache_cpumask), |
| tlb_va, tlb_length, tlb_pgsize, |
| cpumask_bits(tlb_cpumask), |
| asids, asidcount); |
| if (cache_control & HV_FLUSH_EVICT_L2) |
| mark_caches_evicted_finish(cache_cpumask, timestamp); |
| if (rc == 0) |
| return; |
| cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy); |
| cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy); |
| |
| pr_err("hv_flush_remote(%#llx, %#lx, %p [%s]," |
| " %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n", |
| cache_pa, cache_control, cache_cpumask, cache_buf, |
| (unsigned long)tlb_va, tlb_length, tlb_pgsize, |
| tlb_cpumask, tlb_buf, |
| asids, asidcount, rc); |
| panic("Unsafe to continue."); |
| } |
| |
| void flush_remote_page(struct page *page, int order) |
| { |
| int i, pages = (1 << order); |
| for (i = 0; i < pages; ++i, ++page) { |
| void *p = kmap_atomic(page); |
| int hfh = 0; |
| int home = page_home(page); |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| if (home == PAGE_HOME_HASH) |
| hfh = 1; |
| else |
| #endif |
| BUG_ON(home < 0 || home >= NR_CPUS); |
| finv_buffer_remote(p, PAGE_SIZE, hfh); |
| kunmap_atomic(p); |
| } |
| } |
| |
| void homecache_evict(const struct cpumask *mask) |
| { |
| flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0); |
| } |
| |
| /* |
| * Return a mask of the cpus whose caches currently own these pages. |
| * The return value is whether the pages are all coherently cached |
| * (i.e. none are immutable, incoherent, or uncached). |
| */ |
| static int homecache_mask(struct page *page, int pages, |
| struct cpumask *home_mask) |
| { |
| int i; |
| int cached_coherently = 1; |
| cpumask_clear(home_mask); |
| for (i = 0; i < pages; ++i) { |
| int home = page_home(&page[i]); |
| if (home == PAGE_HOME_IMMUTABLE || |
| home == PAGE_HOME_INCOHERENT) { |
| cpumask_copy(home_mask, cpu_possible_mask); |
| return 0; |
| } |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| if (home == PAGE_HOME_HASH) { |
| cpumask_or(home_mask, home_mask, &hash_for_home_map); |
| continue; |
| } |
| #endif |
| if (home == PAGE_HOME_UNCACHED) { |
| cached_coherently = 0; |
| continue; |
| } |
| BUG_ON(home < 0 || home >= NR_CPUS); |
| cpumask_set_cpu(home, home_mask); |
| } |
| return cached_coherently; |
| } |
| |
| /* |
| * Return the passed length, or zero if it's long enough that we |
| * believe we should evict the whole L2 cache. |
| */ |
| static unsigned long cache_flush_length(unsigned long length) |
| { |
| return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length; |
| } |
| |
| /* Flush a page out of whatever cache(s) it is in. */ |
| void homecache_flush_cache(struct page *page, int order) |
| { |
| int pages = 1 << order; |
| int length = cache_flush_length(pages * PAGE_SIZE); |
| unsigned long pfn = page_to_pfn(page); |
| struct cpumask home_mask; |
| |
| homecache_mask(page, pages, &home_mask); |
| flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0); |
| sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE); |
| } |
| |
| |
| /* Report the home corresponding to a given PTE. */ |
| static int pte_to_home(pte_t pte) |
| { |
| if (hv_pte_get_nc(pte)) |
| return PAGE_HOME_IMMUTABLE; |
| switch (hv_pte_get_mode(pte)) { |
| case HV_PTE_MODE_CACHE_TILE_L3: |
| return get_remote_cache_cpu(pte); |
| case HV_PTE_MODE_CACHE_NO_L3: |
| return PAGE_HOME_INCOHERENT; |
| case HV_PTE_MODE_UNCACHED: |
| return PAGE_HOME_UNCACHED; |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| case HV_PTE_MODE_CACHE_HASH_L3: |
| return PAGE_HOME_HASH; |
| #endif |
| } |
| panic("Bad PTE %#llx\n", pte.val); |
| } |
| |
| /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */ |
| pte_t pte_set_home(pte_t pte, int home) |
| { |
| /* Check for non-linear file mapping "PTEs" and pass them through. */ |
| if (pte_file(pte)) |
| return pte; |
| |
| #if CHIP_HAS_MMIO() |
| /* Check for MMIO mappings and pass them through. */ |
| if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO) |
| return pte; |
| #endif |
| |
| |
| /* |
| * Only immutable pages get NC mappings. If we have a |
| * non-coherent PTE, but the underlying page is not |
| * immutable, it's likely the result of a forced |
| * caching setting running up against ptrace setting |
| * the page to be writable underneath. In this case, |
| * just keep the PTE coherent. |
| */ |
| if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) { |
| pte = hv_pte_clear_nc(pte); |
| pr_err("non-immutable page incoherently referenced: %#llx\n", |
| pte.val); |
| } |
| |
| switch (home) { |
| |
| case PAGE_HOME_UNCACHED: |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); |
| break; |
| |
| case PAGE_HOME_INCOHERENT: |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); |
| break; |
| |
| case PAGE_HOME_IMMUTABLE: |
| /* |
| * We could home this page anywhere, since it's immutable, |
| * but by default just home it to follow "hash_default". |
| */ |
| BUG_ON(hv_pte_get_writable(pte)); |
| if (pte_get_forcecache(pte)) { |
| /* Upgrade "force any cpu" to "No L3" for immutable. */ |
| if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3 |
| && pte_get_anyhome(pte)) { |
| pte = hv_pte_set_mode(pte, |
| HV_PTE_MODE_CACHE_NO_L3); |
| } |
| } else |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| if (hash_default) |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); |
| else |
| #endif |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); |
| pte = hv_pte_set_nc(pte); |
| break; |
| |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| case PAGE_HOME_HASH: |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); |
| break; |
| #endif |
| |
| default: |
| BUG_ON(home < 0 || home >= NR_CPUS || |
| !cpu_is_valid_lotar(home)); |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); |
| pte = set_remote_cache_cpu(pte, home); |
| break; |
| } |
| |
| #if CHIP_HAS_NC_AND_NOALLOC_BITS() |
| if (noallocl2) |
| pte = hv_pte_set_no_alloc_l2(pte); |
| |
| /* Simplify "no local and no l3" to "uncached" */ |
| if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) && |
| hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) { |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); |
| } |
| #endif |
| |
| /* Checking this case here gives a better panic than from the hv. */ |
| BUG_ON(hv_pte_get_mode(pte) == 0); |
| |
| return pte; |
| } |
| EXPORT_SYMBOL(pte_set_home); |
| |
| /* |
| * The routines in this section are the "static" versions of the normal |
| * dynamic homecaching routines; they just set the home cache |
| * of a kernel page once, and require a full-chip cache/TLB flush, |
| * so they're not suitable for anything but infrequent use. |
| */ |
| |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| static inline int initial_page_home(void) { return PAGE_HOME_HASH; } |
| #else |
| static inline int initial_page_home(void) { return 0; } |
| #endif |
| |
| int page_home(struct page *page) |
| { |
| if (PageHighMem(page)) { |
| return initial_page_home(); |
| } else { |
| unsigned long kva = (unsigned long)page_address(page); |
| return pte_to_home(*virt_to_pte(NULL, kva)); |
| } |
| } |
| |
| void homecache_change_page_home(struct page *page, int order, int home) |
| { |
| int i, pages = (1 << order); |
| unsigned long kva; |
| |
| BUG_ON(PageHighMem(page)); |
| BUG_ON(page_count(page) > 1); |
| BUG_ON(page_mapcount(page) != 0); |
| kva = (unsigned long) page_address(page); |
| flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map, |
| kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask, |
| NULL, 0); |
| |
| for (i = 0; i < pages; ++i, kva += PAGE_SIZE) { |
| pte_t *ptep = virt_to_pte(NULL, kva); |
| pte_t pteval = *ptep; |
| BUG_ON(!pte_present(pteval) || pte_huge(pteval)); |
| __set_pte(ptep, pte_set_home(pteval, home)); |
| } |
| } |
| |
| struct page *homecache_alloc_pages(gfp_t gfp_mask, |
| unsigned int order, int home) |
| { |
| struct page *page; |
| BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */ |
| page = alloc_pages(gfp_mask, order); |
| if (page) |
| homecache_change_page_home(page, order, home); |
| return page; |
| } |
| EXPORT_SYMBOL(homecache_alloc_pages); |
| |
| struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask, |
| unsigned int order, int home) |
| { |
| struct page *page; |
| BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */ |
| page = alloc_pages_node(nid, gfp_mask, order); |
| if (page) |
| homecache_change_page_home(page, order, home); |
| return page; |
| } |
| |
| void homecache_free_pages(unsigned long addr, unsigned int order) |
| { |
| struct page *page; |
| |
| if (addr == 0) |
| return; |
| |
| VM_BUG_ON(!virt_addr_valid((void *)addr)); |
| page = virt_to_page((void *)addr); |
| if (put_page_testzero(page)) { |
| homecache_change_page_home(page, order, initial_page_home()); |
| if (order == 0) { |
| free_hot_cold_page(page, 0); |
| } else { |
| init_page_count(page); |
| __free_pages(page, order); |
| } |
| } |
| } |