| /* |
| * Bit operations for the Hexagon architecture |
| * |
| * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved. |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| */ |
| |
| #ifndef _ASM_BITOPS_H |
| #define _ASM_BITOPS_H |
| |
| #include <linux/compiler.h> |
| #include <asm/byteorder.h> |
| #include <asm/system.h> |
| #include <asm/atomic.h> |
| |
| #ifdef __KERNEL__ |
| |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| /* |
| * The offset calculations for these are based on BITS_PER_LONG == 32 |
| * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access), |
| * mask by 0x0000001F) |
| * |
| * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp |
| */ |
| |
| /** |
| * test_and_clear_bit - clear a bit and return its old value |
| * @nr: bit number to clear |
| * @addr: pointer to memory |
| */ |
| static inline int test_and_clear_bit(int nr, volatile void *addr) |
| { |
| int oldval; |
| |
| __asm__ __volatile__ ( |
| " {R10 = %1; R11 = asr(%2,#5); }\n" |
| " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n" |
| "1: R12 = memw_locked(R10);\n" |
| " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n" |
| " memw_locked(R10,P1) = R12;\n" |
| " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n" |
| : "=&r" (oldval) |
| : "r" (addr), "r" (nr) |
| : "r10", "r11", "r12", "p0", "p1", "memory" |
| ); |
| |
| return oldval; |
| } |
| |
| /** |
| * test_and_set_bit - set a bit and return its old value |
| * @nr: bit number to set |
| * @addr: pointer to memory |
| */ |
| static inline int test_and_set_bit(int nr, volatile void *addr) |
| { |
| int oldval; |
| |
| __asm__ __volatile__ ( |
| " {R10 = %1; R11 = asr(%2,#5); }\n" |
| " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n" |
| "1: R12 = memw_locked(R10);\n" |
| " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n" |
| " memw_locked(R10,P1) = R12;\n" |
| " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n" |
| : "=&r" (oldval) |
| : "r" (addr), "r" (nr) |
| : "r10", "r11", "r12", "p0", "p1", "memory" |
| ); |
| |
| |
| return oldval; |
| |
| } |
| |
| /** |
| * test_and_change_bit - toggle a bit and return its old value |
| * @nr: bit number to set |
| * @addr: pointer to memory |
| */ |
| static inline int test_and_change_bit(int nr, volatile void *addr) |
| { |
| int oldval; |
| |
| __asm__ __volatile__ ( |
| " {R10 = %1; R11 = asr(%2,#5); }\n" |
| " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n" |
| "1: R12 = memw_locked(R10);\n" |
| " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n" |
| " memw_locked(R10,P1) = R12;\n" |
| " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n" |
| : "=&r" (oldval) |
| : "r" (addr), "r" (nr) |
| : "r10", "r11", "r12", "p0", "p1", "memory" |
| ); |
| |
| return oldval; |
| |
| } |
| |
| /* |
| * Atomic, but doesn't care about the return value. |
| * Rewrite later to save a cycle or two. |
| */ |
| |
| static inline void clear_bit(int nr, volatile void *addr) |
| { |
| test_and_clear_bit(nr, addr); |
| } |
| |
| static inline void set_bit(int nr, volatile void *addr) |
| { |
| test_and_set_bit(nr, addr); |
| } |
| |
| static inline void change_bit(int nr, volatile void *addr) |
| { |
| test_and_change_bit(nr, addr); |
| } |
| |
| |
| /* |
| * These are allowed to be non-atomic. In fact the generic flavors are |
| * in non-atomic.h. Would it be better to use intrinsics for this? |
| * |
| * OK, writes in our architecture do not invalidate LL/SC, so this has to |
| * be atomic, particularly for things like slab_lock and slab_unlock. |
| * |
| */ |
| static inline void __clear_bit(int nr, volatile unsigned long *addr) |
| { |
| test_and_clear_bit(nr, addr); |
| } |
| |
| static inline void __set_bit(int nr, volatile unsigned long *addr) |
| { |
| test_and_set_bit(nr, addr); |
| } |
| |
| static inline void __change_bit(int nr, volatile unsigned long *addr) |
| { |
| test_and_change_bit(nr, addr); |
| } |
| |
| /* Apparently, at least some of these are allowed to be non-atomic */ |
| static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) |
| { |
| return test_and_clear_bit(nr, addr); |
| } |
| |
| static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) |
| { |
| return test_and_set_bit(nr, addr); |
| } |
| |
| static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) |
| { |
| return test_and_change_bit(nr, addr); |
| } |
| |
| static inline int __test_bit(int nr, const volatile unsigned long *addr) |
| { |
| int retval; |
| |
| asm volatile( |
| "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n" |
| : "=&r" (retval) |
| : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG) |
| : "p0" |
| ); |
| |
| return retval; |
| } |
| |
| #define test_bit(nr, addr) __test_bit(nr, addr) |
| |
| /* |
| * ffz - find first zero in word. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static inline long ffz(int x) |
| { |
| int r; |
| |
| asm("%0 = ct1(%1);\n" |
| : "=&r" (r) |
| : "r" (x)); |
| return r; |
| } |
| |
| /* |
| * fls - find last (most-significant) bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as ffs. |
| * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. |
| */ |
| static inline long fls(int x) |
| { |
| int r; |
| |
| asm("{ %0 = cl0(%1);}\n" |
| "%0 = sub(#32,%0);\n" |
| : "=&r" (r) |
| : "r" (x) |
| : "p0"); |
| |
| return r; |
| } |
| |
| /* |
| * ffs - find first bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| static inline long ffs(int x) |
| { |
| int r; |
| |
| asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n" |
| "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n" |
| : "=&r" (r) |
| : "r" (x) |
| : "p0"); |
| |
| return r; |
| } |
| |
| /* |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| * |
| * bits_per_long assumed to be 32 |
| * numbering starts at 0 I think (instead of 1 like ffs) |
| */ |
| static inline unsigned long __ffs(unsigned long word) |
| { |
| int num; |
| |
| asm("%0 = ct0(%1);\n" |
| : "=&r" (num) |
| : "r" (word)); |
| |
| return num; |
| } |
| |
| /* |
| * __fls - find last (most-significant) set bit in a long word |
| * @word: the word to search |
| * |
| * Undefined if no set bit exists, so code should check against 0 first. |
| * bits_per_long assumed to be 32 |
| */ |
| static inline unsigned long __fls(unsigned long word) |
| { |
| int num; |
| |
| asm("%0 = cl0(%1);\n" |
| "%0 = sub(#31,%0);\n" |
| : "=&r" (num) |
| : "r" (word)); |
| |
| return num; |
| } |
| |
| #include <asm-generic/bitops/lock.h> |
| #include <asm-generic/bitops/find.h> |
| |
| #include <asm-generic/bitops/fls64.h> |
| #include <asm-generic/bitops/sched.h> |
| #include <asm-generic/bitops/hweight.h> |
| |
| #include <asm-generic/bitops/le.h> |
| #include <asm-generic/bitops/ext2-atomic.h> |
| |
| #endif /* __KERNEL__ */ |
| #endif |