| /* |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "isci.h" |
| #include "task.h" |
| #include "request.h" |
| #include "scu_completion_codes.h" |
| #include "scu_event_codes.h" |
| #include "sas.h" |
| |
| static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq, |
| int idx) |
| { |
| if (idx == 0) |
| return &ireq->tc->sgl_pair_ab; |
| else if (idx == 1) |
| return &ireq->tc->sgl_pair_cd; |
| else if (idx < 0) |
| return NULL; |
| else |
| return &ireq->sg_table[idx - 2]; |
| } |
| |
| static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost, |
| struct isci_request *ireq, u32 idx) |
| { |
| u32 offset; |
| |
| if (idx == 0) { |
| offset = (void *) &ireq->tc->sgl_pair_ab - |
| (void *) &ihost->task_context_table[0]; |
| return ihost->task_context_dma + offset; |
| } else if (idx == 1) { |
| offset = (void *) &ireq->tc->sgl_pair_cd - |
| (void *) &ihost->task_context_table[0]; |
| return ihost->task_context_dma + offset; |
| } |
| |
| return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]); |
| } |
| |
| static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg) |
| { |
| e->length = sg_dma_len(sg); |
| e->address_upper = upper_32_bits(sg_dma_address(sg)); |
| e->address_lower = lower_32_bits(sg_dma_address(sg)); |
| e->address_modifier = 0; |
| } |
| |
| static void sci_request_build_sgl(struct isci_request *ireq) |
| { |
| struct isci_host *ihost = ireq->isci_host; |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct scatterlist *sg = NULL; |
| dma_addr_t dma_addr; |
| u32 sg_idx = 0; |
| struct scu_sgl_element_pair *scu_sg = NULL; |
| struct scu_sgl_element_pair *prev_sg = NULL; |
| |
| if (task->num_scatter > 0) { |
| sg = task->scatter; |
| |
| while (sg) { |
| scu_sg = to_sgl_element_pair(ireq, sg_idx); |
| init_sgl_element(&scu_sg->A, sg); |
| sg = sg_next(sg); |
| if (sg) { |
| init_sgl_element(&scu_sg->B, sg); |
| sg = sg_next(sg); |
| } else |
| memset(&scu_sg->B, 0, sizeof(scu_sg->B)); |
| |
| if (prev_sg) { |
| dma_addr = to_sgl_element_pair_dma(ihost, |
| ireq, |
| sg_idx); |
| |
| prev_sg->next_pair_upper = |
| upper_32_bits(dma_addr); |
| prev_sg->next_pair_lower = |
| lower_32_bits(dma_addr); |
| } |
| |
| prev_sg = scu_sg; |
| sg_idx++; |
| } |
| } else { /* handle when no sg */ |
| scu_sg = to_sgl_element_pair(ireq, sg_idx); |
| |
| dma_addr = dma_map_single(&ihost->pdev->dev, |
| task->scatter, |
| task->total_xfer_len, |
| task->data_dir); |
| |
| ireq->zero_scatter_daddr = dma_addr; |
| |
| scu_sg->A.length = task->total_xfer_len; |
| scu_sg->A.address_upper = upper_32_bits(dma_addr); |
| scu_sg->A.address_lower = lower_32_bits(dma_addr); |
| } |
| |
| if (scu_sg) { |
| scu_sg->next_pair_upper = 0; |
| scu_sg->next_pair_lower = 0; |
| } |
| } |
| |
| static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq) |
| { |
| struct ssp_cmd_iu *cmd_iu; |
| struct sas_task *task = isci_request_access_task(ireq); |
| |
| cmd_iu = &ireq->ssp.cmd; |
| |
| memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8); |
| cmd_iu->add_cdb_len = 0; |
| cmd_iu->_r_a = 0; |
| cmd_iu->_r_b = 0; |
| cmd_iu->en_fburst = 0; /* unsupported */ |
| cmd_iu->task_prio = task->ssp_task.task_prio; |
| cmd_iu->task_attr = task->ssp_task.task_attr; |
| cmd_iu->_r_c = 0; |
| |
| sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb, |
| sizeof(task->ssp_task.cdb) / sizeof(u32)); |
| } |
| |
| static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq) |
| { |
| struct ssp_task_iu *task_iu; |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); |
| |
| task_iu = &ireq->ssp.tmf; |
| |
| memset(task_iu, 0, sizeof(struct ssp_task_iu)); |
| |
| memcpy(task_iu->LUN, task->ssp_task.LUN, 8); |
| |
| task_iu->task_func = isci_tmf->tmf_code; |
| task_iu->task_tag = |
| (test_bit(IREQ_TMF, &ireq->flags)) ? |
| isci_tmf->io_tag : |
| SCI_CONTROLLER_INVALID_IO_TAG; |
| } |
| |
| /** |
| * This method is will fill in the SCU Task Context for any type of SSP request. |
| * @sci_req: |
| * @task_context: |
| * |
| */ |
| static void scu_ssp_reqeust_construct_task_context( |
| struct isci_request *ireq, |
| struct scu_task_context *task_context) |
| { |
| dma_addr_t dma_addr; |
| struct isci_remote_device *idev; |
| struct isci_port *iport; |
| |
| idev = ireq->target_device; |
| iport = idev->owning_port; |
| |
| /* Fill in the TC with the its required data */ |
| task_context->abort = 0; |
| task_context->priority = 0; |
| task_context->initiator_request = 1; |
| task_context->connection_rate = idev->connection_rate; |
| task_context->protocol_engine_index = ISCI_PEG; |
| task_context->logical_port_index = iport->physical_port_index; |
| task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP; |
| task_context->valid = SCU_TASK_CONTEXT_VALID; |
| task_context->context_type = SCU_TASK_CONTEXT_TYPE; |
| |
| task_context->remote_node_index = idev->rnc.remote_node_index; |
| task_context->command_code = 0; |
| |
| task_context->link_layer_control = 0; |
| task_context->do_not_dma_ssp_good_response = 1; |
| task_context->strict_ordering = 0; |
| task_context->control_frame = 0; |
| task_context->timeout_enable = 0; |
| task_context->block_guard_enable = 0; |
| |
| task_context->address_modifier = 0; |
| |
| /* task_context->type.ssp.tag = ireq->io_tag; */ |
| task_context->task_phase = 0x01; |
| |
| ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | |
| (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | |
| (iport->physical_port_index << |
| SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | |
| ISCI_TAG_TCI(ireq->io_tag)); |
| |
| /* |
| * Copy the physical address for the command buffer to the |
| * SCU Task Context |
| */ |
| dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd); |
| |
| task_context->command_iu_upper = upper_32_bits(dma_addr); |
| task_context->command_iu_lower = lower_32_bits(dma_addr); |
| |
| /* |
| * Copy the physical address for the response buffer to the |
| * SCU Task Context |
| */ |
| dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp); |
| |
| task_context->response_iu_upper = upper_32_bits(dma_addr); |
| task_context->response_iu_lower = lower_32_bits(dma_addr); |
| } |
| |
| /** |
| * This method is will fill in the SCU Task Context for a SSP IO request. |
| * @sci_req: |
| * |
| */ |
| static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq, |
| enum dma_data_direction dir, |
| u32 len) |
| { |
| struct scu_task_context *task_context = ireq->tc; |
| |
| scu_ssp_reqeust_construct_task_context(ireq, task_context); |
| |
| task_context->ssp_command_iu_length = |
| sizeof(struct ssp_cmd_iu) / sizeof(u32); |
| task_context->type.ssp.frame_type = SSP_COMMAND; |
| |
| switch (dir) { |
| case DMA_FROM_DEVICE: |
| case DMA_NONE: |
| default: |
| task_context->task_type = SCU_TASK_TYPE_IOREAD; |
| break; |
| case DMA_TO_DEVICE: |
| task_context->task_type = SCU_TASK_TYPE_IOWRITE; |
| break; |
| } |
| |
| task_context->transfer_length_bytes = len; |
| |
| if (task_context->transfer_length_bytes > 0) |
| sci_request_build_sgl(ireq); |
| } |
| |
| /** |
| * This method will fill in the SCU Task Context for a SSP Task request. The |
| * following important settings are utilized: -# priority == |
| * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued |
| * ahead of other task destined for the same Remote Node. -# task_type == |
| * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type |
| * (i.e. non-raw frame) is being utilized to perform task management. -# |
| * control_frame == 1. This ensures that the proper endianess is set so |
| * that the bytes are transmitted in the right order for a task frame. |
| * @sci_req: This parameter specifies the task request object being |
| * constructed. |
| * |
| */ |
| static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq) |
| { |
| struct scu_task_context *task_context = ireq->tc; |
| |
| scu_ssp_reqeust_construct_task_context(ireq, task_context); |
| |
| task_context->control_frame = 1; |
| task_context->priority = SCU_TASK_PRIORITY_HIGH; |
| task_context->task_type = SCU_TASK_TYPE_RAW_FRAME; |
| task_context->transfer_length_bytes = 0; |
| task_context->type.ssp.frame_type = SSP_TASK; |
| task_context->ssp_command_iu_length = |
| sizeof(struct ssp_task_iu) / sizeof(u32); |
| } |
| |
| /** |
| * This method is will fill in the SCU Task Context for any type of SATA |
| * request. This is called from the various SATA constructors. |
| * @sci_req: The general IO request object which is to be used in |
| * constructing the SCU task context. |
| * @task_context: The buffer pointer for the SCU task context which is being |
| * constructed. |
| * |
| * The general io request construction is complete. The buffer assignment for |
| * the command buffer is complete. none Revisit task context construction to |
| * determine what is common for SSP/SMP/STP task context structures. |
| */ |
| static void scu_sata_reqeust_construct_task_context( |
| struct isci_request *ireq, |
| struct scu_task_context *task_context) |
| { |
| dma_addr_t dma_addr; |
| struct isci_remote_device *idev; |
| struct isci_port *iport; |
| |
| idev = ireq->target_device; |
| iport = idev->owning_port; |
| |
| /* Fill in the TC with the its required data */ |
| task_context->abort = 0; |
| task_context->priority = SCU_TASK_PRIORITY_NORMAL; |
| task_context->initiator_request = 1; |
| task_context->connection_rate = idev->connection_rate; |
| task_context->protocol_engine_index = ISCI_PEG; |
| task_context->logical_port_index = iport->physical_port_index; |
| task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP; |
| task_context->valid = SCU_TASK_CONTEXT_VALID; |
| task_context->context_type = SCU_TASK_CONTEXT_TYPE; |
| |
| task_context->remote_node_index = idev->rnc.remote_node_index; |
| task_context->command_code = 0; |
| |
| task_context->link_layer_control = 0; |
| task_context->do_not_dma_ssp_good_response = 1; |
| task_context->strict_ordering = 0; |
| task_context->control_frame = 0; |
| task_context->timeout_enable = 0; |
| task_context->block_guard_enable = 0; |
| |
| task_context->address_modifier = 0; |
| task_context->task_phase = 0x01; |
| |
| task_context->ssp_command_iu_length = |
| (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32); |
| |
| /* Set the first word of the H2D REG FIS */ |
| task_context->type.words[0] = *(u32 *)&ireq->stp.cmd; |
| |
| ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | |
| (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | |
| (iport->physical_port_index << |
| SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | |
| ISCI_TAG_TCI(ireq->io_tag)); |
| /* |
| * Copy the physical address for the command buffer to the SCU Task |
| * Context. We must offset the command buffer by 4 bytes because the |
| * first 4 bytes are transfered in the body of the TC. |
| */ |
| dma_addr = sci_io_request_get_dma_addr(ireq, |
| ((char *) &ireq->stp.cmd) + |
| sizeof(u32)); |
| |
| task_context->command_iu_upper = upper_32_bits(dma_addr); |
| task_context->command_iu_lower = lower_32_bits(dma_addr); |
| |
| /* SATA Requests do not have a response buffer */ |
| task_context->response_iu_upper = 0; |
| task_context->response_iu_lower = 0; |
| } |
| |
| static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq) |
| { |
| struct scu_task_context *task_context = ireq->tc; |
| |
| scu_sata_reqeust_construct_task_context(ireq, task_context); |
| |
| task_context->control_frame = 0; |
| task_context->priority = SCU_TASK_PRIORITY_NORMAL; |
| task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME; |
| task_context->type.stp.fis_type = FIS_REGH2D; |
| task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32); |
| } |
| |
| static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq, |
| bool copy_rx_frame) |
| { |
| struct isci_stp_request *stp_req = &ireq->stp.req; |
| |
| scu_stp_raw_request_construct_task_context(ireq); |
| |
| stp_req->status = 0; |
| stp_req->sgl.offset = 0; |
| stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A; |
| |
| if (copy_rx_frame) { |
| sci_request_build_sgl(ireq); |
| stp_req->sgl.index = 0; |
| } else { |
| /* The user does not want the data copied to the SGL buffer location */ |
| stp_req->sgl.index = -1; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * |
| * @sci_req: This parameter specifies the request to be constructed as an |
| * optimized request. |
| * @optimized_task_type: This parameter specifies whether the request is to be |
| * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A |
| * value of 1 indicates NCQ. |
| * |
| * This method will perform request construction common to all types of STP |
| * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method |
| * returns an indication as to whether the construction was successful. |
| */ |
| static void sci_stp_optimized_request_construct(struct isci_request *ireq, |
| u8 optimized_task_type, |
| u32 len, |
| enum dma_data_direction dir) |
| { |
| struct scu_task_context *task_context = ireq->tc; |
| |
| /* Build the STP task context structure */ |
| scu_sata_reqeust_construct_task_context(ireq, task_context); |
| |
| /* Copy over the SGL elements */ |
| sci_request_build_sgl(ireq); |
| |
| /* Copy over the number of bytes to be transfered */ |
| task_context->transfer_length_bytes = len; |
| |
| if (dir == DMA_TO_DEVICE) { |
| /* |
| * The difference between the DMA IN and DMA OUT request task type |
| * values are consistent with the difference between FPDMA READ |
| * and FPDMA WRITE values. Add the supplied task type parameter |
| * to this difference to set the task type properly for this |
| * DATA OUT (WRITE) case. */ |
| task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT |
| - SCU_TASK_TYPE_DMA_IN); |
| } else { |
| /* |
| * For the DATA IN (READ) case, simply save the supplied |
| * optimized task type. */ |
| task_context->task_type = optimized_task_type; |
| } |
| } |
| |
| static void sci_atapi_construct(struct isci_request *ireq) |
| { |
| struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd; |
| struct sas_task *task; |
| |
| /* To simplify the implementation we take advantage of the |
| * silicon's partial acceleration of atapi protocol (dma data |
| * transfers), so we promote all commands to dma protocol. This |
| * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives. |
| */ |
| h2d_fis->features |= ATAPI_PKT_DMA; |
| |
| scu_stp_raw_request_construct_task_context(ireq); |
| |
| task = isci_request_access_task(ireq); |
| if (task->data_dir == DMA_NONE) |
| task->total_xfer_len = 0; |
| |
| /* clear the response so we can detect arrivial of an |
| * unsolicited h2d fis |
| */ |
| ireq->stp.rsp.fis_type = 0; |
| } |
| |
| static enum sci_status |
| sci_io_request_construct_sata(struct isci_request *ireq, |
| u32 len, |
| enum dma_data_direction dir, |
| bool copy) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct domain_device *dev = ireq->target_device->domain_dev; |
| |
| /* check for management protocols */ |
| if (test_bit(IREQ_TMF, &ireq->flags)) { |
| struct isci_tmf *tmf = isci_request_access_tmf(ireq); |
| |
| if (tmf->tmf_code == isci_tmf_sata_srst_high || |
| tmf->tmf_code == isci_tmf_sata_srst_low) { |
| scu_stp_raw_request_construct_task_context(ireq); |
| return SCI_SUCCESS; |
| } else { |
| dev_err(&ireq->owning_controller->pdev->dev, |
| "%s: Request 0x%p received un-handled SAT " |
| "management protocol 0x%x.\n", |
| __func__, ireq, tmf->tmf_code); |
| |
| return SCI_FAILURE; |
| } |
| } |
| |
| if (!sas_protocol_ata(task->task_proto)) { |
| dev_err(&ireq->owning_controller->pdev->dev, |
| "%s: Non-ATA protocol in SATA path: 0x%x\n", |
| __func__, |
| task->task_proto); |
| return SCI_FAILURE; |
| |
| } |
| |
| /* ATAPI */ |
| if (dev->sata_dev.command_set == ATAPI_COMMAND_SET && |
| task->ata_task.fis.command == ATA_CMD_PACKET) { |
| sci_atapi_construct(ireq); |
| return SCI_SUCCESS; |
| } |
| |
| /* non data */ |
| if (task->data_dir == DMA_NONE) { |
| scu_stp_raw_request_construct_task_context(ireq); |
| return SCI_SUCCESS; |
| } |
| |
| /* NCQ */ |
| if (task->ata_task.use_ncq) { |
| sci_stp_optimized_request_construct(ireq, |
| SCU_TASK_TYPE_FPDMAQ_READ, |
| len, dir); |
| return SCI_SUCCESS; |
| } |
| |
| /* DMA */ |
| if (task->ata_task.dma_xfer) { |
| sci_stp_optimized_request_construct(ireq, |
| SCU_TASK_TYPE_DMA_IN, |
| len, dir); |
| return SCI_SUCCESS; |
| } else /* PIO */ |
| return sci_stp_pio_request_construct(ireq, copy); |
| |
| return status; |
| } |
| |
| static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq) |
| { |
| struct sas_task *task = isci_request_access_task(ireq); |
| |
| ireq->protocol = SCIC_SSP_PROTOCOL; |
| |
| scu_ssp_io_request_construct_task_context(ireq, |
| task->data_dir, |
| task->total_xfer_len); |
| |
| sci_io_request_build_ssp_command_iu(ireq); |
| |
| sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); |
| |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status sci_task_request_construct_ssp( |
| struct isci_request *ireq) |
| { |
| /* Construct the SSP Task SCU Task Context */ |
| scu_ssp_task_request_construct_task_context(ireq); |
| |
| /* Fill in the SSP Task IU */ |
| sci_task_request_build_ssp_task_iu(ireq); |
| |
| sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq) |
| { |
| enum sci_status status; |
| bool copy = false; |
| struct sas_task *task = isci_request_access_task(ireq); |
| |
| ireq->protocol = SCIC_STP_PROTOCOL; |
| |
| copy = (task->data_dir == DMA_NONE) ? false : true; |
| |
| status = sci_io_request_construct_sata(ireq, |
| task->total_xfer_len, |
| task->data_dir, |
| copy); |
| |
| if (status == SCI_SUCCESS) |
| sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); |
| |
| return status; |
| } |
| |
| enum sci_status sci_task_request_construct_sata(struct isci_request *ireq) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| |
| /* check for management protocols */ |
| if (test_bit(IREQ_TMF, &ireq->flags)) { |
| struct isci_tmf *tmf = isci_request_access_tmf(ireq); |
| |
| if (tmf->tmf_code == isci_tmf_sata_srst_high || |
| tmf->tmf_code == isci_tmf_sata_srst_low) { |
| scu_stp_raw_request_construct_task_context(ireq); |
| } else { |
| dev_err(&ireq->owning_controller->pdev->dev, |
| "%s: Request 0x%p received un-handled SAT " |
| "Protocol 0x%x.\n", |
| __func__, ireq, tmf->tmf_code); |
| |
| return SCI_FAILURE; |
| } |
| } |
| |
| if (status != SCI_SUCCESS) |
| return status; |
| sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); |
| |
| return status; |
| } |
| |
| /** |
| * sci_req_tx_bytes - bytes transferred when reply underruns request |
| * @ireq: request that was terminated early |
| */ |
| #define SCU_TASK_CONTEXT_SRAM 0x200000 |
| static u32 sci_req_tx_bytes(struct isci_request *ireq) |
| { |
| struct isci_host *ihost = ireq->owning_controller; |
| u32 ret_val = 0; |
| |
| if (readl(&ihost->smu_registers->address_modifier) == 0) { |
| void __iomem *scu_reg_base = ihost->scu_registers; |
| |
| /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where |
| * BAR1 is the scu_registers |
| * 0x20002C = 0x200000 + 0x2c |
| * = start of task context SRAM + offset of (type.ssp.data_offset) |
| * TCi is the io_tag of struct sci_request |
| */ |
| ret_val = readl(scu_reg_base + |
| (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) + |
| ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag))); |
| } |
| |
| return ret_val; |
| } |
| |
| enum sci_status sci_request_start(struct isci_request *ireq) |
| { |
| enum sci_base_request_states state; |
| struct scu_task_context *tc = ireq->tc; |
| struct isci_host *ihost = ireq->owning_controller; |
| |
| state = ireq->sm.current_state_id; |
| if (state != SCI_REQ_CONSTRUCTED) { |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC IO Request requested to start while in wrong " |
| "state %d\n", __func__, state); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| tc->task_index = ISCI_TAG_TCI(ireq->io_tag); |
| |
| switch (tc->protocol_type) { |
| case SCU_TASK_CONTEXT_PROTOCOL_SMP: |
| case SCU_TASK_CONTEXT_PROTOCOL_SSP: |
| /* SSP/SMP Frame */ |
| tc->type.ssp.tag = ireq->io_tag; |
| tc->type.ssp.target_port_transfer_tag = 0xFFFF; |
| break; |
| |
| case SCU_TASK_CONTEXT_PROTOCOL_STP: |
| /* STP/SATA Frame |
| * tc->type.stp.ncq_tag = ireq->ncq_tag; |
| */ |
| break; |
| |
| case SCU_TASK_CONTEXT_PROTOCOL_NONE: |
| /* / @todo When do we set no protocol type? */ |
| break; |
| |
| default: |
| /* This should never happen since we build the IO |
| * requests */ |
| break; |
| } |
| |
| /* Add to the post_context the io tag value */ |
| ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag); |
| |
| /* Everything is good go ahead and change state */ |
| sci_change_state(&ireq->sm, SCI_REQ_STARTED); |
| |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status |
| sci_io_request_terminate(struct isci_request *ireq) |
| { |
| enum sci_base_request_states state; |
| |
| state = ireq->sm.current_state_id; |
| |
| switch (state) { |
| case SCI_REQ_CONSTRUCTED: |
| ireq->scu_status = SCU_TASK_DONE_TASK_ABORT; |
| ireq->sci_status = SCI_FAILURE_IO_TERMINATED; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| return SCI_SUCCESS; |
| case SCI_REQ_STARTED: |
| case SCI_REQ_TASK_WAIT_TC_COMP: |
| case SCI_REQ_SMP_WAIT_RESP: |
| case SCI_REQ_SMP_WAIT_TC_COMP: |
| case SCI_REQ_STP_UDMA_WAIT_TC_COMP: |
| case SCI_REQ_STP_UDMA_WAIT_D2H: |
| case SCI_REQ_STP_NON_DATA_WAIT_H2D: |
| case SCI_REQ_STP_NON_DATA_WAIT_D2H: |
| case SCI_REQ_STP_PIO_WAIT_H2D: |
| case SCI_REQ_STP_PIO_WAIT_FRAME: |
| case SCI_REQ_STP_PIO_DATA_IN: |
| case SCI_REQ_STP_PIO_DATA_OUT: |
| case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED: |
| case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG: |
| case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: |
| case SCI_REQ_ATAPI_WAIT_H2D: |
| case SCI_REQ_ATAPI_WAIT_PIO_SETUP: |
| case SCI_REQ_ATAPI_WAIT_D2H: |
| case SCI_REQ_ATAPI_WAIT_TC_COMP: |
| sci_change_state(&ireq->sm, SCI_REQ_ABORTING); |
| return SCI_SUCCESS; |
| case SCI_REQ_TASK_WAIT_TC_RESP: |
| /* The task frame was already confirmed to have been |
| * sent by the SCU HW. Since the state machine is |
| * now only waiting for the task response itself, |
| * abort the request and complete it immediately |
| * and don't wait for the task response. |
| */ |
| sci_change_state(&ireq->sm, SCI_REQ_ABORTING); |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| return SCI_SUCCESS; |
| case SCI_REQ_ABORTING: |
| /* If a request has a termination requested twice, return |
| * a failure indication, since HW confirmation of the first |
| * abort is still outstanding. |
| */ |
| case SCI_REQ_COMPLETED: |
| default: |
| dev_warn(&ireq->owning_controller->pdev->dev, |
| "%s: SCIC IO Request requested to abort while in wrong " |
| "state %d\n", |
| __func__, |
| ireq->sm.current_state_id); |
| break; |
| } |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| enum sci_status sci_request_complete(struct isci_request *ireq) |
| { |
| enum sci_base_request_states state; |
| struct isci_host *ihost = ireq->owning_controller; |
| |
| state = ireq->sm.current_state_id; |
| if (WARN_ONCE(state != SCI_REQ_COMPLETED, |
| "isci: request completion from wrong state (%d)\n", state)) |
| return SCI_FAILURE_INVALID_STATE; |
| |
| if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) |
| sci_controller_release_frame(ihost, |
| ireq->saved_rx_frame_index); |
| |
| /* XXX can we just stop the machine and remove the 'final' state? */ |
| sci_change_state(&ireq->sm, SCI_REQ_FINAL); |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status sci_io_request_event_handler(struct isci_request *ireq, |
| u32 event_code) |
| { |
| enum sci_base_request_states state; |
| struct isci_host *ihost = ireq->owning_controller; |
| |
| state = ireq->sm.current_state_id; |
| |
| if (state != SCI_REQ_STP_PIO_DATA_IN) { |
| dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n", |
| __func__, event_code, state); |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| switch (scu_get_event_specifier(event_code)) { |
| case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT: |
| /* We are waiting for data and the SCU has R_ERR the data frame. |
| * Go back to waiting for the D2H Register FIS |
| */ |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); |
| return SCI_SUCCESS; |
| default: |
| dev_err(&ihost->pdev->dev, |
| "%s: pio request unexpected event %#x\n", |
| __func__, event_code); |
| |
| /* TODO Should we fail the PIO request when we get an |
| * unexpected event? |
| */ |
| return SCI_FAILURE; |
| } |
| } |
| |
| /* |
| * This function copies response data for requests returning response data |
| * instead of sense data. |
| * @sci_req: This parameter specifies the request object for which to copy |
| * the response data. |
| */ |
| static void sci_io_request_copy_response(struct isci_request *ireq) |
| { |
| void *resp_buf; |
| u32 len; |
| struct ssp_response_iu *ssp_response; |
| struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); |
| |
| ssp_response = &ireq->ssp.rsp; |
| |
| resp_buf = &isci_tmf->resp.resp_iu; |
| |
| len = min_t(u32, |
| SSP_RESP_IU_MAX_SIZE, |
| be32_to_cpu(ssp_response->response_data_len)); |
| |
| memcpy(resp_buf, ssp_response->resp_data, len); |
| } |
| |
| static enum sci_status |
| request_started_state_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| struct ssp_response_iu *resp_iu; |
| u8 datapres; |
| |
| /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000 |
| * to determine SDMA status |
| */ |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| break; |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): { |
| /* There are times when the SCU hardware will return an early |
| * response because the io request specified more data than is |
| * returned by the target device (mode pages, inquiry data, |
| * etc.). We must check the response stats to see if this is |
| * truly a failed request or a good request that just got |
| * completed early. |
| */ |
| struct ssp_response_iu *resp = &ireq->ssp.rsp; |
| ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); |
| |
| sci_swab32_cpy(&ireq->ssp.rsp, |
| &ireq->ssp.rsp, |
| word_cnt); |
| |
| if (resp->status == 0) { |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY; |
| } else { |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| } |
| break; |
| } |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): { |
| ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); |
| |
| sci_swab32_cpy(&ireq->ssp.rsp, |
| &ireq->ssp.rsp, |
| word_cnt); |
| |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| break; |
| } |
| |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR): |
| /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame |
| * guaranteed to be received before this completion status is |
| * posted? |
| */ |
| resp_iu = &ireq->ssp.rsp; |
| datapres = resp_iu->datapres; |
| |
| if (datapres == 1 || datapres == 2) { |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| } else { |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| } |
| break; |
| /* only stp device gets suspended. */ |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR): |
| if (ireq->protocol == SCIC_STP_PROTOCOL) { |
| ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> |
| SCU_COMPLETION_TL_STATUS_SHIFT; |
| ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED; |
| } else { |
| ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> |
| SCU_COMPLETION_TL_STATUS_SHIFT; |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| } |
| break; |
| |
| /* both stp/ssp device gets suspended */ |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED): |
| ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> |
| SCU_COMPLETION_TL_STATUS_SHIFT; |
| ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED; |
| break; |
| |
| /* neither ssp nor stp gets suspended. */ |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND): |
| default: |
| ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> |
| SCU_COMPLETION_TL_STATUS_SHIFT; |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| break; |
| } |
| |
| /* |
| * TODO: This is probably wrong for ACK/NAK timeout conditions |
| */ |
| |
| /* In all cases we will treat this as the completion of the IO req. */ |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status |
| request_aborting_state_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): |
| case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT): |
| ireq->scu_status = SCU_TASK_DONE_TASK_ABORT; |
| ireq->sci_status = SCI_FAILURE_IO_TERMINATED; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| |
| default: |
| /* Unless we get some strange error wait for the task abort to complete |
| * TODO: Should there be a state change for this completion? |
| */ |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP); |
| break; |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): |
| /* Currently, the decision is to simply allow the task request |
| * to timeout if the task IU wasn't received successfully. |
| * There is a potential for receiving multiple task responses if |
| * we decide to send the task IU again. |
| */ |
| dev_warn(&ireq->owning_controller->pdev->dev, |
| "%s: TaskRequest:0x%p CompletionCode:%x - " |
| "ACK/NAK timeout\n", __func__, ireq, |
| completion_code); |
| |
| sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP); |
| break; |
| default: |
| /* |
| * All other completion status cause the IO to be complete. |
| * If a NAK was received, then it is up to the user to retry |
| * the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status |
| smp_request_await_response_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| /* In the AWAIT RESPONSE state, any TC completion is |
| * unexpected. but if the TC has success status, we |
| * complete the IO anyway. |
| */ |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): |
| /* These status has been seen in a specific LSI |
| * expander, which sometimes is not able to send smp |
| * response within 2 ms. This causes our hardware break |
| * the connection and set TC completion with one of |
| * these SMP_XXX_XX_ERR status. For these type of error, |
| * we ask ihost user to retry the request. |
| */ |
| ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR; |
| ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| default: |
| /* All other completion status cause the IO to be complete. If a NAK |
| * was received, then it is up to the user to retry the request |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status |
| smp_request_await_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| default: |
| /* All other completion status cause the IO to be |
| * complete. If a NAK was received, then it is up to |
| * the user to retry the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req) |
| { |
| struct scu_sgl_element *sgl; |
| struct scu_sgl_element_pair *sgl_pair; |
| struct isci_request *ireq = to_ireq(stp_req); |
| struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl; |
| |
| sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index); |
| if (!sgl_pair) |
| sgl = NULL; |
| else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) { |
| if (sgl_pair->B.address_lower == 0 && |
| sgl_pair->B.address_upper == 0) { |
| sgl = NULL; |
| } else { |
| pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B; |
| sgl = &sgl_pair->B; |
| } |
| } else { |
| if (sgl_pair->next_pair_lower == 0 && |
| sgl_pair->next_pair_upper == 0) { |
| sgl = NULL; |
| } else { |
| pio_sgl->index++; |
| pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A; |
| sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index); |
| sgl = &sgl_pair->A; |
| } |
| } |
| |
| return sgl; |
| } |
| |
| static enum sci_status |
| stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H); |
| break; |
| |
| default: |
| /* All other completion status cause the IO to be |
| * complete. If a NAK was received, then it is up to |
| * the user to retry the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */ |
| |
| /* transmit DATA_FIS from (current sgl + offset) for input |
| * parameter length. current sgl and offset is alreay stored in the IO request |
| */ |
| static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame( |
| struct isci_request *ireq, |
| u32 length) |
| { |
| struct isci_stp_request *stp_req = &ireq->stp.req; |
| struct scu_task_context *task_context = ireq->tc; |
| struct scu_sgl_element_pair *sgl_pair; |
| struct scu_sgl_element *current_sgl; |
| |
| /* Recycle the TC and reconstruct it for sending out DATA FIS containing |
| * for the data from current_sgl+offset for the input length |
| */ |
| sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index); |
| if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) |
| current_sgl = &sgl_pair->A; |
| else |
| current_sgl = &sgl_pair->B; |
| |
| /* update the TC */ |
| task_context->command_iu_upper = current_sgl->address_upper; |
| task_context->command_iu_lower = current_sgl->address_lower; |
| task_context->transfer_length_bytes = length; |
| task_context->type.stp.fis_type = FIS_DATA; |
| |
| /* send the new TC out. */ |
| return sci_controller_continue_io(ireq); |
| } |
| |
| static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq) |
| { |
| struct isci_stp_request *stp_req = &ireq->stp.req; |
| struct scu_sgl_element_pair *sgl_pair; |
| enum sci_status status = SCI_SUCCESS; |
| struct scu_sgl_element *sgl; |
| u32 offset; |
| u32 len = 0; |
| |
| offset = stp_req->sgl.offset; |
| sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index); |
| if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__)) |
| return SCI_FAILURE; |
| |
| if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) { |
| sgl = &sgl_pair->A; |
| len = sgl_pair->A.length - offset; |
| } else { |
| sgl = &sgl_pair->B; |
| len = sgl_pair->B.length - offset; |
| } |
| |
| if (stp_req->pio_len == 0) |
| return SCI_SUCCESS; |
| |
| if (stp_req->pio_len >= len) { |
| status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len); |
| if (status != SCI_SUCCESS) |
| return status; |
| stp_req->pio_len -= len; |
| |
| /* update the current sgl, offset and save for future */ |
| sgl = pio_sgl_next(stp_req); |
| offset = 0; |
| } else if (stp_req->pio_len < len) { |
| sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len); |
| |
| /* Sgl offset will be adjusted and saved for future */ |
| offset += stp_req->pio_len; |
| sgl->address_lower += stp_req->pio_len; |
| stp_req->pio_len = 0; |
| } |
| |
| stp_req->sgl.offset = offset; |
| |
| return status; |
| } |
| |
| /** |
| * |
| * @stp_request: The request that is used for the SGL processing. |
| * @data_buffer: The buffer of data to be copied. |
| * @length: The length of the data transfer. |
| * |
| * Copy the data from the buffer for the length specified to the IO reqeust SGL |
| * specified data region. enum sci_status |
| */ |
| static enum sci_status |
| sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req, |
| u8 *data_buf, u32 len) |
| { |
| struct isci_request *ireq; |
| u8 *src_addr; |
| int copy_len; |
| struct sas_task *task; |
| struct scatterlist *sg; |
| void *kaddr; |
| int total_len = len; |
| |
| ireq = to_ireq(stp_req); |
| task = isci_request_access_task(ireq); |
| src_addr = data_buf; |
| |
| if (task->num_scatter > 0) { |
| sg = task->scatter; |
| |
| while (total_len > 0) { |
| struct page *page = sg_page(sg); |
| |
| copy_len = min_t(int, total_len, sg_dma_len(sg)); |
| kaddr = kmap_atomic(page, KM_IRQ0); |
| memcpy(kaddr + sg->offset, src_addr, copy_len); |
| kunmap_atomic(kaddr, KM_IRQ0); |
| total_len -= copy_len; |
| src_addr += copy_len; |
| sg = sg_next(sg); |
| } |
| } else { |
| BUG_ON(task->total_xfer_len < total_len); |
| memcpy(task->scatter, src_addr, total_len); |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * |
| * @sci_req: The PIO DATA IN request that is to receive the data. |
| * @data_buffer: The buffer to copy from. |
| * |
| * Copy the data buffer to the io request data region. enum sci_status |
| */ |
| static enum sci_status sci_stp_request_pio_data_in_copy_data( |
| struct isci_stp_request *stp_req, |
| u8 *data_buffer) |
| { |
| enum sci_status status; |
| |
| /* |
| * If there is less than 1K remaining in the transfer request |
| * copy just the data for the transfer */ |
| if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) { |
| status = sci_stp_request_pio_data_in_copy_data_buffer( |
| stp_req, data_buffer, stp_req->pio_len); |
| |
| if (status == SCI_SUCCESS) |
| stp_req->pio_len = 0; |
| } else { |
| /* We are transfering the whole frame so copy */ |
| status = sci_stp_request_pio_data_in_copy_data_buffer( |
| stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE); |
| |
| if (status == SCI_SUCCESS) |
| stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE; |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status |
| stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); |
| break; |
| |
| default: |
| /* All other completion status cause the IO to be |
| * complete. If a NAK was received, then it is up to |
| * the user to retry the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status |
| pio_data_out_tx_done_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| bool all_frames_transferred = false; |
| struct isci_stp_request *stp_req = &ireq->stp.req; |
| |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| /* Transmit data */ |
| if (stp_req->pio_len != 0) { |
| status = sci_stp_request_pio_data_out_transmit_data(ireq); |
| if (status == SCI_SUCCESS) { |
| if (stp_req->pio_len == 0) |
| all_frames_transferred = true; |
| } |
| } else if (stp_req->pio_len == 0) { |
| /* |
| * this will happen if the all data is written at the |
| * first time after the pio setup fis is received |
| */ |
| all_frames_transferred = true; |
| } |
| |
| /* all data transferred. */ |
| if (all_frames_transferred) { |
| /* |
| * Change the state to SCI_REQ_STP_PIO_DATA_IN |
| * and wait for PIO_SETUP fis / or D2H REg fis. */ |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); |
| } |
| break; |
| |
| default: |
| /* |
| * All other completion status cause the IO to be complete. |
| * If a NAK was received, then it is up to the user to retry |
| * the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq, |
| u32 frame_index) |
| { |
| struct isci_host *ihost = ireq->owning_controller; |
| struct dev_to_host_fis *frame_header; |
| enum sci_status status; |
| u32 *frame_buffer; |
| |
| status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| |
| if ((status == SCI_SUCCESS) && |
| (frame_header->fis_type == FIS_REGD2H)) { |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| sci_controller_copy_sata_response(&ireq->stp.rsp, |
| frame_header, |
| frame_buffer); |
| } |
| |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return status; |
| } |
| |
| static enum sci_status process_unsolicited_fis(struct isci_request *ireq, |
| u32 frame_index) |
| { |
| struct isci_host *ihost = ireq->owning_controller; |
| enum sci_status status; |
| struct dev_to_host_fis *frame_header; |
| u32 *frame_buffer; |
| |
| status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| if (frame_header->fis_type != FIS_REGD2H) { |
| dev_err(&ireq->isci_host->pdev->dev, |
| "%s ERROR: invalid fis type 0x%X\n", |
| __func__, frame_header->fis_type); |
| return SCI_FAILURE; |
| } |
| |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| sci_controller_copy_sata_response(&ireq->stp.rsp, |
| (u32 *)frame_header, |
| frame_buffer); |
| |
| /* Frame has been decoded return it to the controller */ |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return status; |
| } |
| |
| static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq, |
| u32 frame_index) |
| { |
| struct sas_task *task = isci_request_access_task(ireq); |
| enum sci_status status; |
| |
| status = process_unsolicited_fis(ireq, frame_index); |
| |
| if (status == SCI_SUCCESS) { |
| if (ireq->stp.rsp.status & ATA_ERR) |
| status = SCI_IO_FAILURE_RESPONSE_VALID; |
| } else { |
| status = SCI_IO_FAILURE_RESPONSE_VALID; |
| } |
| |
| if (status != SCI_SUCCESS) { |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = status; |
| } else { |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| } |
| |
| /* the d2h ufi is the end of non-data commands */ |
| if (task->data_dir == DMA_NONE) |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| |
| return status; |
| } |
| |
| static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq) |
| { |
| struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev); |
| void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet; |
| struct scu_task_context *task_context = ireq->tc; |
| |
| /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame |
| * type. The TC for previous Packet fis was already there, we only need to |
| * change the H2D fis content. |
| */ |
| memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis)); |
| memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN); |
| memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context)); |
| task_context->type.stp.fis_type = FIS_DATA; |
| task_context->transfer_length_bytes = dev->cdb_len; |
| } |
| |
| static void scu_atapi_construct_task_context(struct isci_request *ireq) |
| { |
| struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev); |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct scu_task_context *task_context = ireq->tc; |
| int cdb_len = dev->cdb_len; |
| |
| /* reference: SSTL 1.13.4.2 |
| * task_type, sata_direction |
| */ |
| if (task->data_dir == DMA_TO_DEVICE) { |
| task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT; |
| task_context->sata_direction = 0; |
| } else { |
| /* todo: for NO_DATA command, we need to send out raw frame. */ |
| task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN; |
| task_context->sata_direction = 1; |
| } |
| |
| memset(&task_context->type.stp, 0, sizeof(task_context->type.stp)); |
| task_context->type.stp.fis_type = FIS_DATA; |
| |
| memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd)); |
| memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len); |
| task_context->ssp_command_iu_length = cdb_len / sizeof(u32); |
| |
| /* task phase is set to TX_CMD */ |
| task_context->task_phase = 0x1; |
| |
| /* retry counter */ |
| task_context->stp_retry_count = 0; |
| |
| /* data transfer size. */ |
| task_context->transfer_length_bytes = task->total_xfer_len; |
| |
| /* setup sgl */ |
| sci_request_build_sgl(ireq); |
| } |
| |
| enum sci_status |
| sci_io_request_frame_handler(struct isci_request *ireq, |
| u32 frame_index) |
| { |
| struct isci_host *ihost = ireq->owning_controller; |
| struct isci_stp_request *stp_req = &ireq->stp.req; |
| enum sci_base_request_states state; |
| enum sci_status status; |
| ssize_t word_cnt; |
| |
| state = ireq->sm.current_state_id; |
| switch (state) { |
| case SCI_REQ_STARTED: { |
| struct ssp_frame_hdr ssp_hdr; |
| void *frame_header; |
| |
| sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| &frame_header); |
| |
| word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32); |
| sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt); |
| |
| if (ssp_hdr.frame_type == SSP_RESPONSE) { |
| struct ssp_response_iu *resp_iu; |
| ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); |
| |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&resp_iu); |
| |
| sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt); |
| |
| resp_iu = &ireq->ssp.rsp; |
| |
| if (resp_iu->datapres == 0x01 || |
| resp_iu->datapres == 0x02) { |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| } else { |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| } |
| } else { |
| /* not a response frame, why did it get forwarded? */ |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC IO Request 0x%p received unexpected " |
| "frame %d type 0x%02x\n", __func__, ireq, |
| frame_index, ssp_hdr.frame_type); |
| } |
| |
| /* |
| * In any case we are done with this frame buffer return it to |
| * the controller |
| */ |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return SCI_SUCCESS; |
| } |
| |
| case SCI_REQ_TASK_WAIT_TC_RESP: |
| sci_io_request_copy_response(ireq); |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| sci_controller_release_frame(ihost, frame_index); |
| return SCI_SUCCESS; |
| |
| case SCI_REQ_SMP_WAIT_RESP: { |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct scatterlist *sg = &task->smp_task.smp_resp; |
| void *frame_header, *kaddr; |
| u8 *rsp; |
| |
| sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| &frame_header); |
| kaddr = kmap_atomic(sg_page(sg), KM_IRQ0); |
| rsp = kaddr + sg->offset; |
| sci_swab32_cpy(rsp, frame_header, 1); |
| |
| if (rsp[0] == SMP_RESPONSE) { |
| void *smp_resp; |
| |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| &smp_resp); |
| |
| word_cnt = (sg->length/4)-1; |
| if (word_cnt > 0) |
| word_cnt = min_t(unsigned int, word_cnt, |
| SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4); |
| sci_swab32_cpy(rsp + 4, smp_resp, word_cnt); |
| |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP); |
| } else { |
| /* |
| * This was not a response frame why did it get |
| * forwarded? |
| */ |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC SMP Request 0x%p received unexpected " |
| "frame %d type 0x%02x\n", |
| __func__, |
| ireq, |
| frame_index, |
| rsp[0]); |
| |
| ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR; |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| } |
| kunmap_atomic(kaddr, KM_IRQ0); |
| |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return SCI_SUCCESS; |
| } |
| |
| case SCI_REQ_STP_UDMA_WAIT_TC_COMP: |
| return sci_stp_request_udma_general_frame_handler(ireq, |
| frame_index); |
| |
| case SCI_REQ_STP_UDMA_WAIT_D2H: |
| /* Use the general frame handler to copy the resposne data */ |
| status = sci_stp_request_udma_general_frame_handler(ireq, frame_index); |
| |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| return SCI_SUCCESS; |
| |
| case SCI_REQ_STP_NON_DATA_WAIT_D2H: { |
| struct dev_to_host_fis *frame_header; |
| u32 *frame_buffer; |
| |
| status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| |
| if (status != SCI_SUCCESS) { |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC IO Request 0x%p could not get frame " |
| "header for frame index %d, status %x\n", |
| __func__, |
| stp_req, |
| frame_index, |
| status); |
| |
| return status; |
| } |
| |
| switch (frame_header->fis_type) { |
| case FIS_REGD2H: |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| sci_controller_copy_sata_response(&ireq->stp.rsp, |
| frame_header, |
| frame_buffer); |
| |
| /* The command has completed with error */ |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| break; |
| |
| default: |
| dev_warn(&ihost->pdev->dev, |
| "%s: IO Request:0x%p Frame Id:%d protocol " |
| "violation occurred\n", __func__, stp_req, |
| frame_index); |
| |
| ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS; |
| ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION; |
| break; |
| } |
| |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| |
| /* Frame has been decoded return it to the controller */ |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return status; |
| } |
| |
| case SCI_REQ_STP_PIO_WAIT_FRAME: { |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct dev_to_host_fis *frame_header; |
| u32 *frame_buffer; |
| |
| status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| |
| if (status != SCI_SUCCESS) { |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC IO Request 0x%p could not get frame " |
| "header for frame index %d, status %x\n", |
| __func__, stp_req, frame_index, status); |
| return status; |
| } |
| |
| switch (frame_header->fis_type) { |
| case FIS_PIO_SETUP: |
| /* Get from the frame buffer the PIO Setup Data */ |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| /* Get the data from the PIO Setup The SCU Hardware |
| * returns first word in the frame_header and the rest |
| * of the data is in the frame buffer so we need to |
| * back up one dword |
| */ |
| |
| /* transfer_count: first 16bits in the 4th dword */ |
| stp_req->pio_len = frame_buffer[3] & 0xffff; |
| |
| /* status: 4th byte in the 3rd dword */ |
| stp_req->status = (frame_buffer[2] >> 24) & 0xff; |
| |
| sci_controller_copy_sata_response(&ireq->stp.rsp, |
| frame_header, |
| frame_buffer); |
| |
| ireq->stp.rsp.status = stp_req->status; |
| |
| /* The next state is dependent on whether the |
| * request was PIO Data-in or Data out |
| */ |
| if (task->data_dir == DMA_FROM_DEVICE) { |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN); |
| } else if (task->data_dir == DMA_TO_DEVICE) { |
| /* Transmit data */ |
| status = sci_stp_request_pio_data_out_transmit_data(ireq); |
| if (status != SCI_SUCCESS) |
| break; |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT); |
| } |
| break; |
| |
| case FIS_SETDEVBITS: |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); |
| break; |
| |
| case FIS_REGD2H: |
| if (frame_header->status & ATA_BUSY) { |
| /* |
| * Now why is the drive sending a D2H Register |
| * FIS when it is still busy? Do nothing since |
| * we are still in the right state. |
| */ |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCIC PIO Request 0x%p received " |
| "D2H Register FIS with BSY status " |
| "0x%x\n", |
| __func__, |
| stp_req, |
| frame_header->status); |
| break; |
| } |
| |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| sci_controller_copy_sata_response(&ireq->stp.req, |
| frame_header, |
| frame_buffer); |
| |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| |
| default: |
| /* FIXME: what do we do here? */ |
| break; |
| } |
| |
| /* Frame is decoded return it to the controller */ |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return status; |
| } |
| |
| case SCI_REQ_STP_PIO_DATA_IN: { |
| struct dev_to_host_fis *frame_header; |
| struct sata_fis_data *frame_buffer; |
| |
| status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| |
| if (status != SCI_SUCCESS) { |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC IO Request 0x%p could not get frame " |
| "header for frame index %d, status %x\n", |
| __func__, |
| stp_req, |
| frame_index, |
| status); |
| return status; |
| } |
| |
| if (frame_header->fis_type != FIS_DATA) { |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC PIO Request 0x%p received frame %d " |
| "with fis type 0x%02x when expecting a data " |
| "fis.\n", |
| __func__, |
| stp_req, |
| frame_index, |
| frame_header->fis_type); |
| |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| |
| /* Frame is decoded return it to the controller */ |
| sci_controller_release_frame(ihost, frame_index); |
| return status; |
| } |
| |
| if (stp_req->sgl.index < 0) { |
| ireq->saved_rx_frame_index = frame_index; |
| stp_req->pio_len = 0; |
| } else { |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| status = sci_stp_request_pio_data_in_copy_data(stp_req, |
| (u8 *)frame_buffer); |
| |
| /* Frame is decoded return it to the controller */ |
| sci_controller_release_frame(ihost, frame_index); |
| } |
| |
| /* Check for the end of the transfer, are there more |
| * bytes remaining for this data transfer |
| */ |
| if (status != SCI_SUCCESS || stp_req->pio_len != 0) |
| return status; |
| |
| if ((stp_req->status & ATA_BUSY) == 0) { |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| } else { |
| sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); |
| } |
| return status; |
| } |
| |
| case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: { |
| struct dev_to_host_fis *frame_header; |
| u32 *frame_buffer; |
| |
| status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| if (status != SCI_SUCCESS) { |
| dev_err(&ihost->pdev->dev, |
| "%s: SCIC IO Request 0x%p could not get frame " |
| "header for frame index %d, status %x\n", |
| __func__, |
| stp_req, |
| frame_index, |
| status); |
| return status; |
| } |
| |
| switch (frame_header->fis_type) { |
| case FIS_REGD2H: |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_buffer); |
| |
| sci_controller_copy_sata_response(&ireq->stp.rsp, |
| frame_header, |
| frame_buffer); |
| |
| /* The command has completed with error */ |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| break; |
| |
| default: |
| dev_warn(&ihost->pdev->dev, |
| "%s: IO Request:0x%p Frame Id:%d protocol " |
| "violation occurred\n", |
| __func__, |
| stp_req, |
| frame_index); |
| |
| ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS; |
| ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION; |
| break; |
| } |
| |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| |
| /* Frame has been decoded return it to the controller */ |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return status; |
| } |
| case SCI_REQ_ATAPI_WAIT_PIO_SETUP: { |
| struct sas_task *task = isci_request_access_task(ireq); |
| |
| sci_controller_release_frame(ihost, frame_index); |
| ireq->target_device->working_request = ireq; |
| if (task->data_dir == DMA_NONE) { |
| sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP); |
| scu_atapi_reconstruct_raw_frame_task_context(ireq); |
| } else { |
| sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H); |
| scu_atapi_construct_task_context(ireq); |
| } |
| |
| sci_controller_continue_io(ireq); |
| return SCI_SUCCESS; |
| } |
| case SCI_REQ_ATAPI_WAIT_D2H: |
| return atapi_d2h_reg_frame_handler(ireq, frame_index); |
| case SCI_REQ_ABORTING: |
| /* |
| * TODO: Is it even possible to get an unsolicited frame in the |
| * aborting state? |
| */ |
| sci_controller_release_frame(ihost, frame_index); |
| return SCI_SUCCESS; |
| |
| default: |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC IO Request given unexpected frame %x while " |
| "in state %d\n", |
| __func__, |
| frame_index, |
| state); |
| |
| sci_controller_release_frame(ihost, frame_index); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| } |
| |
| static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): |
| /* We must check ther response buffer to see if the D2H |
| * Register FIS was received before we got the TC |
| * completion. |
| */ |
| if (ireq->stp.rsp.fis_type == FIS_REGD2H) { |
| sci_remote_device_suspend(ireq->target_device, |
| SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code))); |
| |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| } else { |
| /* If we have an error completion status for the |
| * TC then we can expect a D2H register FIS from |
| * the device so we must change state to wait |
| * for it |
| */ |
| sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H); |
| } |
| break; |
| |
| /* TODO Check to see if any of these completion status need to |
| * wait for the device to host register fis. |
| */ |
| /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR |
| * - this comes only for B0 |
| */ |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR): |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR): |
| sci_remote_device_suspend(ireq->target_device, |
| SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code))); |
| /* Fall through to the default case */ |
| default: |
| /* All other completion status cause the IO to be complete. */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status |
| stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG); |
| break; |
| |
| default: |
| /* |
| * All other completion status cause the IO to be complete. |
| * If a NAK was received, then it is up to the user to retry |
| * the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status |
| stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H); |
| break; |
| |
| default: |
| /* All other completion status cause the IO to be complete. If |
| * a NAK was received, then it is up to the user to retry the |
| * request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code, |
| enum sci_base_request_states next) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, next); |
| break; |
| default: |
| /* All other completion status cause the IO to be complete. |
| * If a NAK was received, then it is up to the user to retry |
| * the request. |
| */ |
| ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); |
| ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; |
| |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| struct isci_remote_device *idev = ireq->target_device; |
| struct dev_to_host_fis *d2h = &ireq->stp.rsp; |
| enum sci_status status = SCI_SUCCESS; |
| |
| switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { |
| case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| |
| case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): { |
| u16 len = sci_req_tx_bytes(ireq); |
| |
| /* likely non-error data underrrun, workaround missing |
| * d2h frame from the controller |
| */ |
| if (d2h->fis_type != FIS_REGD2H) { |
| d2h->fis_type = FIS_REGD2H; |
| d2h->flags = (1 << 6); |
| d2h->status = 0x50; |
| d2h->error = 0; |
| d2h->lbal = 0; |
| d2h->byte_count_low = len & 0xff; |
| d2h->byte_count_high = len >> 8; |
| d2h->device = 0xa0; |
| d2h->lbal_exp = 0; |
| d2h->lbam_exp = 0; |
| d2h->lbah_exp = 0; |
| d2h->_r_a = 0; |
| d2h->sector_count = 0x3; |
| d2h->sector_count_exp = 0; |
| d2h->_r_b = 0; |
| d2h->_r_c = 0; |
| d2h->_r_d = 0; |
| } |
| |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY; |
| status = ireq->sci_status; |
| |
| /* the hw will have suspended the rnc, so complete the |
| * request upon pending resume |
| */ |
| sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR); |
| break; |
| } |
| case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT): |
| /* In this case, there is no UF coming after. |
| * compelte the IO now. |
| */ |
| ireq->scu_status = SCU_TASK_DONE_GOOD; |
| ireq->sci_status = SCI_SUCCESS; |
| sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); |
| break; |
| |
| default: |
| if (d2h->fis_type == FIS_REGD2H) { |
| /* UF received change the device state to ATAPI_ERROR */ |
| status = ireq->sci_status; |
| sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR); |
| } else { |
| /* If receiving any non-sucess TC status, no UF |
| * received yet, then an UF for the status fis |
| * is coming after (XXX: suspect this is |
| * actually a protocol error or a bug like the |
| * DONE_UNEXP_FIS case) |
| */ |
| ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; |
| ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; |
| |
| sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H); |
| } |
| break; |
| } |
| |
| return status; |
| } |
| |
| enum sci_status |
| sci_io_request_tc_completion(struct isci_request *ireq, |
| u32 completion_code) |
| { |
| enum sci_base_request_states state; |
| struct isci_host *ihost = ireq->owning_controller; |
| |
| state = ireq->sm.current_state_id; |
| |
| switch (state) { |
| case SCI_REQ_STARTED: |
| return request_started_state_tc_event(ireq, completion_code); |
| |
| case SCI_REQ_TASK_WAIT_TC_COMP: |
| return ssp_task_request_await_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_SMP_WAIT_RESP: |
| return smp_request_await_response_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_SMP_WAIT_TC_COMP: |
| return smp_request_await_tc_event(ireq, completion_code); |
| |
| case SCI_REQ_STP_UDMA_WAIT_TC_COMP: |
| return stp_request_udma_await_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_STP_NON_DATA_WAIT_H2D: |
| return stp_request_non_data_await_h2d_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_STP_PIO_WAIT_H2D: |
| return stp_request_pio_await_h2d_completion_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_STP_PIO_DATA_OUT: |
| return pio_data_out_tx_done_tc_event(ireq, completion_code); |
| |
| case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED: |
| return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG: |
| return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_ABORTING: |
| return request_aborting_state_tc_event(ireq, |
| completion_code); |
| |
| case SCI_REQ_ATAPI_WAIT_H2D: |
| return atapi_raw_completion(ireq, completion_code, |
| SCI_REQ_ATAPI_WAIT_PIO_SETUP); |
| |
| case SCI_REQ_ATAPI_WAIT_TC_COMP: |
| return atapi_raw_completion(ireq, completion_code, |
| SCI_REQ_ATAPI_WAIT_D2H); |
| |
| case SCI_REQ_ATAPI_WAIT_D2H: |
| return atapi_data_tc_completion_handler(ireq, completion_code); |
| |
| default: |
| dev_warn(&ihost->pdev->dev, |
| "%s: SCIC IO Request given task completion " |
| "notification %x while in wrong state %d\n", |
| __func__, |
| completion_code, |
| state); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| } |
| |
| /** |
| * isci_request_process_response_iu() - This function sets the status and |
| * response iu, in the task struct, from the request object for the upper |
| * layer driver. |
| * @sas_task: This parameter is the task struct from the upper layer driver. |
| * @resp_iu: This parameter points to the response iu of the completed request. |
| * @dev: This parameter specifies the linux device struct. |
| * |
| * none. |
| */ |
| static void isci_request_process_response_iu( |
| struct sas_task *task, |
| struct ssp_response_iu *resp_iu, |
| struct device *dev) |
| { |
| dev_dbg(dev, |
| "%s: resp_iu = %p " |
| "resp_iu->status = 0x%x,\nresp_iu->datapres = %d " |
| "resp_iu->response_data_len = %x, " |
| "resp_iu->sense_data_len = %x\nrepsonse data: ", |
| __func__, |
| resp_iu, |
| resp_iu->status, |
| resp_iu->datapres, |
| resp_iu->response_data_len, |
| resp_iu->sense_data_len); |
| |
| task->task_status.stat = resp_iu->status; |
| |
| /* libsas updates the task status fields based on the response iu. */ |
| sas_ssp_task_response(dev, task, resp_iu); |
| } |
| |
| /** |
| * isci_request_set_open_reject_status() - This function prepares the I/O |
| * completion for OPEN_REJECT conditions. |
| * @request: This parameter is the completed isci_request object. |
| * @response_ptr: This parameter specifies the service response for the I/O. |
| * @status_ptr: This parameter specifies the exec status for the I/O. |
| * @complete_to_host_ptr: This parameter specifies the action to be taken by |
| * the LLDD with respect to completing this request or forcing an abort |
| * condition on the I/O. |
| * @open_rej_reason: This parameter specifies the encoded reason for the |
| * abandon-class reject. |
| * |
| * none. |
| */ |
| static void isci_request_set_open_reject_status( |
| struct isci_request *request, |
| struct sas_task *task, |
| enum service_response *response_ptr, |
| enum exec_status *status_ptr, |
| enum isci_completion_selection *complete_to_host_ptr, |
| enum sas_open_rej_reason open_rej_reason) |
| { |
| /* Task in the target is done. */ |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| *response_ptr = SAS_TASK_UNDELIVERED; |
| *status_ptr = SAS_OPEN_REJECT; |
| *complete_to_host_ptr = isci_perform_normal_io_completion; |
| task->task_status.open_rej_reason = open_rej_reason; |
| } |
| |
| /** |
| * isci_request_handle_controller_specific_errors() - This function decodes |
| * controller-specific I/O completion error conditions. |
| * @request: This parameter is the completed isci_request object. |
| * @response_ptr: This parameter specifies the service response for the I/O. |
| * @status_ptr: This parameter specifies the exec status for the I/O. |
| * @complete_to_host_ptr: This parameter specifies the action to be taken by |
| * the LLDD with respect to completing this request or forcing an abort |
| * condition on the I/O. |
| * |
| * none. |
| */ |
| static void isci_request_handle_controller_specific_errors( |
| struct isci_remote_device *idev, |
| struct isci_request *request, |
| struct sas_task *task, |
| enum service_response *response_ptr, |
| enum exec_status *status_ptr, |
| enum isci_completion_selection *complete_to_host_ptr) |
| { |
| unsigned int cstatus; |
| |
| cstatus = request->scu_status; |
| |
| dev_dbg(&request->isci_host->pdev->dev, |
| "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR " |
| "- controller status = 0x%x\n", |
| __func__, request, cstatus); |
| |
| /* Decode the controller-specific errors; most |
| * important is to recognize those conditions in which |
| * the target may still have a task outstanding that |
| * must be aborted. |
| * |
| * Note that there are SCU completion codes being |
| * named in the decode below for which SCIC has already |
| * done work to handle them in a way other than as |
| * a controller-specific completion code; these are left |
| * in the decode below for completeness sake. |
| */ |
| switch (cstatus) { |
| case SCU_TASK_DONE_DMASETUP_DIRERR: |
| /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */ |
| case SCU_TASK_DONE_XFERCNT_ERR: |
| /* Also SCU_TASK_DONE_SMP_UFI_ERR: */ |
| if (task->task_proto == SAS_PROTOCOL_SMP) { |
| /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */ |
| *response_ptr = SAS_TASK_COMPLETE; |
| |
| /* See if the device has been/is being stopped. Note |
| * that we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| if (!idev) |
| *status_ptr = SAS_DEVICE_UNKNOWN; |
| else |
| *status_ptr = SAS_ABORTED_TASK; |
| |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| |
| *complete_to_host_ptr = |
| isci_perform_normal_io_completion; |
| } else { |
| /* Task in the target is not done. */ |
| *response_ptr = SAS_TASK_UNDELIVERED; |
| |
| if (!idev) |
| *status_ptr = SAS_DEVICE_UNKNOWN; |
| else |
| *status_ptr = SAM_STAT_TASK_ABORTED; |
| |
| clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| |
| *complete_to_host_ptr = |
| isci_perform_error_io_completion; |
| } |
| |
| break; |
| |
| case SCU_TASK_DONE_CRC_ERR: |
| case SCU_TASK_DONE_NAK_CMD_ERR: |
| case SCU_TASK_DONE_EXCESS_DATA: |
| case SCU_TASK_DONE_UNEXP_FIS: |
| /* Also SCU_TASK_DONE_UNEXP_RESP: */ |
| case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */ |
| case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */ |
| case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */ |
| /* These are conditions in which the target |
| * has completed the task, so that no cleanup |
| * is necessary. |
| */ |
| *response_ptr = SAS_TASK_COMPLETE; |
| |
| /* See if the device has been/is being stopped. Note |
| * that we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| if (!idev) |
| *status_ptr = SAS_DEVICE_UNKNOWN; |
| else |
| *status_ptr = SAS_ABORTED_TASK; |
| |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| |
| *complete_to_host_ptr = isci_perform_normal_io_completion; |
| break; |
| |
| |
| /* Note that the only open reject completion codes seen here will be |
| * abandon-class codes; all others are automatically retried in the SCU. |
| */ |
| case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_WRONG_DEST); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: |
| |
| /* Note - the return of AB0 will change when |
| * libsas implements detection of zone violations. |
| */ |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_RESV_AB0); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_RESV_AB1); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_RESV_AB2); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_RESV_AB3); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_BAD_DEST); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_STP_NORES); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_EPROTO); |
| break; |
| |
| case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: |
| |
| isci_request_set_open_reject_status( |
| request, task, response_ptr, status_ptr, |
| complete_to_host_ptr, SAS_OREJ_CONN_RATE); |
| break; |
| |
| case SCU_TASK_DONE_LL_R_ERR: |
| /* Also SCU_TASK_DONE_ACK_NAK_TO: */ |
| case SCU_TASK_DONE_LL_PERR: |
| case SCU_TASK_DONE_LL_SY_TERM: |
| /* Also SCU_TASK_DONE_NAK_ERR:*/ |
| case SCU_TASK_DONE_LL_LF_TERM: |
| /* Also SCU_TASK_DONE_DATA_LEN_ERR: */ |
| case SCU_TASK_DONE_LL_ABORT_ERR: |
| case SCU_TASK_DONE_SEQ_INV_TYPE: |
| /* Also SCU_TASK_DONE_UNEXP_XR: */ |
| case SCU_TASK_DONE_XR_IU_LEN_ERR: |
| case SCU_TASK_DONE_INV_FIS_LEN: |
| /* Also SCU_TASK_DONE_XR_WD_LEN: */ |
| case SCU_TASK_DONE_SDMA_ERR: |
| case SCU_TASK_DONE_OFFSET_ERR: |
| case SCU_TASK_DONE_MAX_PLD_ERR: |
| case SCU_TASK_DONE_LF_ERR: |
| case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */ |
| case SCU_TASK_DONE_SMP_LL_RX_ERR: |
| case SCU_TASK_DONE_UNEXP_DATA: |
| case SCU_TASK_DONE_UNEXP_SDBFIS: |
| case SCU_TASK_DONE_REG_ERR: |
| case SCU_TASK_DONE_SDB_ERR: |
| case SCU_TASK_DONE_TASK_ABORT: |
| default: |
| /* Task in the target is not done. */ |
| *response_ptr = SAS_TASK_UNDELIVERED; |
| *status_ptr = SAM_STAT_TASK_ABORTED; |
| |
| if (task->task_proto == SAS_PROTOCOL_SMP) { |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| |
| *complete_to_host_ptr = isci_perform_normal_io_completion; |
| } else { |
| clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| |
| *complete_to_host_ptr = isci_perform_error_io_completion; |
| } |
| break; |
| } |
| } |
| |
| /** |
| * isci_task_save_for_upper_layer_completion() - This function saves the |
| * request for later completion to the upper layer driver. |
| * @host: This parameter is a pointer to the host on which the the request |
| * should be queued (either as an error or success). |
| * @request: This parameter is the completed request. |
| * @response: This parameter is the response code for the completed task. |
| * @status: This parameter is the status code for the completed task. |
| * |
| * none. |
| */ |
| static void isci_task_save_for_upper_layer_completion( |
| struct isci_host *host, |
| struct isci_request *request, |
| enum service_response response, |
| enum exec_status status, |
| enum isci_completion_selection task_notification_selection) |
| { |
| struct sas_task *task = isci_request_access_task(request); |
| |
| task_notification_selection |
| = isci_task_set_completion_status(task, response, status, |
| task_notification_selection); |
| |
| /* Tasks aborted specifically by a call to the lldd_abort_task |
| * function should not be completed to the host in the regular path. |
| */ |
| switch (task_notification_selection) { |
| |
| case isci_perform_normal_io_completion: |
| /* Normal notification (task_done) */ |
| |
| /* Add to the completed list. */ |
| list_add(&request->completed_node, |
| &host->requests_to_complete); |
| |
| /* Take the request off the device's pending request list. */ |
| list_del_init(&request->dev_node); |
| break; |
| |
| case isci_perform_aborted_io_completion: |
| /* No notification to libsas because this request is |
| * already in the abort path. |
| */ |
| /* Wake up whatever process was waiting for this |
| * request to complete. |
| */ |
| WARN_ON(request->io_request_completion == NULL); |
| |
| if (request->io_request_completion != NULL) { |
| |
| /* Signal whoever is waiting that this |
| * request is complete. |
| */ |
| complete(request->io_request_completion); |
| } |
| break; |
| |
| case isci_perform_error_io_completion: |
| /* Use sas_task_abort */ |
| /* Add to the aborted list. */ |
| list_add(&request->completed_node, |
| &host->requests_to_errorback); |
| break; |
| |
| default: |
| /* Add to the error to libsas list. */ |
| list_add(&request->completed_node, |
| &host->requests_to_errorback); |
| break; |
| } |
| dev_dbg(&host->pdev->dev, |
| "%s: %d - task = %p, response=%d (%d), status=%d (%d)\n", |
| __func__, task_notification_selection, task, |
| (task) ? task->task_status.resp : 0, response, |
| (task) ? task->task_status.stat : 0, status); |
| } |
| |
| static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis) |
| { |
| struct task_status_struct *ts = &task->task_status; |
| struct ata_task_resp *resp = (void *)&ts->buf[0]; |
| |
| resp->frame_len = sizeof(*fis); |
| memcpy(resp->ending_fis, fis, sizeof(*fis)); |
| ts->buf_valid_size = sizeof(*resp); |
| |
| /* If the device fault bit is set in the status register, then |
| * set the sense data and return. |
| */ |
| if (fis->status & ATA_DF) |
| ts->stat = SAS_PROTO_RESPONSE; |
| else if (fis->status & ATA_ERR) |
| ts->stat = SAM_STAT_CHECK_CONDITION; |
| else |
| ts->stat = SAM_STAT_GOOD; |
| |
| ts->resp = SAS_TASK_COMPLETE; |
| } |
| |
| static void isci_request_io_request_complete(struct isci_host *ihost, |
| struct isci_request *request, |
| enum sci_io_status completion_status) |
| { |
| struct sas_task *task = isci_request_access_task(request); |
| struct ssp_response_iu *resp_iu; |
| unsigned long task_flags; |
| struct isci_remote_device *idev = request->target_device; |
| enum service_response response = SAS_TASK_UNDELIVERED; |
| enum exec_status status = SAS_ABORTED_TASK; |
| enum isci_request_status request_status; |
| enum isci_completion_selection complete_to_host |
| = isci_perform_normal_io_completion; |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: request = %p, task = %p,\n" |
| "task->data_dir = %d completion_status = 0x%x\n", |
| __func__, |
| request, |
| task, |
| task->data_dir, |
| completion_status); |
| |
| spin_lock(&request->state_lock); |
| request_status = request->status; |
| |
| /* Decode the request status. Note that if the request has been |
| * aborted by a task management function, we don't care |
| * what the status is. |
| */ |
| switch (request_status) { |
| |
| case aborted: |
| /* "aborted" indicates that the request was aborted by a task |
| * management function, since once a task management request is |
| * perfomed by the device, the request only completes because |
| * of the subsequent driver terminate. |
| * |
| * Aborted also means an external thread is explicitly managing |
| * this request, so that we do not complete it up the stack. |
| * |
| * The target is still there (since the TMF was successful). |
| */ |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| response = SAS_TASK_COMPLETE; |
| |
| /* See if the device has been/is being stopped. Note |
| * that we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| if (!idev) |
| status = SAS_DEVICE_UNKNOWN; |
| else |
| status = SAS_ABORTED_TASK; |
| |
| complete_to_host = isci_perform_aborted_io_completion; |
| /* This was an aborted request. */ |
| |
| spin_unlock(&request->state_lock); |
| break; |
| |
| case aborting: |
| /* aborting means that the task management function tried and |
| * failed to abort the request. We need to note the request |
| * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the |
| * target as down. |
| * |
| * Aborting also means an external thread is explicitly managing |
| * this request, so that we do not complete it up the stack. |
| */ |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| response = SAS_TASK_UNDELIVERED; |
| |
| if (!idev) |
| /* The device has been /is being stopped. Note that |
| * we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| status = SAS_DEVICE_UNKNOWN; |
| else |
| status = SAS_PHY_DOWN; |
| |
| complete_to_host = isci_perform_aborted_io_completion; |
| |
| /* This was an aborted request. */ |
| |
| spin_unlock(&request->state_lock); |
| break; |
| |
| case terminating: |
| |
| /* This was an terminated request. This happens when |
| * the I/O is being terminated because of an action on |
| * the device (reset, tear down, etc.), and the I/O needs |
| * to be completed up the stack. |
| */ |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| response = SAS_TASK_UNDELIVERED; |
| |
| /* See if the device has been/is being stopped. Note |
| * that we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| if (!idev) |
| status = SAS_DEVICE_UNKNOWN; |
| else |
| status = SAS_ABORTED_TASK; |
| |
| complete_to_host = isci_perform_aborted_io_completion; |
| |
| /* This was a terminated request. */ |
| |
| spin_unlock(&request->state_lock); |
| break; |
| |
| case dead: |
| /* This was a terminated request that timed-out during the |
| * termination process. There is no task to complete to |
| * libsas. |
| */ |
| complete_to_host = isci_perform_normal_io_completion; |
| spin_unlock(&request->state_lock); |
| break; |
| |
| default: |
| |
| /* The request is done from an SCU HW perspective. */ |
| request->status = completed; |
| |
| spin_unlock(&request->state_lock); |
| |
| /* This is an active request being completed from the core. */ |
| switch (completion_status) { |
| |
| case SCI_IO_FAILURE_RESPONSE_VALID: |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n", |
| __func__, |
| request, |
| task); |
| |
| if (sas_protocol_ata(task->task_proto)) { |
| isci_process_stp_response(task, &request->stp.rsp); |
| } else if (SAS_PROTOCOL_SSP == task->task_proto) { |
| |
| /* crack the iu response buffer. */ |
| resp_iu = &request->ssp.rsp; |
| isci_request_process_response_iu(task, resp_iu, |
| &ihost->pdev->dev); |
| |
| } else if (SAS_PROTOCOL_SMP == task->task_proto) { |
| |
| dev_err(&ihost->pdev->dev, |
| "%s: SCI_IO_FAILURE_RESPONSE_VALID: " |
| "SAS_PROTOCOL_SMP protocol\n", |
| __func__); |
| |
| } else |
| dev_err(&ihost->pdev->dev, |
| "%s: unknown protocol\n", __func__); |
| |
| /* use the task status set in the task struct by the |
| * isci_request_process_response_iu call. |
| */ |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| response = task->task_status.resp; |
| status = task->task_status.stat; |
| break; |
| |
| case SCI_IO_SUCCESS: |
| case SCI_IO_SUCCESS_IO_DONE_EARLY: |
| |
| response = SAS_TASK_COMPLETE; |
| status = SAM_STAT_GOOD; |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| |
| if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) { |
| |
| /* This was an SSP / STP / SATA transfer. |
| * There is a possibility that less data than |
| * the maximum was transferred. |
| */ |
| u32 transferred_length = sci_req_tx_bytes(request); |
| |
| task->task_status.residual |
| = task->total_xfer_len - transferred_length; |
| |
| /* If there were residual bytes, call this an |
| * underrun. |
| */ |
| if (task->task_status.residual != 0) |
| status = SAS_DATA_UNDERRUN; |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n", |
| __func__, |
| status); |
| |
| } else |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCI_IO_SUCCESS\n", |
| __func__); |
| |
| break; |
| |
| case SCI_IO_FAILURE_TERMINATED: |
| dev_dbg(&ihost->pdev->dev, |
| "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n", |
| __func__, |
| request, |
| task); |
| |
| /* The request was terminated explicitly. No handling |
| * is needed in the SCSI error handler path. |
| */ |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| response = SAS_TASK_UNDELIVERED; |
| |
| /* See if the device has been/is being stopped. Note |
| * that we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| if (!idev) |
| status = SAS_DEVICE_UNKNOWN; |
| else |
| status = SAS_ABORTED_TASK; |
| |
| complete_to_host = isci_perform_normal_io_completion; |
| break; |
| |
| case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR: |
| |
| isci_request_handle_controller_specific_errors( |
| idev, request, task, &response, &status, |
| &complete_to_host); |
| |
| break; |
| |
| case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED: |
| /* This is a special case, in that the I/O completion |
| * is telling us that the device needs a reset. |
| * In order for the device reset condition to be |
| * noticed, the I/O has to be handled in the error |
| * handler. Set the reset flag and cause the |
| * SCSI error thread to be scheduled. |
| */ |
| spin_lock_irqsave(&task->task_state_lock, task_flags); |
| task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; |
| spin_unlock_irqrestore(&task->task_state_lock, task_flags); |
| |
| /* Fail the I/O. */ |
| response = SAS_TASK_UNDELIVERED; |
| status = SAM_STAT_TASK_ABORTED; |
| |
| complete_to_host = isci_perform_error_io_completion; |
| clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| break; |
| |
| case SCI_FAILURE_RETRY_REQUIRED: |
| |
| /* Fail the I/O so it can be retried. */ |
| response = SAS_TASK_UNDELIVERED; |
| if (!idev) |
| status = SAS_DEVICE_UNKNOWN; |
| else |
| status = SAS_ABORTED_TASK; |
| |
| complete_to_host = isci_perform_normal_io_completion; |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| break; |
| |
| |
| default: |
| /* Catch any otherwise unhandled error codes here. */ |
| dev_dbg(&ihost->pdev->dev, |
| "%s: invalid completion code: 0x%x - " |
| "isci_request = %p\n", |
| __func__, completion_status, request); |
| |
| response = SAS_TASK_UNDELIVERED; |
| |
| /* See if the device has been/is being stopped. Note |
| * that we ignore the quiesce state, since we are |
| * concerned about the actual device state. |
| */ |
| if (!idev) |
| status = SAS_DEVICE_UNKNOWN; |
| else |
| status = SAS_ABORTED_TASK; |
| |
| if (SAS_PROTOCOL_SMP == task->task_proto) { |
| set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| complete_to_host = isci_perform_normal_io_completion; |
| } else { |
| clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); |
| complete_to_host = isci_perform_error_io_completion; |
| } |
| break; |
| } |
| break; |
| } |
| |
| switch (task->task_proto) { |
| case SAS_PROTOCOL_SSP: |
| if (task->data_dir == DMA_NONE) |
| break; |
| if (task->num_scatter == 0) |
| /* 0 indicates a single dma address */ |
| dma_unmap_single(&ihost->pdev->dev, |
| request->zero_scatter_daddr, |
| task->total_xfer_len, task->data_dir); |
| else /* unmap the sgl dma addresses */ |
| dma_unmap_sg(&ihost->pdev->dev, task->scatter, |
| request->num_sg_entries, task->data_dir); |
| break; |
| case SAS_PROTOCOL_SMP: { |
| struct scatterlist *sg = &task->smp_task.smp_req; |
| struct smp_req *smp_req; |
| void *kaddr; |
| |
| dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE); |
| |
| /* need to swab it back in case the command buffer is re-used */ |
| kaddr = kmap_atomic(sg_page(sg), KM_IRQ0); |
| smp_req = kaddr + sg->offset; |
| sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32)); |
| kunmap_atomic(kaddr, KM_IRQ0); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Put the completed request on the correct list */ |
| isci_task_save_for_upper_layer_completion(ihost, request, response, |
| status, complete_to_host |
| ); |
| |
| /* complete the io request to the core. */ |
| sci_controller_complete_io(ihost, request->target_device, request); |
| |
| /* set terminated handle so it cannot be completed or |
| * terminated again, and to cause any calls into abort |
| * task to recognize the already completed case. |
| */ |
| set_bit(IREQ_TERMINATED, &request->flags); |
| } |
| |
| static void sci_request_started_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| struct domain_device *dev = ireq->target_device->domain_dev; |
| enum sci_base_request_states state; |
| struct sas_task *task; |
| |
| /* XXX as hch said always creating an internal sas_task for tmf |
| * requests would simplify the driver |
| */ |
| task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq); |
| |
| /* all unaccelerated request types (non ssp or ncq) handled with |
| * substates |
| */ |
| if (!task && dev->dev_type == SAS_END_DEV) { |
| state = SCI_REQ_TASK_WAIT_TC_COMP; |
| } else if (!task && |
| (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high || |
| isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) { |
| state = SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED; |
| } else if (task && task->task_proto == SAS_PROTOCOL_SMP) { |
| state = SCI_REQ_SMP_WAIT_RESP; |
| } else if (task && sas_protocol_ata(task->task_proto) && |
| !task->ata_task.use_ncq) { |
| if (dev->sata_dev.command_set == ATAPI_COMMAND_SET && |
| task->ata_task.fis.command == ATA_CMD_PACKET) { |
| state = SCI_REQ_ATAPI_WAIT_H2D; |
| } else if (task->data_dir == DMA_NONE) { |
| state = SCI_REQ_STP_NON_DATA_WAIT_H2D; |
| } else if (task->ata_task.dma_xfer) { |
| state = SCI_REQ_STP_UDMA_WAIT_TC_COMP; |
| } else /* PIO */ { |
| state = SCI_REQ_STP_PIO_WAIT_H2D; |
| } |
| } else { |
| /* SSP or NCQ are fully accelerated, no substates */ |
| return; |
| } |
| sci_change_state(sm, state); |
| } |
| |
| static void sci_request_completed_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| struct isci_host *ihost = ireq->owning_controller; |
| |
| /* Tell the SCI_USER that the IO request is complete */ |
| if (!test_bit(IREQ_TMF, &ireq->flags)) |
| isci_request_io_request_complete(ihost, ireq, |
| ireq->sci_status); |
| else |
| isci_task_request_complete(ihost, ireq, ireq->sci_status); |
| } |
| |
| static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| |
| /* Setting the abort bit in the Task Context is required by the silicon. */ |
| ireq->tc->abort = 1; |
| } |
| |
| static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| |
| ireq->target_device->working_request = ireq; |
| } |
| |
| static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| |
| ireq->target_device->working_request = ireq; |
| } |
| |
| static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| |
| ireq->target_device->working_request = ireq; |
| } |
| |
| static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); |
| struct scu_task_context *tc = ireq->tc; |
| struct host_to_dev_fis *h2d_fis; |
| enum sci_status status; |
| |
| /* Clear the SRST bit */ |
| h2d_fis = &ireq->stp.cmd; |
| h2d_fis->control = 0; |
| |
| /* Clear the TC control bit */ |
| tc->control_frame = 0; |
| |
| status = sci_controller_continue_io(ireq); |
| WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n"); |
| } |
| |
| static const struct sci_base_state sci_request_state_table[] = { |
| [SCI_REQ_INIT] = { }, |
| [SCI_REQ_CONSTRUCTED] = { }, |
| [SCI_REQ_STARTED] = { |
| .enter_state = sci_request_started_state_enter, |
| }, |
| [SCI_REQ_STP_NON_DATA_WAIT_H2D] = { |
| .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter, |
| }, |
| [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { }, |
| [SCI_REQ_STP_PIO_WAIT_H2D] = { |
| .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter, |
| }, |
| [SCI_REQ_STP_PIO_WAIT_FRAME] = { }, |
| [SCI_REQ_STP_PIO_DATA_IN] = { }, |
| [SCI_REQ_STP_PIO_DATA_OUT] = { }, |
| [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { }, |
| [SCI_REQ_STP_UDMA_WAIT_D2H] = { }, |
| [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = { |
| .enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter, |
| }, |
| [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = { |
| .enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter, |
| }, |
| [SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { }, |
| [SCI_REQ_TASK_WAIT_TC_COMP] = { }, |
| [SCI_REQ_TASK_WAIT_TC_RESP] = { }, |
| [SCI_REQ_SMP_WAIT_RESP] = { }, |
| [SCI_REQ_SMP_WAIT_TC_COMP] = { }, |
| [SCI_REQ_ATAPI_WAIT_H2D] = { }, |
| [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { }, |
| [SCI_REQ_ATAPI_WAIT_D2H] = { }, |
| [SCI_REQ_ATAPI_WAIT_TC_COMP] = { }, |
| [SCI_REQ_COMPLETED] = { |
| .enter_state = sci_request_completed_state_enter, |
| }, |
| [SCI_REQ_ABORTING] = { |
| .enter_state = sci_request_aborting_state_enter, |
| }, |
| [SCI_REQ_FINAL] = { }, |
| }; |
| |
| static void |
| sci_general_request_construct(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| struct isci_request *ireq) |
| { |
| sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT); |
| |
| ireq->target_device = idev; |
| ireq->protocol = SCIC_NO_PROTOCOL; |
| ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX; |
| |
| ireq->sci_status = SCI_SUCCESS; |
| ireq->scu_status = 0; |
| ireq->post_context = 0xFFFFFFFF; |
| } |
| |
| static enum sci_status |
| sci_io_request_construct(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| struct isci_request *ireq) |
| { |
| struct domain_device *dev = idev->domain_dev; |
| enum sci_status status = SCI_SUCCESS; |
| |
| /* Build the common part of the request */ |
| sci_general_request_construct(ihost, idev, ireq); |
| |
| if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) |
| return SCI_FAILURE_INVALID_REMOTE_DEVICE; |
| |
| if (dev->dev_type == SAS_END_DEV) |
| /* pass */; |
| else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) |
| memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd)); |
| else if (dev_is_expander(dev)) |
| /* pass */; |
| else |
| return SCI_FAILURE_UNSUPPORTED_PROTOCOL; |
| |
| memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab)); |
| |
| return status; |
| } |
| |
| enum sci_status sci_task_request_construct(struct isci_host *ihost, |
| struct isci_remote_device *idev, |
| u16 io_tag, struct isci_request *ireq) |
| { |
| struct domain_device *dev = idev->domain_dev; |
| enum sci_status status = SCI_SUCCESS; |
| |
| /* Build the common part of the request */ |
| sci_general_request_construct(ihost, idev, ireq); |
| |
| if (dev->dev_type == SAS_END_DEV || |
| dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) { |
| set_bit(IREQ_TMF, &ireq->flags); |
| memset(ireq->tc, 0, sizeof(struct scu_task_context)); |
| } else |
| status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; |
| |
| return status; |
| } |
| |
| static enum sci_status isci_request_ssp_request_construct( |
| struct isci_request *request) |
| { |
| enum sci_status status; |
| |
| dev_dbg(&request->isci_host->pdev->dev, |
| "%s: request = %p\n", |
| __func__, |
| request); |
| status = sci_io_request_construct_basic_ssp(request); |
| return status; |
| } |
| |
| static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq) |
| { |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct host_to_dev_fis *fis = &ireq->stp.cmd; |
| struct ata_queued_cmd *qc = task->uldd_task; |
| enum sci_status status; |
| |
| dev_dbg(&ireq->isci_host->pdev->dev, |
| "%s: ireq = %p\n", |
| __func__, |
| ireq); |
| |
| memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); |
| if (!task->ata_task.device_control_reg_update) |
| fis->flags |= 0x80; |
| fis->flags &= 0xF0; |
| |
| status = sci_io_request_construct_basic_sata(ireq); |
| |
| if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE || |
| qc->tf.command == ATA_CMD_FPDMA_READ)) { |
| fis->sector_count = qc->tag << 3; |
| ireq->tc->type.stp.ncq_tag = qc->tag; |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status |
| sci_io_request_construct_smp(struct device *dev, |
| struct isci_request *ireq, |
| struct sas_task *task) |
| { |
| struct scatterlist *sg = &task->smp_task.smp_req; |
| struct isci_remote_device *idev; |
| struct scu_task_context *task_context; |
| struct isci_port *iport; |
| struct smp_req *smp_req; |
| void *kaddr; |
| u8 req_len; |
| u32 cmd; |
| |
| kaddr = kmap_atomic(sg_page(sg), KM_IRQ0); |
| smp_req = kaddr + sg->offset; |
| /* |
| * Look at the SMP requests' header fields; for certain SAS 1.x SMP |
| * functions under SAS 2.0, a zero request length really indicates |
| * a non-zero default length. |
| */ |
| if (smp_req->req_len == 0) { |
| switch (smp_req->func) { |
| case SMP_DISCOVER: |
| case SMP_REPORT_PHY_ERR_LOG: |
| case SMP_REPORT_PHY_SATA: |
| case SMP_REPORT_ROUTE_INFO: |
| smp_req->req_len = 2; |
| break; |
| case SMP_CONF_ROUTE_INFO: |
| case SMP_PHY_CONTROL: |
| case SMP_PHY_TEST_FUNCTION: |
| smp_req->req_len = 9; |
| break; |
| /* Default - zero is a valid default for 2.0. */ |
| } |
| } |
| req_len = smp_req->req_len; |
| sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32)); |
| cmd = *(u32 *) smp_req; |
| kunmap_atomic(kaddr, KM_IRQ0); |
| |
| if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE)) |
| return SCI_FAILURE; |
| |
| ireq->protocol = SCIC_SMP_PROTOCOL; |
| |
| /* byte swap the smp request. */ |
| |
| task_context = ireq->tc; |
| |
| idev = ireq->target_device; |
| iport = idev->owning_port; |
| |
| /* |
| * Fill in the TC with the its required data |
| * 00h |
| */ |
| task_context->priority = 0; |
| task_context->initiator_request = 1; |
| task_context->connection_rate = idev->connection_rate; |
| task_context->protocol_engine_index = ISCI_PEG; |
| task_context->logical_port_index = iport->physical_port_index; |
| task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP; |
| task_context->abort = 0; |
| task_context->valid = SCU_TASK_CONTEXT_VALID; |
| task_context->context_type = SCU_TASK_CONTEXT_TYPE; |
| |
| /* 04h */ |
| task_context->remote_node_index = idev->rnc.remote_node_index; |
| task_context->command_code = 0; |
| task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST; |
| |
| /* 08h */ |
| task_context->link_layer_control = 0; |
| task_context->do_not_dma_ssp_good_response = 1; |
| task_context->strict_ordering = 0; |
| task_context->control_frame = 1; |
| task_context->timeout_enable = 0; |
| task_context->block_guard_enable = 0; |
| |
| /* 0ch */ |
| task_context->address_modifier = 0; |
| |
| /* 10h */ |
| task_context->ssp_command_iu_length = req_len; |
| |
| /* 14h */ |
| task_context->transfer_length_bytes = 0; |
| |
| /* |
| * 18h ~ 30h, protocol specific |
| * since commandIU has been build by framework at this point, we just |
| * copy the frist DWord from command IU to this location. */ |
| memcpy(&task_context->type.smp, &cmd, sizeof(u32)); |
| |
| /* |
| * 40h |
| * "For SMP you could program it to zero. We would prefer that way |
| * so that done code will be consistent." - Venki |
| */ |
| task_context->task_phase = 0; |
| |
| ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | |
| (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | |
| (iport->physical_port_index << |
| SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | |
| ISCI_TAG_TCI(ireq->io_tag)); |
| /* |
| * Copy the physical address for the command buffer to the SCU Task |
| * Context command buffer should not contain command header. |
| */ |
| task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg)); |
| task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32)); |
| |
| /* SMP response comes as UF, so no need to set response IU address. */ |
| task_context->response_iu_upper = 0; |
| task_context->response_iu_lower = 0; |
| |
| sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /* |
| * isci_smp_request_build() - This function builds the smp request. |
| * @ireq: This parameter points to the isci_request allocated in the |
| * request construct function. |
| * |
| * SCI_SUCCESS on successfull completion, or specific failure code. |
| */ |
| static enum sci_status isci_smp_request_build(struct isci_request *ireq) |
| { |
| struct sas_task *task = isci_request_access_task(ireq); |
| struct device *dev = &ireq->isci_host->pdev->dev; |
| enum sci_status status = SCI_FAILURE; |
| |
| status = sci_io_request_construct_smp(dev, ireq, task); |
| if (status != SCI_SUCCESS) |
| dev_dbg(&ireq->isci_host->pdev->dev, |
| "%s: failed with status = %d\n", |
| __func__, |
| status); |
| |
| return status; |
| } |
| |
| /** |
| * isci_io_request_build() - This function builds the io request object. |
| * @ihost: This parameter specifies the ISCI host object |
| * @request: This parameter points to the isci_request object allocated in the |
| * request construct function. |
| * @sci_device: This parameter is the handle for the sci core's remote device |
| * object that is the destination for this request. |
| * |
| * SCI_SUCCESS on successfull completion, or specific failure code. |
| */ |
| static enum sci_status isci_io_request_build(struct isci_host *ihost, |
| struct isci_request *request, |
| struct isci_remote_device *idev) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| struct sas_task *task = isci_request_access_task(request); |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: idev = 0x%p; request = %p, " |
| "num_scatter = %d\n", |
| __func__, |
| idev, |
| request, |
| task->num_scatter); |
| |
| /* map the sgl addresses, if present. |
| * libata does the mapping for sata devices |
| * before we get the request. |
| */ |
| if (task->num_scatter && |
| !sas_protocol_ata(task->task_proto) && |
| !(SAS_PROTOCOL_SMP & task->task_proto)) { |
| |
| request->num_sg_entries = dma_map_sg( |
| &ihost->pdev->dev, |
| task->scatter, |
| task->num_scatter, |
| task->data_dir |
| ); |
| |
| if (request->num_sg_entries == 0) |
| return SCI_FAILURE_INSUFFICIENT_RESOURCES; |
| } |
| |
| status = sci_io_request_construct(ihost, idev, request); |
| |
| if (status != SCI_SUCCESS) { |
| dev_dbg(&ihost->pdev->dev, |
| "%s: failed request construct\n", |
| __func__); |
| return SCI_FAILURE; |
| } |
| |
| switch (task->task_proto) { |
| case SAS_PROTOCOL_SMP: |
| status = isci_smp_request_build(request); |
| break; |
| case SAS_PROTOCOL_SSP: |
| status = isci_request_ssp_request_construct(request); |
| break; |
| case SAS_PROTOCOL_SATA: |
| case SAS_PROTOCOL_STP: |
| case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: |
| status = isci_request_stp_request_construct(request); |
| break; |
| default: |
| dev_dbg(&ihost->pdev->dev, |
| "%s: unknown protocol\n", __func__); |
| return SCI_FAILURE; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag) |
| { |
| struct isci_request *ireq; |
| |
| ireq = ihost->reqs[ISCI_TAG_TCI(tag)]; |
| ireq->io_tag = tag; |
| ireq->io_request_completion = NULL; |
| ireq->flags = 0; |
| ireq->num_sg_entries = 0; |
| INIT_LIST_HEAD(&ireq->completed_node); |
| INIT_LIST_HEAD(&ireq->dev_node); |
| isci_request_change_state(ireq, allocated); |
| |
| return ireq; |
| } |
| |
| static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost, |
| struct sas_task *task, |
| u16 tag) |
| { |
| struct isci_request *ireq; |
| |
| ireq = isci_request_from_tag(ihost, tag); |
| ireq->ttype_ptr.io_task_ptr = task; |
| clear_bit(IREQ_TMF, &ireq->flags); |
| task->lldd_task = ireq; |
| |
| return ireq; |
| } |
| |
| struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost, |
| struct isci_tmf *isci_tmf, |
| u16 tag) |
| { |
| struct isci_request *ireq; |
| |
| ireq = isci_request_from_tag(ihost, tag); |
| ireq->ttype_ptr.tmf_task_ptr = isci_tmf; |
| set_bit(IREQ_TMF, &ireq->flags); |
| |
| return ireq; |
| } |
| |
| int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev, |
| struct sas_task *task, u16 tag) |
| { |
| enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; |
| struct isci_request *ireq; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* do common allocation and init of request object. */ |
| ireq = isci_io_request_from_tag(ihost, task, tag); |
| |
| status = isci_io_request_build(ihost, ireq, idev); |
| if (status != SCI_SUCCESS) { |
| dev_dbg(&ihost->pdev->dev, |
| "%s: request_construct failed - status = 0x%x\n", |
| __func__, |
| status); |
| return status; |
| } |
| |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| |
| if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) { |
| |
| if (isci_task_is_ncq_recovery(task)) { |
| |
| /* The device is in an NCQ recovery state. Issue the |
| * request on the task side. Note that it will |
| * complete on the I/O request side because the |
| * request was built that way (ie. |
| * ireq->is_task_management_request is false). |
| */ |
| status = sci_controller_start_task(ihost, |
| idev, |
| ireq); |
| } else { |
| status = SCI_FAILURE; |
| } |
| } else { |
| /* send the request, let the core assign the IO TAG. */ |
| status = sci_controller_start_io(ihost, idev, |
| ireq); |
| } |
| |
| if (status != SCI_SUCCESS && |
| status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { |
| dev_dbg(&ihost->pdev->dev, |
| "%s: failed request start (0x%x)\n", |
| __func__, status); |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| return status; |
| } |
| |
| /* Either I/O started OK, or the core has signaled that |
| * the device needs a target reset. |
| * |
| * In either case, hold onto the I/O for later. |
| * |
| * Update it's status and add it to the list in the |
| * remote device object. |
| */ |
| list_add(&ireq->dev_node, &idev->reqs_in_process); |
| |
| if (status == SCI_SUCCESS) { |
| isci_request_change_state(ireq, started); |
| } else { |
| /* The request did not really start in the |
| * hardware, so clear the request handle |
| * here so no terminations will be done. |
| */ |
| set_bit(IREQ_TERMINATED, &ireq->flags); |
| isci_request_change_state(ireq, completed); |
| } |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| |
| if (status == |
| SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { |
| /* Signal libsas that we need the SCSI error |
| * handler thread to work on this I/O and that |
| * we want a device reset. |
| */ |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| |
| /* Cause this task to be scheduled in the SCSI error |
| * handler thread. |
| */ |
| isci_execpath_callback(ihost, task, |
| sas_task_abort); |
| |
| /* Change the status, since we are holding |
| * the I/O until it is managed by the SCSI |
| * error handler. |
| */ |
| status = SCI_SUCCESS; |
| } |
| |
| return ret; |
| } |