| /* |
| * Copyright 1993-2003 NVIDIA, Corporation |
| * Copyright 2007-2009 Stuart Bennett |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF |
| * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "drmP.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_hw.h" |
| |
| /****************************************************************************\ |
| * * |
| * The video arbitration routines calculate some "magic" numbers. Fixes * |
| * the snow seen when accessing the framebuffer without it. * |
| * It just works (I hope). * |
| * * |
| \****************************************************************************/ |
| |
| struct nv_fifo_info { |
| int lwm; |
| int burst; |
| }; |
| |
| struct nv_sim_state { |
| int pclk_khz; |
| int mclk_khz; |
| int nvclk_khz; |
| int bpp; |
| int mem_page_miss; |
| int mem_latency; |
| int memory_type; |
| int memory_width; |
| int two_heads; |
| }; |
| |
| static void |
| nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) |
| { |
| int pagemiss, cas, width, bpp; |
| int nvclks, mclks, pclks, crtpagemiss; |
| int found, mclk_extra, mclk_loop, cbs, m1, p1; |
| int mclk_freq, pclk_freq, nvclk_freq; |
| int us_m, us_n, us_p, crtc_drain_rate; |
| int cpm_us, us_crt, clwm; |
| |
| pclk_freq = arb->pclk_khz; |
| mclk_freq = arb->mclk_khz; |
| nvclk_freq = arb->nvclk_khz; |
| pagemiss = arb->mem_page_miss; |
| cas = arb->mem_latency; |
| width = arb->memory_width >> 6; |
| bpp = arb->bpp; |
| cbs = 128; |
| |
| pclks = 2; |
| nvclks = 10; |
| mclks = 13 + cas; |
| mclk_extra = 3; |
| found = 0; |
| |
| while (!found) { |
| found = 1; |
| |
| mclk_loop = mclks + mclk_extra; |
| us_m = mclk_loop * 1000 * 1000 / mclk_freq; |
| us_n = nvclks * 1000 * 1000 / nvclk_freq; |
| us_p = nvclks * 1000 * 1000 / pclk_freq; |
| |
| crtc_drain_rate = pclk_freq * bpp / 8; |
| crtpagemiss = 2; |
| crtpagemiss += 1; |
| cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; |
| us_crt = cpm_us + us_m + us_n + us_p; |
| clwm = us_crt * crtc_drain_rate / (1000 * 1000); |
| clwm++; |
| |
| m1 = clwm + cbs - 512; |
| p1 = m1 * pclk_freq / mclk_freq; |
| p1 = p1 * bpp / 8; |
| if ((p1 < m1 && m1 > 0) || clwm > 519) { |
| found = !mclk_extra; |
| mclk_extra--; |
| } |
| if (clwm < 384) |
| clwm = 384; |
| |
| fifo->lwm = clwm; |
| fifo->burst = cbs; |
| } |
| } |
| |
| static void |
| nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) |
| { |
| int fill_rate, drain_rate; |
| int pclks, nvclks, mclks, xclks; |
| int pclk_freq, nvclk_freq, mclk_freq; |
| int fill_lat, extra_lat; |
| int max_burst_o, max_burst_l; |
| int fifo_len, min_lwm, max_lwm; |
| const int burst_lat = 80; /* Maximum allowable latency due |
| * to the CRTC FIFO burst. (ns) */ |
| |
| pclk_freq = arb->pclk_khz; |
| nvclk_freq = arb->nvclk_khz; |
| mclk_freq = arb->mclk_khz; |
| |
| fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */ |
| drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */ |
| |
| fifo_len = arb->two_heads ? 1536 : 1024; /* B */ |
| |
| /* Fixed FIFO refill latency. */ |
| |
| pclks = 4; /* lwm detect. */ |
| |
| nvclks = 3 /* lwm -> sync. */ |
| + 2 /* fbi bus cycles (1 req + 1 busy) */ |
| + 1 /* 2 edge sync. may be very close to edge so |
| * just put one. */ |
| + 1 /* fbi_d_rdv_n */ |
| + 1 /* Fbi_d_rdata */ |
| + 1; /* crtfifo load */ |
| |
| mclks = 1 /* 2 edge sync. may be very close to edge so |
| * just put one. */ |
| + 1 /* arb_hp_req */ |
| + 5 /* tiling pipeline */ |
| + 2 /* latency fifo */ |
| + 2 /* memory request to fbio block */ |
| + 7; /* data returned from fbio block */ |
| |
| /* Need to accumulate 256 bits for read */ |
| mclks += (arb->memory_type == 0 ? 2 : 1) |
| * arb->memory_width / 32; |
| |
| fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */ |
| + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */ |
| + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */ |
| |
| /* Conditional FIFO refill latency. */ |
| |
| xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to |
| * the overlay. */ |
| + 2 * arb->mem_page_miss /* Extra pagemiss latency. */ |
| + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */ |
| |
| extra_lat = xclks * 1000 * 1000 / mclk_freq; |
| |
| if (arb->two_heads) |
| /* Account for another CRTC. */ |
| extra_lat += fill_lat + extra_lat + burst_lat; |
| |
| /* FIFO burst */ |
| |
| /* Max burst not leading to overflows. */ |
| max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000)) |
| * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000); |
| fifo->burst = min(max_burst_o, 1024); |
| |
| /* Max burst value with an acceptable latency. */ |
| max_burst_l = burst_lat * fill_rate / (1000 * 1000); |
| fifo->burst = min(max_burst_l, fifo->burst); |
| |
| fifo->burst = rounddown_pow_of_two(fifo->burst); |
| |
| /* FIFO low watermark */ |
| |
| min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1; |
| max_lwm = fifo_len - fifo->burst |
| + fill_lat * drain_rate / (1000 * 1000) |
| + fifo->burst * drain_rate / fill_rate; |
| |
| fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */ |
| } |
| |
| static void |
| nv04_update_arb(struct drm_device *dev, int VClk, int bpp, |
| int *burst, int *lwm) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv_fifo_info fifo_data; |
| struct nv_sim_state sim_data; |
| int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY); |
| int NVClk = nouveau_hw_get_clock(dev, PLL_CORE); |
| uint32_t cfg1 = nvReadFB(dev, NV04_PFB_CFG1); |
| |
| sim_data.pclk_khz = VClk; |
| sim_data.mclk_khz = MClk; |
| sim_data.nvclk_khz = NVClk; |
| sim_data.bpp = bpp; |
| sim_data.two_heads = nv_two_heads(dev); |
| if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ || |
| (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) { |
| uint32_t type; |
| |
| pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type); |
| |
| sim_data.memory_type = (type >> 12) & 1; |
| sim_data.memory_width = 64; |
| sim_data.mem_latency = 3; |
| sim_data.mem_page_miss = 10; |
| } else { |
| sim_data.memory_type = nvReadFB(dev, NV04_PFB_CFG0) & 0x1; |
| sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64; |
| sim_data.mem_latency = cfg1 & 0xf; |
| sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1); |
| } |
| |
| if (dev_priv->card_type == NV_04) |
| nv04_calc_arb(&fifo_data, &sim_data); |
| else |
| nv10_calc_arb(&fifo_data, &sim_data); |
| |
| *burst = ilog2(fifo_data.burst >> 4); |
| *lwm = fifo_data.lwm >> 3; |
| } |
| |
| static void |
| nv20_update_arb(int *burst, int *lwm) |
| { |
| unsigned int fifo_size, burst_size, graphics_lwm; |
| |
| fifo_size = 2048; |
| burst_size = 512; |
| graphics_lwm = fifo_size - burst_size; |
| |
| *burst = ilog2(burst_size >> 5); |
| *lwm = graphics_lwm >> 3; |
| } |
| |
| void |
| nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->card_type < NV_20) |
| nv04_update_arb(dev, vclk, bpp, burst, lwm); |
| else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ || |
| (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) { |
| *burst = 128; |
| *lwm = 0x0480; |
| } else |
| nv20_update_arb(burst, lwm); |
| } |
| |
| static int |
| getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk, |
| struct nouveau_pll_vals *bestpv) |
| { |
| /* Find M, N and P for a single stage PLL |
| * |
| * Note that some bioses (NV3x) have lookup tables of precomputed MNP |
| * values, but we're too lazy to use those atm |
| * |
| * "clk" parameter in kHz |
| * returns calculated clock |
| */ |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int cv = dev_priv->vbios.chip_version; |
| int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq; |
| int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m; |
| int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n; |
| int minU = pll_lim->vco1.min_inputfreq; |
| int maxU = pll_lim->vco1.max_inputfreq; |
| int minP = pll_lim->max_p ? pll_lim->min_p : 0; |
| int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p; |
| int crystal = pll_lim->refclk; |
| int M, N, thisP, P; |
| int clkP, calcclk; |
| int delta, bestdelta = INT_MAX; |
| int bestclk = 0; |
| |
| /* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */ |
| /* possibly correlated with introduction of 27MHz crystal */ |
| if (dev_priv->card_type < NV_50) { |
| if (cv < 0x17 || cv == 0x1a || cv == 0x20) { |
| if (clk > 250000) |
| maxM = 6; |
| if (clk > 340000) |
| maxM = 2; |
| } else if (cv < 0x40) { |
| if (clk > 150000) |
| maxM = 6; |
| if (clk > 200000) |
| maxM = 4; |
| if (clk > 340000) |
| maxM = 2; |
| } |
| } |
| |
| P = pll_lim->max_p ? maxP : (1 << maxP); |
| if ((clk * P) < minvco) { |
| minvco = clk * maxP; |
| maxvco = minvco * 2; |
| } |
| |
| if (clk + clk/200 > maxvco) /* +0.5% */ |
| maxvco = clk + clk/200; |
| |
| /* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */ |
| for (thisP = minP; thisP <= maxP; thisP++) { |
| P = pll_lim->max_p ? thisP : (1 << thisP); |
| clkP = clk * P; |
| |
| if (clkP < minvco) |
| continue; |
| if (clkP > maxvco) |
| return bestclk; |
| |
| for (M = minM; M <= maxM; M++) { |
| if (crystal/M < minU) |
| return bestclk; |
| if (crystal/M > maxU) |
| continue; |
| |
| /* add crystal/2 to round better */ |
| N = (clkP * M + crystal/2) / crystal; |
| |
| if (N < minN) |
| continue; |
| if (N > maxN) |
| break; |
| |
| /* more rounding additions */ |
| calcclk = ((N * crystal + P/2) / P + M/2) / M; |
| delta = abs(calcclk - clk); |
| /* we do an exhaustive search rather than terminating |
| * on an optimality condition... |
| */ |
| if (delta < bestdelta) { |
| bestdelta = delta; |
| bestclk = calcclk; |
| bestpv->N1 = N; |
| bestpv->M1 = M; |
| bestpv->log2P = thisP; |
| if (delta == 0) /* except this one */ |
| return bestclk; |
| } |
| } |
| } |
| |
| return bestclk; |
| } |
| |
| static int |
| getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk, |
| struct nouveau_pll_vals *bestpv) |
| { |
| /* Find M, N and P for a two stage PLL |
| * |
| * Note that some bioses (NV30+) have lookup tables of precomputed MNP |
| * values, but we're too lazy to use those atm |
| * |
| * "clk" parameter in kHz |
| * returns calculated clock |
| */ |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int chip_version = dev_priv->vbios.chip_version; |
| int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq; |
| int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq; |
| int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq; |
| int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq; |
| int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m; |
| int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n; |
| int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m; |
| int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n; |
| int maxlog2P = pll_lim->max_usable_log2p; |
| int crystal = pll_lim->refclk; |
| bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2); |
| int M1, N1, M2, N2, log2P; |
| int clkP, calcclk1, calcclk2, calcclkout; |
| int delta, bestdelta = INT_MAX; |
| int bestclk = 0; |
| |
| int vco2 = (maxvco2 - maxvco2/200) / 2; |
| for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++) |
| ; |
| clkP = clk << log2P; |
| |
| if (maxvco2 < clk + clk/200) /* +0.5% */ |
| maxvco2 = clk + clk/200; |
| |
| for (M1 = minM1; M1 <= maxM1; M1++) { |
| if (crystal/M1 < minU1) |
| return bestclk; |
| if (crystal/M1 > maxU1) |
| continue; |
| |
| for (N1 = minN1; N1 <= maxN1; N1++) { |
| calcclk1 = crystal * N1 / M1; |
| if (calcclk1 < minvco1) |
| continue; |
| if (calcclk1 > maxvco1) |
| break; |
| |
| for (M2 = minM2; M2 <= maxM2; M2++) { |
| if (calcclk1/M2 < minU2) |
| break; |
| if (calcclk1/M2 > maxU2) |
| continue; |
| |
| /* add calcclk1/2 to round better */ |
| N2 = (clkP * M2 + calcclk1/2) / calcclk1; |
| if (N2 < minN2) |
| continue; |
| if (N2 > maxN2) |
| break; |
| |
| if (!fixedgain2) { |
| if (chip_version < 0x60) |
| if (N2/M2 < 4 || N2/M2 > 10) |
| continue; |
| |
| calcclk2 = calcclk1 * N2 / M2; |
| if (calcclk2 < minvco2) |
| break; |
| if (calcclk2 > maxvco2) |
| continue; |
| } else |
| calcclk2 = calcclk1; |
| |
| calcclkout = calcclk2 >> log2P; |
| delta = abs(calcclkout - clk); |
| /* we do an exhaustive search rather than terminating |
| * on an optimality condition... |
| */ |
| if (delta < bestdelta) { |
| bestdelta = delta; |
| bestclk = calcclkout; |
| bestpv->N1 = N1; |
| bestpv->M1 = M1; |
| bestpv->N2 = N2; |
| bestpv->M2 = M2; |
| bestpv->log2P = log2P; |
| if (delta == 0) /* except this one */ |
| return bestclk; |
| } |
| } |
| } |
| } |
| |
| return bestclk; |
| } |
| |
| int |
| nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk, |
| struct nouveau_pll_vals *pv) |
| { |
| int outclk; |
| |
| if (!pll_lim->vco2.maxfreq) |
| outclk = getMNP_single(dev, pll_lim, clk, pv); |
| else |
| outclk = getMNP_double(dev, pll_lim, clk, pv); |
| |
| if (!outclk) |
| NV_ERROR(dev, "Could not find a compatible set of PLL values\n"); |
| |
| return outclk; |
| } |