blob: 607fbdf24b8484c173cc03593ffc71d968b689fe [file] [log] [blame]
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright IBM Corp. 2007
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
#include <linux/hrtimer.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <asm/cputable.h>
#include <asm/uaccess.h>
#include <asm/kvm_ppc.h>
#include <asm/tlbflush.h>
#include <asm/cputhreads.h>
#include "timing.h"
#include "../mm/mmu_decl.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
return !(v->arch.shared->msr & MSR_WE) ||
!!(v->arch.pending_exceptions);
}
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
int nr = kvmppc_get_gpr(vcpu, 11);
int r;
unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
unsigned long r2 = 0;
if (!(vcpu->arch.shared->msr & MSR_SF)) {
/* 32 bit mode */
param1 &= 0xffffffff;
param2 &= 0xffffffff;
param3 &= 0xffffffff;
param4 &= 0xffffffff;
}
switch (nr) {
case HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE:
{
vcpu->arch.magic_page_pa = param1;
vcpu->arch.magic_page_ea = param2;
r2 = KVM_MAGIC_FEAT_SR;
r = HC_EV_SUCCESS;
break;
}
case HC_VENDOR_KVM | KVM_HC_FEATURES:
r = HC_EV_SUCCESS;
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500)
/* XXX Missing magic page on 44x */
r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
/* Second return value is in r4 */
break;
default:
r = HC_EV_UNIMPLEMENTED;
break;
}
kvmppc_set_gpr(vcpu, 4, r2);
return r;
}
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
int r = false;
/* We have to know what CPU to virtualize */
if (!vcpu->arch.pvr)
goto out;
/* PAPR only works with book3s_64 */
if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
goto out;
#ifdef CONFIG_KVM_BOOK3S_64_HV
/* HV KVM can only do PAPR mode for now */
if (!vcpu->arch.papr_enabled)
goto out;
#endif
r = true;
out:
vcpu->arch.sane = r;
return r ? 0 : -EINVAL;
}
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
enum emulation_result er;
int r;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
/* Future optimization: only reload non-volatiles if they were
* actually modified. */
r = RESUME_GUEST_NV;
break;
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
/* We must reload nonvolatiles because "update" load/store
* instructions modify register state. */
/* Future optimization: only reload non-volatiles if they were
* actually modified. */
r = RESUME_HOST_NV;
break;
case EMULATE_FAIL:
/* XXX Deliver Program interrupt to guest. */
printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__,
kvmppc_get_last_inst(vcpu));
r = RESUME_HOST;
break;
default:
BUG();
}
return r;
}
int kvm_arch_hardware_enable(void *garbage)
{
return 0;
}
void kvm_arch_hardware_disable(void *garbage)
{
}
int kvm_arch_hardware_setup(void)
{
return 0;
}
void kvm_arch_hardware_unsetup(void)
{
}
void kvm_arch_check_processor_compat(void *rtn)
{
*(int *)rtn = kvmppc_core_check_processor_compat();
}
int kvm_arch_init_vm(struct kvm *kvm)
{
return kvmppc_core_init_vm(kvm);
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_arch_vcpu_free(vcpu);
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
kvmppc_core_destroy_vm(kvm);
mutex_unlock(&kvm->lock);
}
void kvm_arch_sync_events(struct kvm *kvm)
{
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
#ifdef CONFIG_BOOKE
case KVM_CAP_PPC_BOOKE_SREGS:
#else
case KVM_CAP_PPC_SEGSTATE:
case KVM_CAP_PPC_PAPR:
#endif
case KVM_CAP_PPC_UNSET_IRQ:
case KVM_CAP_PPC_IRQ_LEVEL:
case KVM_CAP_ENABLE_CAP:
r = 1;
break;
#ifndef CONFIG_KVM_BOOK3S_64_HV
case KVM_CAP_PPC_PAIRED_SINGLES:
case KVM_CAP_PPC_OSI:
case KVM_CAP_PPC_GET_PVINFO:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
#endif
#ifdef CONFIG_KVM_BOOK3S_64_HV
case KVM_CAP_SPAPR_TCE:
r = 1;
break;
case KVM_CAP_PPC_SMT:
r = threads_per_core;
break;
case KVM_CAP_PPC_RMA:
r = 1;
/* PPC970 requires an RMA */
if (cpu_has_feature(CPU_FTR_ARCH_201))
r = 2;
break;
#endif
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
return -EINVAL;
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_memory_slot old,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
return kvmppc_core_prepare_memory_region(kvm, mem);
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
kvmppc_core_commit_memory_region(kvm, mem);
}
void kvm_arch_flush_shadow(struct kvm *kvm)
{
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvm_vcpu *vcpu;
vcpu = kvmppc_core_vcpu_create(kvm, id);
vcpu->arch.wqp = &vcpu->wq;
if (!IS_ERR(vcpu))
kvmppc_create_vcpu_debugfs(vcpu, id);
return vcpu;
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
/* Make sure we're not using the vcpu anymore */
hrtimer_cancel(&vcpu->arch.dec_timer);
tasklet_kill(&vcpu->arch.tasklet);
kvmppc_remove_vcpu_debugfs(vcpu);
kvmppc_core_vcpu_free(vcpu);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_free(vcpu);
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvmppc_core_pending_dec(vcpu);
}
static void kvmppc_decrementer_func(unsigned long data)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
kvmppc_core_queue_dec(vcpu);
if (waitqueue_active(vcpu->arch.wqp)) {
wake_up_interruptible(vcpu->arch.wqp);
vcpu->stat.halt_wakeup++;
}
}
/*
* low level hrtimer wake routine. Because this runs in hardirq context
* we schedule a tasklet to do the real work.
*/
enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
tasklet_schedule(&vcpu->arch.tasklet);
return HRTIMER_NORESTART;
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
tasklet_init(&vcpu->arch.tasklet, kvmppc_decrementer_func, (ulong)vcpu);
vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
vcpu->arch.dec_expires = ~(u64)0;
#ifdef CONFIG_KVM_EXIT_TIMING
mutex_init(&vcpu->arch.exit_timing_lock);
#endif
return 0;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kvmppc_mmu_destroy(vcpu);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_BOOKE
/*
* vrsave (formerly usprg0) isn't used by Linux, but may
* be used by the guest.
*
* On non-booke this is associated with Altivec and
* is handled by code in book3s.c.
*/
mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
kvmppc_core_vcpu_load(vcpu, cpu);
vcpu->cpu = smp_processor_id();
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvmppc_core_vcpu_put(vcpu);
#ifdef CONFIG_BOOKE
vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
vcpu->cpu = -1;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -EINVAL;
}
static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu,
struct kvm_run *run)
{
kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, run->dcr.data);
}
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
struct kvm_run *run)
{
u64 uninitialized_var(gpr);
if (run->mmio.len > sizeof(gpr)) {
printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
return;
}
if (vcpu->arch.mmio_is_bigendian) {
switch (run->mmio.len) {
case 8: gpr = *(u64 *)run->mmio.data; break;
case 4: gpr = *(u32 *)run->mmio.data; break;
case 2: gpr = *(u16 *)run->mmio.data; break;
case 1: gpr = *(u8 *)run->mmio.data; break;
}
} else {
/* Convert BE data from userland back to LE. */
switch (run->mmio.len) {
case 4: gpr = ld_le32((u32 *)run->mmio.data); break;
case 2: gpr = ld_le16((u16 *)run->mmio.data); break;
case 1: gpr = *(u8 *)run->mmio.data; break;
}
}
if (vcpu->arch.mmio_sign_extend) {
switch (run->mmio.len) {
#ifdef CONFIG_PPC64
case 4:
gpr = (s64)(s32)gpr;
break;
#endif
case 2:
gpr = (s64)(s16)gpr;
break;
case 1:
gpr = (s64)(s8)gpr;
break;
}
}
kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
switch (vcpu->arch.io_gpr & KVM_REG_EXT_MASK) {
case KVM_REG_GPR:
kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
break;
case KVM_REG_FPR:
vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
break;
#ifdef CONFIG_PPC_BOOK3S
case KVM_REG_QPR:
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
break;
case KVM_REG_FQPR:
vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
break;
#endif
default:
BUG();
}
}
int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes, int is_bigendian)
{
if (bytes > sizeof(run->mmio.data)) {
printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
run->mmio.len);
}
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
run->mmio.len = bytes;
run->mmio.is_write = 0;
vcpu->arch.io_gpr = rt;
vcpu->arch.mmio_is_bigendian = is_bigendian;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 0;
vcpu->arch.mmio_sign_extend = 0;
return EMULATE_DO_MMIO;
}
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes, int is_bigendian)
{
int r;
r = kvmppc_handle_load(run, vcpu, rt, bytes, is_bigendian);
vcpu->arch.mmio_sign_extend = 1;
return r;
}
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
u64 val, unsigned int bytes, int is_bigendian)
{
void *data = run->mmio.data;
if (bytes > sizeof(run->mmio.data)) {
printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
run->mmio.len);
}
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
run->mmio.len = bytes;
run->mmio.is_write = 1;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 1;
/* Store the value at the lowest bytes in 'data'. */
if (is_bigendian) {
switch (bytes) {
case 8: *(u64 *)data = val; break;
case 4: *(u32 *)data = val; break;
case 2: *(u16 *)data = val; break;
case 1: *(u8 *)data = val; break;
}
} else {
/* Store LE value into 'data'. */
switch (bytes) {
case 4: st_le32(data, val); break;
case 2: st_le16(data, val); break;
case 1: *(u8 *)data = val; break;
}
}
return EMULATE_DO_MMIO;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int r;
sigset_t sigsaved;
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
kvmppc_complete_mmio_load(vcpu, run);
vcpu->mmio_needed = 0;
} else if (vcpu->arch.dcr_needed) {
if (!vcpu->arch.dcr_is_write)
kvmppc_complete_dcr_load(vcpu, run);
vcpu->arch.dcr_needed = 0;
} else if (vcpu->arch.osi_needed) {
u64 *gprs = run->osi.gprs;
int i;
for (i = 0; i < 32; i++)
kvmppc_set_gpr(vcpu, i, gprs[i]);
vcpu->arch.osi_needed = 0;
} else if (vcpu->arch.hcall_needed) {
int i;
kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
for (i = 0; i < 9; ++i)
kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
vcpu->arch.hcall_needed = 0;
}
kvmppc_core_deliver_interrupts(vcpu);
r = kvmppc_vcpu_run(run, vcpu);
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return r;
}
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
if (irq->irq == KVM_INTERRUPT_UNSET) {
kvmppc_core_dequeue_external(vcpu, irq);
return 0;
}
kvmppc_core_queue_external(vcpu, irq);
if (waitqueue_active(vcpu->arch.wqp)) {
wake_up_interruptible(vcpu->arch.wqp);
vcpu->stat.halt_wakeup++;
} else if (vcpu->cpu != -1) {
smp_send_reschedule(vcpu->cpu);
}
return 0;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_PPC_OSI:
r = 0;
vcpu->arch.osi_enabled = true;
break;
case KVM_CAP_PPC_PAPR:
r = 0;
vcpu->arch.papr_enabled = true;
break;
default:
r = -EINVAL;
break;
}
if (!r)
r = kvmppc_sanity_check(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof(irq)))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
goto out;
}
case KVM_ENABLE_CAP:
{
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
u32 inst_lis = 0x3c000000;
u32 inst_ori = 0x60000000;
u32 inst_nop = 0x60000000;
u32 inst_sc = 0x44000002;
u32 inst_imm_mask = 0xffff;
/*
* The hypercall to get into KVM from within guest context is as
* follows:
*
* lis r0, r0, KVM_SC_MAGIC_R0@h
* ori r0, KVM_SC_MAGIC_R0@l
* sc
* nop
*/
pvinfo->hcall[0] = inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask);
pvinfo->hcall[1] = inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask);
pvinfo->hcall[2] = inst_sc;
pvinfo->hcall[3] = inst_nop;
return 0;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_PPC_GET_PVINFO: {
struct kvm_ppc_pvinfo pvinfo;
memset(&pvinfo, 0, sizeof(pvinfo));
r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
r = -EFAULT;
goto out;
}
break;
}
#ifdef CONFIG_KVM_BOOK3S_64_HV
case KVM_CREATE_SPAPR_TCE: {
struct kvm_create_spapr_tce create_tce;
struct kvm *kvm = filp->private_data;
r = -EFAULT;
if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
goto out;
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce);
goto out;
}
case KVM_ALLOCATE_RMA: {
struct kvm *kvm = filp->private_data;
struct kvm_allocate_rma rma;
r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
r = -EFAULT;
break;
}
#endif /* CONFIG_KVM_BOOK3S_64_HV */
default:
r = -ENOTTY;
}
out:
return r;
}
int kvm_arch_init(void *opaque)
{
return 0;
}
void kvm_arch_exit(void)
{
}