| /* |
| * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation |
| * August 2002: added remote node KVA remap - Martin J. Bligh |
| * |
| * Copyright (C) 2002, IBM Corp. |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/bootmem.h> |
| #include <linux/memblock.h> |
| #include <linux/module.h> |
| |
| #include "numa_internal.h" |
| |
| #ifdef CONFIG_DISCONTIGMEM |
| /* |
| * 4) physnode_map - the mapping between a pfn and owning node |
| * physnode_map keeps track of the physical memory layout of a generic |
| * numa node on a 64Mb break (each element of the array will |
| * represent 64Mb of memory and will be marked by the node id. so, |
| * if the first gig is on node 0, and the second gig is on node 1 |
| * physnode_map will contain: |
| * |
| * physnode_map[0-15] = 0; |
| * physnode_map[16-31] = 1; |
| * physnode_map[32- ] = -1; |
| */ |
| s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1}; |
| EXPORT_SYMBOL(physnode_map); |
| |
| void memory_present(int nid, unsigned long start, unsigned long end) |
| { |
| unsigned long pfn; |
| |
| printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", |
| nid, start, end); |
| printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); |
| printk(KERN_DEBUG " "); |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
| physnode_map[pfn / PAGES_PER_SECTION] = nid; |
| printk(KERN_CONT "%lx ", pfn); |
| } |
| printk(KERN_CONT "\n"); |
| } |
| |
| unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long nr_pages = end_pfn - start_pfn; |
| |
| if (!nr_pages) |
| return 0; |
| |
| return (nr_pages + 1) * sizeof(struct page); |
| } |
| #endif |
| |
| extern unsigned long highend_pfn, highstart_pfn; |
| |
| #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) |
| |
| static void *node_remap_start_vaddr[MAX_NUMNODES]; |
| void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); |
| |
| /* |
| * Remap memory allocator |
| */ |
| static unsigned long node_remap_start_pfn[MAX_NUMNODES]; |
| static void *node_remap_end_vaddr[MAX_NUMNODES]; |
| static void *node_remap_alloc_vaddr[MAX_NUMNODES]; |
| |
| /** |
| * alloc_remap - Allocate remapped memory |
| * @nid: NUMA node to allocate memory from |
| * @size: The size of allocation |
| * |
| * Allocate @size bytes from the remap area of NUMA node @nid. The |
| * size of the remap area is predetermined by init_alloc_remap() and |
| * only the callers considered there should call this function. For |
| * more info, please read the comment on top of init_alloc_remap(). |
| * |
| * The caller must be ready to handle allocation failure from this |
| * function and fall back to regular memory allocator in such cases. |
| * |
| * CONTEXT: |
| * Single CPU early boot context. |
| * |
| * RETURNS: |
| * Pointer to the allocated memory on success, %NULL on failure. |
| */ |
| void *alloc_remap(int nid, unsigned long size) |
| { |
| void *allocation = node_remap_alloc_vaddr[nid]; |
| |
| size = ALIGN(size, L1_CACHE_BYTES); |
| |
| if (!allocation || (allocation + size) > node_remap_end_vaddr[nid]) |
| return NULL; |
| |
| node_remap_alloc_vaddr[nid] += size; |
| memset(allocation, 0, size); |
| |
| return allocation; |
| } |
| |
| #ifdef CONFIG_HIBERNATION |
| /** |
| * resume_map_numa_kva - add KVA mapping to the temporary page tables created |
| * during resume from hibernation |
| * @pgd_base - temporary resume page directory |
| */ |
| void resume_map_numa_kva(pgd_t *pgd_base) |
| { |
| int node; |
| |
| for_each_online_node(node) { |
| unsigned long start_va, start_pfn, nr_pages, pfn; |
| |
| start_va = (unsigned long)node_remap_start_vaddr[node]; |
| start_pfn = node_remap_start_pfn[node]; |
| nr_pages = (node_remap_end_vaddr[node] - |
| node_remap_start_vaddr[node]) >> PAGE_SHIFT; |
| |
| printk(KERN_DEBUG "%s: node %d\n", __func__, node); |
| |
| for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) { |
| unsigned long vaddr = start_va + (pfn << PAGE_SHIFT); |
| pgd_t *pgd = pgd_base + pgd_index(vaddr); |
| pud_t *pud = pud_offset(pgd, vaddr); |
| pmd_t *pmd = pmd_offset(pud, vaddr); |
| |
| set_pmd(pmd, pfn_pmd(start_pfn + pfn, |
| PAGE_KERNEL_LARGE_EXEC)); |
| |
| printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n", |
| __func__, vaddr, start_pfn + pfn); |
| } |
| } |
| } |
| #endif |
| |
| /** |
| * init_alloc_remap - Initialize remap allocator for a NUMA node |
| * @nid: NUMA node to initizlie remap allocator for |
| * |
| * NUMA nodes may end up without any lowmem. As allocating pgdat and |
| * memmap on a different node with lowmem is inefficient, a special |
| * remap allocator is implemented which can be used by alloc_remap(). |
| * |
| * For each node, the amount of memory which will be necessary for |
| * pgdat and memmap is calculated and two memory areas of the size are |
| * allocated - one in the node and the other in lowmem; then, the area |
| * in the node is remapped to the lowmem area. |
| * |
| * As pgdat and memmap must be allocated in lowmem anyway, this |
| * doesn't waste lowmem address space; however, the actual lowmem |
| * which gets remapped over is wasted. The amount shouldn't be |
| * problematic on machines this feature will be used. |
| * |
| * Initialization failure isn't fatal. alloc_remap() is used |
| * opportunistically and the callers will fall back to other memory |
| * allocation mechanisms on failure. |
| */ |
| void __init init_alloc_remap(int nid, u64 start, u64 end) |
| { |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long end_pfn = end >> PAGE_SHIFT; |
| unsigned long size, pfn; |
| u64 node_pa, remap_pa; |
| void *remap_va; |
| |
| /* |
| * The acpi/srat node info can show hot-add memroy zones where |
| * memory could be added but not currently present. |
| */ |
| printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", |
| nid, start_pfn, end_pfn); |
| |
| /* calculate the necessary space aligned to large page size */ |
| size = node_memmap_size_bytes(nid, start_pfn, end_pfn); |
| size += ALIGN(sizeof(pg_data_t), PAGE_SIZE); |
| size = ALIGN(size, LARGE_PAGE_BYTES); |
| |
| /* allocate node memory and the lowmem remap area */ |
| node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES); |
| if (node_pa == MEMBLOCK_ERROR) { |
| pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n", |
| size, nid); |
| return; |
| } |
| memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM"); |
| |
| remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT, |
| max_low_pfn << PAGE_SHIFT, |
| size, LARGE_PAGE_BYTES); |
| if (remap_pa == MEMBLOCK_ERROR) { |
| pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n", |
| size, nid); |
| memblock_x86_free_range(node_pa, node_pa + size); |
| return; |
| } |
| memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG"); |
| remap_va = phys_to_virt(remap_pa); |
| |
| /* perform actual remap */ |
| for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE) |
| set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT), |
| (node_pa >> PAGE_SHIFT) + pfn, |
| PAGE_KERNEL_LARGE); |
| |
| /* initialize remap allocator parameters */ |
| node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT; |
| node_remap_start_vaddr[nid] = remap_va; |
| node_remap_end_vaddr[nid] = remap_va + size; |
| node_remap_alloc_vaddr[nid] = remap_va; |
| |
| printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n", |
| nid, node_pa, node_pa + size, remap_va, remap_va + size); |
| } |
| |
| void __init initmem_init(void) |
| { |
| x86_numa_init(); |
| |
| #ifdef CONFIG_HIGHMEM |
| highstart_pfn = highend_pfn = max_pfn; |
| if (max_pfn > max_low_pfn) |
| highstart_pfn = max_low_pfn; |
| printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", |
| pages_to_mb(highend_pfn - highstart_pfn)); |
| num_physpages = highend_pfn; |
| high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; |
| #else |
| num_physpages = max_low_pfn; |
| high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; |
| #endif |
| printk(KERN_NOTICE "%ldMB LOWMEM available.\n", |
| pages_to_mb(max_low_pfn)); |
| printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", |
| max_low_pfn, highstart_pfn); |
| |
| printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", |
| (ulong) pfn_to_kaddr(max_low_pfn)); |
| |
| printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", |
| (ulong) pfn_to_kaddr(highstart_pfn)); |
| |
| setup_bootmem_allocator(); |
| } |