| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Portions Copyright (C) Cisco Systems, Inc. |
| */ |
| #ifndef __ASM_MACH_POWERTV_IOREMAP_H |
| #define __ASM_MACH_POWERTV_IOREMAP_H |
| |
| #include <linux/types.h> |
| #include <linux/log2.h> |
| #include <linux/compiler.h> |
| |
| #include <asm/pgtable-bits.h> |
| #include <asm/addrspace.h> |
| |
| /* We're going to mess with bits, so get sizes */ |
| #define IOR_BPC 8 /* Bits per char */ |
| #define IOR_PHYS_BITS (IOR_BPC * sizeof(phys_addr_t)) |
| #define IOR_DMA_BITS (IOR_BPC * sizeof(dma_addr_t)) |
| |
| /* |
| * Define the granularity of physical/DMA mapping in terms of the number |
| * of bits that defines the offset within a grain. These will be the |
| * least significant bits of the address. The rest of a physical or DMA |
| * address will be used to index into an appropriate table to find the |
| * offset to add to the address to yield the corresponding DMA or physical |
| * address, respectively. |
| */ |
| #define IOR_LSBITS 22 /* Bits in a grain */ |
| |
| /* |
| * Compute the number of most significant address bits after removing those |
| * used for the offset within a grain and then compute the number of table |
| * entries for the conversion. |
| */ |
| #define IOR_PHYS_MSBITS (IOR_PHYS_BITS - IOR_LSBITS) |
| #define IOR_NUM_PHYS_TO_DMA ((phys_addr_t) 1 << IOR_PHYS_MSBITS) |
| |
| #define IOR_DMA_MSBITS (IOR_DMA_BITS - IOR_LSBITS) |
| #define IOR_NUM_DMA_TO_PHYS ((dma_addr_t) 1 << IOR_DMA_MSBITS) |
| |
| /* |
| * Define data structures used as elements in the arrays for the conversion |
| * between physical and DMA addresses. We do some slightly fancy math to |
| * compute the width of the offset element of the conversion tables so |
| * that we can have the smallest conversion tables. Next, round up the |
| * sizes to the next higher power of two, i.e. the offset element will have |
| * 8, 16, 32, 64, etc. bits. This eliminates the need to mask off any |
| * bits. Finally, we compute a shift value that puts the most significant |
| * bits of the offset into the most significant bits of the offset element. |
| * This makes it more efficient on processors without barrel shifters and |
| * easier to see the values if the conversion table is dumped in binary. |
| */ |
| #define _IOR_OFFSET_WIDTH(n) (1 << order_base_2(n)) |
| #define IOR_OFFSET_WIDTH(n) \ |
| (_IOR_OFFSET_WIDTH(n) < 8 ? 8 : _IOR_OFFSET_WIDTH(n)) |
| |
| #define IOR_PHYS_OFFSET_BITS IOR_OFFSET_WIDTH(IOR_PHYS_MSBITS) |
| #define IOR_PHYS_SHIFT (IOR_PHYS_BITS - IOR_PHYS_OFFSET_BITS) |
| |
| #define IOR_DMA_OFFSET_BITS IOR_OFFSET_WIDTH(IOR_DMA_MSBITS) |
| #define IOR_DMA_SHIFT (IOR_DMA_BITS - IOR_DMA_OFFSET_BITS) |
| |
| struct ior_phys_to_dma { |
| dma_addr_t offset:IOR_DMA_OFFSET_BITS __packed |
| __aligned((IOR_DMA_OFFSET_BITS / IOR_BPC)); |
| }; |
| |
| struct ior_dma_to_phys { |
| dma_addr_t offset:IOR_PHYS_OFFSET_BITS __packed |
| __aligned((IOR_PHYS_OFFSET_BITS / IOR_BPC)); |
| }; |
| |
| extern struct ior_phys_to_dma _ior_phys_to_dma[IOR_NUM_PHYS_TO_DMA]; |
| extern struct ior_dma_to_phys _ior_dma_to_phys[IOR_NUM_DMA_TO_PHYS]; |
| |
| static inline dma_addr_t _phys_to_dma_offset_raw(phys_addr_t phys) |
| { |
| return (dma_addr_t)_ior_phys_to_dma[phys >> IOR_LSBITS].offset; |
| } |
| |
| static inline dma_addr_t _dma_to_phys_offset_raw(dma_addr_t dma) |
| { |
| return (dma_addr_t)_ior_dma_to_phys[dma >> IOR_LSBITS].offset; |
| } |
| |
| /* These are not portable and should not be used in drivers. Drivers should |
| * be using ioremap() and friends to map physical addresses to virtual |
| * addresses and dma_map*() and friends to map virtual addresses into DMA |
| * addresses and back. |
| */ |
| static inline dma_addr_t phys_to_dma(phys_addr_t phys) |
| { |
| return phys + (_phys_to_dma_offset_raw(phys) << IOR_PHYS_SHIFT); |
| } |
| |
| static inline phys_addr_t dma_to_phys(dma_addr_t dma) |
| { |
| return dma + (_dma_to_phys_offset_raw(dma) << IOR_DMA_SHIFT); |
| } |
| |
| extern void ioremap_add_map(dma_addr_t phys, phys_addr_t alias, |
| dma_addr_t size); |
| |
| /* |
| * Allow physical addresses to be fixed up to help peripherals located |
| * outside the low 32-bit range -- generic pass-through version. |
| */ |
| static inline phys_t fixup_bigphys_addr(phys_t phys_addr, phys_t size) |
| { |
| return phys_addr; |
| } |
| |
| /* |
| * Handle the special case of addresses the area aliased into the first |
| * 512 MiB of the processor's physical address space. These turn into either |
| * kseg0 or kseg1 addresses, depending on flags. |
| */ |
| static inline void __iomem *plat_ioremap(phys_t start, unsigned long size, |
| unsigned long flags) |
| { |
| phys_addr_t start_offset; |
| void __iomem *result = NULL; |
| |
| /* Start by checking to see whether this is an aliased address */ |
| start_offset = _dma_to_phys_offset_raw(start); |
| |
| /* |
| * If: |
| * o the memory is aliased into the first 512 MiB, and |
| * o the start and end are in the same RAM bank, and |
| * o we don't have a zero size or wrap around, and |
| * o we are supposed to create an uncached mapping, |
| * handle this is a kseg0 or kseg1 address |
| */ |
| if (start_offset != 0) { |
| phys_addr_t last; |
| dma_addr_t dma_to_phys_offset; |
| |
| last = start + size - 1; |
| dma_to_phys_offset = |
| _dma_to_phys_offset_raw(last) << IOR_DMA_SHIFT; |
| |
| if (dma_to_phys_offset == start_offset && |
| size != 0 && start <= last) { |
| phys_t adjusted_start; |
| adjusted_start = start + start_offset; |
| if (flags == _CACHE_UNCACHED) |
| result = (void __iomem *) (unsigned long) |
| CKSEG1ADDR(adjusted_start); |
| else |
| result = (void __iomem *) (unsigned long) |
| CKSEG0ADDR(adjusted_start); |
| } |
| } |
| |
| return result; |
| } |
| |
| static inline int plat_iounmap(const volatile void __iomem *addr) |
| { |
| return 0; |
| } |
| #endif /* __ASM_MACH_POWERTV_IOREMAP_H */ |