blob: 89ad1b7dab8fdd69a60822b80585cef29814af44 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <net/mac80211.h>
#include <defs.h>
#include "pub.h"
#include "phy/phy_hal.h"
#include "main.h"
#include "stf.h"
#include "channel.h"
/* QDB() macro takes a dB value and converts to a quarter dB value */
#define QDB(n) ((n) * BRCMS_TXPWR_DB_FACTOR)
#define LOCALE_CHAN_01_11 (1<<0)
#define LOCALE_CHAN_12_13 (1<<1)
#define LOCALE_CHAN_14 (1<<2)
#define LOCALE_SET_5G_LOW_JP1 (1<<3) /* 34-48, step 2 */
#define LOCALE_SET_5G_LOW_JP2 (1<<4) /* 34-46, step 4 */
#define LOCALE_SET_5G_LOW1 (1<<5) /* 36-48, step 4 */
#define LOCALE_SET_5G_LOW2 (1<<6) /* 52 */
#define LOCALE_SET_5G_LOW3 (1<<7) /* 56-64, step 4 */
#define LOCALE_SET_5G_MID1 (1<<8) /* 100-116, step 4 */
#define LOCALE_SET_5G_MID2 (1<<9) /* 120-124, step 4 */
#define LOCALE_SET_5G_MID3 (1<<10) /* 128 */
#define LOCALE_SET_5G_HIGH1 (1<<11) /* 132-140, step 4 */
#define LOCALE_SET_5G_HIGH2 (1<<12) /* 149-161, step 4 */
#define LOCALE_SET_5G_HIGH3 (1<<13) /* 165 */
#define LOCALE_CHAN_52_140_ALL (1<<14)
#define LOCALE_SET_5G_HIGH4 (1<<15) /* 184-216 */
#define LOCALE_CHAN_36_64 (LOCALE_SET_5G_LOW1 | \
LOCALE_SET_5G_LOW2 | \
LOCALE_SET_5G_LOW3)
#define LOCALE_CHAN_52_64 (LOCALE_SET_5G_LOW2 | LOCALE_SET_5G_LOW3)
#define LOCALE_CHAN_100_124 (LOCALE_SET_5G_MID1 | LOCALE_SET_5G_MID2)
#define LOCALE_CHAN_100_140 (LOCALE_SET_5G_MID1 | LOCALE_SET_5G_MID2 | \
LOCALE_SET_5G_MID3 | LOCALE_SET_5G_HIGH1)
#define LOCALE_CHAN_149_165 (LOCALE_SET_5G_HIGH2 | LOCALE_SET_5G_HIGH3)
#define LOCALE_CHAN_184_216 LOCALE_SET_5G_HIGH4
#define LOCALE_CHAN_01_14 (LOCALE_CHAN_01_11 | \
LOCALE_CHAN_12_13 | \
LOCALE_CHAN_14)
#define LOCALE_RADAR_SET_NONE 0
#define LOCALE_RADAR_SET_1 1
#define LOCALE_RESTRICTED_NONE 0
#define LOCALE_RESTRICTED_SET_2G_SHORT 1
#define LOCALE_RESTRICTED_CHAN_165 2
#define LOCALE_CHAN_ALL_5G 3
#define LOCALE_RESTRICTED_JAPAN_LEGACY 4
#define LOCALE_RESTRICTED_11D_2G 5
#define LOCALE_RESTRICTED_11D_5G 6
#define LOCALE_RESTRICTED_LOW_HI 7
#define LOCALE_RESTRICTED_12_13_14 8
#define LOCALE_2G_IDX_i 0
#define LOCALE_5G_IDX_11 0
#define LOCALE_MIMO_IDX_bn 0
#define LOCALE_MIMO_IDX_11n 0
/* max of BAND_5G_PWR_LVLS and 6 for 2.4 GHz */
#define BRCMS_MAXPWR_TBL_SIZE 6
/* max of BAND_5G_PWR_LVLS and 14 for 2.4 GHz */
#define BRCMS_MAXPWR_MIMO_TBL_SIZE 14
/* power level in group of 2.4GHz band channels:
* maxpwr[0] - CCK channels [1]
* maxpwr[1] - CCK channels [2-10]
* maxpwr[2] - CCK channels [11-14]
* maxpwr[3] - OFDM channels [1]
* maxpwr[4] - OFDM channels [2-10]
* maxpwr[5] - OFDM channels [11-14]
*/
/* maxpwr mapping to 5GHz band channels:
* maxpwr[0] - channels [34-48]
* maxpwr[1] - channels [52-60]
* maxpwr[2] - channels [62-64]
* maxpwr[3] - channels [100-140]
* maxpwr[4] - channels [149-165]
*/
#define BAND_5G_PWR_LVLS 5 /* 5 power levels for 5G */
#define LC(id) LOCALE_MIMO_IDX_ ## id
#define LC_2G(id) LOCALE_2G_IDX_ ## id
#define LC_5G(id) LOCALE_5G_IDX_ ## id
#define LOCALES(band2, band5, mimo2, mimo5) \
{LC_2G(band2), LC_5G(band5), LC(mimo2), LC(mimo5)}
/* macro to get 2.4 GHz channel group index for tx power */
#define CHANNEL_POWER_IDX_2G_CCK(c) (((c) < 2) ? 0 : (((c) < 11) ? 1 : 2))
#define CHANNEL_POWER_IDX_2G_OFDM(c) (((c) < 2) ? 3 : (((c) < 11) ? 4 : 5))
/* macro to get 5 GHz channel group index for tx power */
#define CHANNEL_POWER_IDX_5G(c) (((c) < 52) ? 0 : \
(((c) < 62) ? 1 : \
(((c) < 100) ? 2 : \
(((c) < 149) ? 3 : 4))))
#define ISDFS_EU(fl) (((fl) & BRCMS_DFS_EU) == BRCMS_DFS_EU)
struct brcms_cm_band {
/* struct locale_info flags */
u8 locale_flags;
/* List of valid channels in the country */
struct brcms_chanvec valid_channels;
/* List of restricted use channels */
const struct brcms_chanvec *restricted_channels;
/* List of radar sensitive channels */
const struct brcms_chanvec *radar_channels;
u8 PAD[8];
};
/* locale per-channel tx power limits for MIMO frames
* maxpwr arrays are index by channel for 2.4 GHz limits, and
* by sub-band for 5 GHz limits using CHANNEL_POWER_IDX_5G(channel)
*/
struct locale_mimo_info {
/* tx 20 MHz power limits, qdBm units */
s8 maxpwr20[BRCMS_MAXPWR_MIMO_TBL_SIZE];
/* tx 40 MHz power limits, qdBm units */
s8 maxpwr40[BRCMS_MAXPWR_MIMO_TBL_SIZE];
u8 flags;
};
/* Country names and abbreviations with locale defined from ISO 3166 */
struct country_info {
const u8 locale_2G; /* 2.4G band locale */
const u8 locale_5G; /* 5G band locale */
const u8 locale_mimo_2G; /* 2.4G mimo info */
const u8 locale_mimo_5G; /* 5G mimo info */
};
struct brcms_cm_info {
struct brcms_pub *pub;
struct brcms_c_info *wlc;
char srom_ccode[BRCM_CNTRY_BUF_SZ]; /* Country Code in SROM */
uint srom_regrev; /* Regulatory Rev for the SROM ccode */
const struct country_info *country; /* current country def */
char ccode[BRCM_CNTRY_BUF_SZ]; /* current internal Country Code */
uint regrev; /* current Regulatory Revision */
char country_abbrev[BRCM_CNTRY_BUF_SZ]; /* current advertised ccode */
/* per-band state (one per phy/radio) */
struct brcms_cm_band bandstate[MAXBANDS];
/* quiet channels currently for radar sensitivity or 11h support */
/* channels on which we cannot transmit */
struct brcms_chanvec quiet_channels;
};
/* locale channel and power info. */
struct locale_info {
u32 valid_channels;
/* List of radar sensitive channels */
u8 radar_channels;
/* List of channels used only if APs are detected */
u8 restricted_channels;
/* Max tx pwr in qdBm for each sub-band */
s8 maxpwr[BRCMS_MAXPWR_TBL_SIZE];
/* Country IE advertised max tx pwr in dBm per sub-band */
s8 pub_maxpwr[BAND_5G_PWR_LVLS];
u8 flags;
};
/* Regulatory Matrix Spreadsheet (CLM) MIMO v3.7.9 */
/*
* Some common channel sets
*/
/* No channels */
static const struct brcms_chanvec chanvec_none = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* All 2.4 GHz HW channels */
static const struct brcms_chanvec chanvec_all_2G = {
{0xfe, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* All 5 GHz HW channels */
static const struct brcms_chanvec chanvec_all_5G = {
{0x00, 0x00, 0x00, 0x00, 0x54, 0x55, 0x11, 0x11,
0x01, 0x00, 0x00, 0x00, 0x10, 0x11, 0x11, 0x11,
0x11, 0x11, 0x20, 0x22, 0x22, 0x00, 0x00, 0x11,
0x11, 0x11, 0x11, 0x01}
};
/*
* Radar channel sets
*/
/* Channels 52 - 64, 100 - 140 */
static const struct brcms_chanvec radar_set1 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11, /* 52 - 60 */
0x01, 0x00, 0x00, 0x00, 0x10, 0x11, 0x11, 0x11, /* 64, 100 - 124 */
0x11, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 128 - 140 */
0x00, 0x00, 0x00, 0x00}
};
/*
* Restricted channel sets
*/
/* Channels 34, 38, 42, 46 */
static const struct brcms_chanvec restricted_set_japan_legacy = {
{0x00, 0x00, 0x00, 0x00, 0x44, 0x44, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channels 12, 13 */
static const struct brcms_chanvec restricted_set_2g_short = {
{0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channel 165 */
static const struct brcms_chanvec restricted_chan_165 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channels 36 - 48 & 149 - 165 */
static const struct brcms_chanvec restricted_low_hi = {
{0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x20, 0x22, 0x22, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channels 12 - 14 */
static const struct brcms_chanvec restricted_set_12_13_14 = {
{0x00, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* global memory to provide working buffer for expanded locale */
static const struct brcms_chanvec *g_table_radar_set[] = {
&chanvec_none,
&radar_set1
};
static const struct brcms_chanvec *g_table_restricted_chan[] = {
&chanvec_none, /* restricted_set_none */
&restricted_set_2g_short,
&restricted_chan_165,
&chanvec_all_5G,
&restricted_set_japan_legacy,
&chanvec_all_2G, /* restricted_set_11d_2G */
&chanvec_all_5G, /* restricted_set_11d_5G */
&restricted_low_hi,
&restricted_set_12_13_14
};
static const struct brcms_chanvec locale_2g_01_11 = {
{0xfe, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_2g_12_13 = {
{0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_2g_14 = {
{0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW_JP1 = {
{0x00, 0x00, 0x00, 0x00, 0x54, 0x55, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW_JP2 = {
{0x00, 0x00, 0x00, 0x00, 0x44, 0x44, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW1 = {
{0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW2 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW3 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_MID1 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x11, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_MID2 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_MID3 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH1 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x10, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH2 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x20, 0x22, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH3 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_52_140_ALL = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH4 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x11, 0x11, 0x11, 0x11}
};
static const struct brcms_chanvec *g_table_locale_base[] = {
&locale_2g_01_11,
&locale_2g_12_13,
&locale_2g_14,
&locale_5g_LOW_JP1,
&locale_5g_LOW_JP2,
&locale_5g_LOW1,
&locale_5g_LOW2,
&locale_5g_LOW3,
&locale_5g_MID1,
&locale_5g_MID2,
&locale_5g_MID3,
&locale_5g_HIGH1,
&locale_5g_HIGH2,
&locale_5g_HIGH3,
&locale_5g_52_140_ALL,
&locale_5g_HIGH4
};
static void brcms_c_locale_add_channels(struct brcms_chanvec *target,
const struct brcms_chanvec *channels)
{
u8 i;
for (i = 0; i < sizeof(struct brcms_chanvec); i++)
target->vec[i] |= channels->vec[i];
}
static void brcms_c_locale_get_channels(const struct locale_info *locale,
struct brcms_chanvec *channels)
{
u8 i;
memset(channels, 0, sizeof(struct brcms_chanvec));
for (i = 0; i < ARRAY_SIZE(g_table_locale_base); i++) {
if (locale->valid_channels & (1 << i))
brcms_c_locale_add_channels(channels,
g_table_locale_base[i]);
}
}
/*
* Locale Definitions - 2.4 GHz
*/
static const struct locale_info locale_i = { /* locale i. channel 1 - 13 */
LOCALE_CHAN_01_11 | LOCALE_CHAN_12_13,
LOCALE_RADAR_SET_NONE,
LOCALE_RESTRICTED_SET_2G_SHORT,
{QDB(19), QDB(19), QDB(19),
QDB(19), QDB(19), QDB(19)},
{20, 20, 20, 0},
BRCMS_EIRP
};
/*
* Locale Definitions - 5 GHz
*/
static const struct locale_info locale_11 = {
/* locale 11. channel 36 - 48, 52 - 64, 100 - 140, 149 - 165 */
LOCALE_CHAN_36_64 | LOCALE_CHAN_100_140 | LOCALE_CHAN_149_165,
LOCALE_RADAR_SET_1,
LOCALE_RESTRICTED_NONE,
{QDB(21), QDB(21), QDB(21), QDB(21), QDB(21)},
{23, 23, 23, 30, 30},
BRCMS_EIRP | BRCMS_DFS_EU
};
static const struct locale_info *g_locale_2g_table[] = {
&locale_i
};
static const struct locale_info *g_locale_5g_table[] = {
&locale_11
};
/*
* MIMO Locale Definitions - 2.4 GHz
*/
static const struct locale_mimo_info locale_bn = {
{QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13)},
{0, 0, QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), 0, 0},
0
};
static const struct locale_mimo_info *g_mimo_2g_table[] = {
&locale_bn
};
/*
* MIMO Locale Definitions - 5 GHz
*/
static const struct locale_mimo_info locale_11n = {
{ /* 12.5 dBm */ 50, 50, 50, QDB(15), QDB(15)},
{QDB(14), QDB(15), QDB(15), QDB(15), QDB(15)},
0
};
static const struct locale_mimo_info *g_mimo_5g_table[] = {
&locale_11n
};
static const struct {
char abbrev[BRCM_CNTRY_BUF_SZ]; /* country abbreviation */
struct country_info country;
} cntry_locales[] = {
{
"X2", LOCALES(i, 11, bn, 11n)}, /* Worldwide RoW 2 */
};
#ifdef SUPPORT_40MHZ
/* 20MHz channel info for 40MHz pairing support */
struct chan20_info {
u8 sb;
u8 adj_sbs;
};
/* indicates adjacent channels that are allowed for a 40 Mhz channel and
* those that permitted by the HT
*/
struct chan20_info chan20_info[] = {
/* 11b/11g */
/* 0 */ {1, (CH_UPPER_SB | CH_EWA_VALID)},
/* 1 */ {2, (CH_UPPER_SB | CH_EWA_VALID)},
/* 2 */ {3, (CH_UPPER_SB | CH_EWA_VALID)},
/* 3 */ {4, (CH_UPPER_SB | CH_EWA_VALID)},
/* 4 */ {5, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 5 */ {6, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 6 */ {7, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 7 */ {8, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 8 */ {9, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 9 */ {10, (CH_LOWER_SB | CH_EWA_VALID)},
/* 10 */ {11, (CH_LOWER_SB | CH_EWA_VALID)},
/* 11 */ {12, (CH_LOWER_SB)},
/* 12 */ {13, (CH_LOWER_SB)},
/* 13 */ {14, (CH_LOWER_SB)},
/* 11a japan high */
/* 14 */ {34, (CH_UPPER_SB)},
/* 15 */ {38, (CH_LOWER_SB)},
/* 16 */ {42, (CH_LOWER_SB)},
/* 17 */ {46, (CH_LOWER_SB)},
/* 11a usa low */
/* 18 */ {36, (CH_UPPER_SB | CH_EWA_VALID)},
/* 19 */ {40, (CH_LOWER_SB | CH_EWA_VALID)},
/* 20 */ {44, (CH_UPPER_SB | CH_EWA_VALID)},
/* 21 */ {48, (CH_LOWER_SB | CH_EWA_VALID)},
/* 22 */ {52, (CH_UPPER_SB | CH_EWA_VALID)},
/* 23 */ {56, (CH_LOWER_SB | CH_EWA_VALID)},
/* 24 */ {60, (CH_UPPER_SB | CH_EWA_VALID)},
/* 25 */ {64, (CH_LOWER_SB | CH_EWA_VALID)},
/* 11a Europe */
/* 26 */ {100, (CH_UPPER_SB | CH_EWA_VALID)},
/* 27 */ {104, (CH_LOWER_SB | CH_EWA_VALID)},
/* 28 */ {108, (CH_UPPER_SB | CH_EWA_VALID)},
/* 29 */ {112, (CH_LOWER_SB | CH_EWA_VALID)},
/* 30 */ {116, (CH_UPPER_SB | CH_EWA_VALID)},
/* 31 */ {120, (CH_LOWER_SB | CH_EWA_VALID)},
/* 32 */ {124, (CH_UPPER_SB | CH_EWA_VALID)},
/* 33 */ {128, (CH_LOWER_SB | CH_EWA_VALID)},
/* 34 */ {132, (CH_UPPER_SB | CH_EWA_VALID)},
/* 35 */ {136, (CH_LOWER_SB | CH_EWA_VALID)},
/* 36 */ {140, (CH_LOWER_SB)},
/* 11a usa high, ref5 only */
/* The 0x80 bit in pdiv means these are REF5, other entries are REF20 */
/* 37 */ {149, (CH_UPPER_SB | CH_EWA_VALID)},
/* 38 */ {153, (CH_LOWER_SB | CH_EWA_VALID)},
/* 39 */ {157, (CH_UPPER_SB | CH_EWA_VALID)},
/* 40 */ {161, (CH_LOWER_SB | CH_EWA_VALID)},
/* 41 */ {165, (CH_LOWER_SB)},
/* 11a japan */
/* 42 */ {184, (CH_UPPER_SB)},
/* 43 */ {188, (CH_LOWER_SB)},
/* 44 */ {192, (CH_UPPER_SB)},
/* 45 */ {196, (CH_LOWER_SB)},
/* 46 */ {200, (CH_UPPER_SB)},
/* 47 */ {204, (CH_LOWER_SB)},
/* 48 */ {208, (CH_UPPER_SB)},
/* 49 */ {212, (CH_LOWER_SB)},
/* 50 */ {216, (CH_LOWER_SB)}
};
#endif /* SUPPORT_40MHZ */
static const struct locale_info *brcms_c_get_locale_2g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_locale_2g_table))
return NULL; /* error condition */
return g_locale_2g_table[locale_idx];
}
static const struct locale_info *brcms_c_get_locale_5g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_locale_5g_table))
return NULL; /* error condition */
return g_locale_5g_table[locale_idx];
}
static const struct locale_mimo_info *brcms_c_get_mimo_2g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_mimo_2g_table))
return NULL;
return g_mimo_2g_table[locale_idx];
}
static const struct locale_mimo_info *brcms_c_get_mimo_5g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_mimo_5g_table))
return NULL;
return g_mimo_5g_table[locale_idx];
}
static int
brcms_c_country_aggregate_map(struct brcms_cm_info *wlc_cm, const char *ccode,
char *mapped_ccode, uint *mapped_regrev)
{
return false;
}
/* Lookup a country info structure from a null terminated country
* abbreviation and regrev directly with no translation.
*/
static const struct country_info *
brcms_c_country_lookup_direct(const char *ccode, uint regrev)
{
uint size, i;
/* Should just return 0 for single locale driver. */
/* Keep it this way in case we add more locales. (for now anyway) */
/*
* all other country def arrays are for regrev == 0, so if
* regrev is non-zero, fail
*/
if (regrev > 0)
return NULL;
/* find matched table entry from country code */
size = ARRAY_SIZE(cntry_locales);
for (i = 0; i < size; i++) {
if (strcmp(ccode, cntry_locales[i].abbrev) == 0)
return &cntry_locales[i].country;
}
return NULL;
}
static const struct country_info *
brcms_c_countrycode_map(struct brcms_cm_info *wlc_cm, const char *ccode,
char *mapped_ccode, uint *mapped_regrev)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
const struct country_info *country;
uint srom_regrev = wlc_cm->srom_regrev;
const char *srom_ccode = wlc_cm->srom_ccode;
int mapped;
/* check for currently supported ccode size */
if (strlen(ccode) > (BRCM_CNTRY_BUF_SZ - 1)) {
wiphy_err(wlc->wiphy, "wl%d: %s: ccode \"%s\" too long for "
"match\n", wlc->pub->unit, __func__, ccode);
return NULL;
}
/* default mapping is the given ccode and regrev 0 */
strncpy(mapped_ccode, ccode, BRCM_CNTRY_BUF_SZ);
*mapped_regrev = 0;
/* If the desired country code matches the srom country code,
* then the mapped country is the srom regulatory rev.
* Otherwise look for an aggregate mapping.
*/
if (!strcmp(srom_ccode, ccode)) {
*mapped_regrev = srom_regrev;
mapped = 0;
wiphy_err(wlc->wiphy, "srom_code == ccode %s\n", __func__);
} else {
mapped =
brcms_c_country_aggregate_map(wlc_cm, ccode, mapped_ccode,
mapped_regrev);
}
/* find the matching built-in country definition */
country = brcms_c_country_lookup_direct(mapped_ccode, *mapped_regrev);
/* if there is not an exact rev match, default to rev zero */
if (country == NULL && *mapped_regrev != 0) {
*mapped_regrev = 0;
country =
brcms_c_country_lookup_direct(mapped_ccode, *mapped_regrev);
}
return country;
}
/* Lookup a country info structure from a null terminated country code
* The lookup is case sensitive.
*/
static const struct country_info *
brcms_c_country_lookup(struct brcms_c_info *wlc, const char *ccode)
{
const struct country_info *country;
char mapped_ccode[BRCM_CNTRY_BUF_SZ];
uint mapped_regrev;
/*
* map the country code to a built-in country code, regrev, and
* country_info struct
*/
country = brcms_c_countrycode_map(wlc->cmi, ccode, mapped_ccode,
&mapped_regrev);
return country;
}
/*
* reset the quiet channels vector to the union
* of the restricted and radar channel sets
*/
static void brcms_c_quiet_channels_reset(struct brcms_cm_info *wlc_cm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint i, j;
struct brcms_band *band;
const struct brcms_chanvec *chanvec;
memset(&wlc_cm->quiet_channels, 0, sizeof(struct brcms_chanvec));
band = wlc->band;
for (i = 0; i < wlc->pub->_nbands;
i++, band = wlc->bandstate[OTHERBANDUNIT(wlc)]) {
/* initialize quiet channels for restricted channels */
chanvec = wlc_cm->bandstate[band->bandunit].restricted_channels;
for (j = 0; j < sizeof(struct brcms_chanvec); j++)
wlc_cm->quiet_channels.vec[j] |= chanvec->vec[j];
}
}
/* Is the channel valid for the current locale and current band? */
static bool brcms_c_valid_channel20(struct brcms_cm_info *wlc_cm, uint val)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
return ((val < MAXCHANNEL) &&
isset(wlc_cm->bandstate[wlc->band->bandunit].valid_channels.vec,
val));
}
/* Is the channel valid for the current locale and specified band? */
static bool brcms_c_valid_channel20_in_band(struct brcms_cm_info *wlc_cm,
uint bandunit, uint val)
{
return ((val < MAXCHANNEL)
&& isset(wlc_cm->bandstate[bandunit].valid_channels.vec, val));
}
/* Is the channel valid for the current locale? (but don't consider channels not
* available due to bandlocking)
*/
static bool brcms_c_valid_channel20_db(struct brcms_cm_info *wlc_cm, uint val)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
return brcms_c_valid_channel20(wlc->cmi, val) ||
(!wlc->bandlocked
&& brcms_c_valid_channel20_in_band(wlc->cmi,
OTHERBANDUNIT(wlc), val));
}
/* JP, J1 - J10 are Japan ccodes */
static bool brcms_c_japan_ccode(const char *ccode)
{
return (ccode[0] == 'J' &&
(ccode[1] == 'P' || (ccode[1] >= '1' && ccode[1] <= '9')));
}
/* Returns true if currently set country is Japan or variant */
static bool brcms_c_japan(struct brcms_c_info *wlc)
{
return brcms_c_japan_ccode(wlc->cmi->country_abbrev);
}
static void
brcms_c_channel_min_txpower_limits_with_local_constraint(
struct brcms_cm_info *wlc_cm, struct txpwr_limits *txpwr,
u8 local_constraint_qdbm)
{
int j;
/* CCK Rates */
for (j = 0; j < WL_TX_POWER_CCK_NUM; j++)
txpwr->cck[j] = min(txpwr->cck[j], local_constraint_qdbm);
/* 20 MHz Legacy OFDM SISO */
for (j = 0; j < WL_TX_POWER_OFDM_NUM; j++)
txpwr->ofdm[j] = min(txpwr->ofdm[j], local_constraint_qdbm);
/* 20 MHz Legacy OFDM CDD */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_cdd[j] =
min(txpwr->ofdm_cdd[j], local_constraint_qdbm);
/* 40 MHz Legacy OFDM SISO */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_40_siso[j] =
min(txpwr->ofdm_40_siso[j], local_constraint_qdbm);
/* 40 MHz Legacy OFDM CDD */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_40_cdd[j] =
min(txpwr->ofdm_40_cdd[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 SISO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_siso[j] =
min(txpwr->mcs_20_siso[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 CDD */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_cdd[j] =
min(txpwr->mcs_20_cdd[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 STBC */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_stbc[j] =
min(txpwr->mcs_20_stbc[j], local_constraint_qdbm);
/* 20MHz MCS 8-15 MIMO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
txpwr->mcs_20_mimo[j] =
min(txpwr->mcs_20_mimo[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 SISO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_siso[j] =
min(txpwr->mcs_40_siso[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 CDD */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_cdd[j] =
min(txpwr->mcs_40_cdd[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 STBC */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_stbc[j] =
min(txpwr->mcs_40_stbc[j], local_constraint_qdbm);
/* 40MHz MCS 8-15 MIMO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
txpwr->mcs_40_mimo[j] =
min(txpwr->mcs_40_mimo[j], local_constraint_qdbm);
/* 40MHz MCS 32 */
txpwr->mcs32 = min(txpwr->mcs32, local_constraint_qdbm);
}
/* Update the radio state (enable/disable) and tx power targets
* based on a new set of channel/regulatory information
*/
static void brcms_c_channels_commit(struct brcms_cm_info *wlc_cm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint chan;
struct txpwr_limits txpwr;
/* search for the existence of any valid channel */
for (chan = 0; chan < MAXCHANNEL; chan++) {
if (brcms_c_valid_channel20_db(wlc->cmi, chan))
break;
}
if (chan == MAXCHANNEL)
chan = INVCHANNEL;
/*
* based on the channel search above, set or
* clear WL_RADIO_COUNTRY_DISABLE.
*/
if (chan == INVCHANNEL) {
/*
* country/locale with no valid channels, set
* the radio disable bit
*/
mboolset(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
wiphy_err(wlc->wiphy, "wl%d: %s: no valid channel for \"%s\" "
"nbands %d bandlocked %d\n", wlc->pub->unit,
__func__, wlc_cm->country_abbrev, wlc->pub->_nbands,
wlc->bandlocked);
} else if (mboolisset(wlc->pub->radio_disabled,
WL_RADIO_COUNTRY_DISABLE)) {
/*
* country/locale with valid channel, clear
* the radio disable bit
*/
mboolclr(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
}
/*
* Now that the country abbreviation is set, if the radio supports 2G,
* then set channel 14 restrictions based on the new locale.
*/
if (wlc->pub->_nbands > 1 || wlc->band->bandtype == BRCM_BAND_2G)
wlc_phy_chanspec_ch14_widefilter_set(wlc->band->pi,
brcms_c_japan(wlc) ? true :
false);
if (wlc->pub->up && chan != INVCHANNEL) {
brcms_c_channel_reg_limits(wlc_cm, wlc->chanspec, &txpwr);
brcms_c_channel_min_txpower_limits_with_local_constraint(wlc_cm,
&txpwr, BRCMS_TXPWR_MAX);
wlc_phy_txpower_limit_set(wlc->band->pi, &txpwr, wlc->chanspec);
}
}
static int
brcms_c_channels_init(struct brcms_cm_info *wlc_cm,
const struct country_info *country)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint i, j;
struct brcms_band *band;
const struct locale_info *li;
struct brcms_chanvec sup_chan;
const struct locale_mimo_info *li_mimo;
band = wlc->band;
for (i = 0; i < wlc->pub->_nbands;
i++, band = wlc->bandstate[OTHERBANDUNIT(wlc)]) {
li = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_locale_5g(country->locale_5G) :
brcms_c_get_locale_2g(country->locale_2G);
wlc_cm->bandstate[band->bandunit].locale_flags = li->flags;
li_mimo = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_mimo_5g(country->locale_mimo_5G) :
brcms_c_get_mimo_2g(country->locale_mimo_2G);
/* merge the mimo non-mimo locale flags */
wlc_cm->bandstate[band->bandunit].locale_flags |=
li_mimo->flags;
wlc_cm->bandstate[band->bandunit].restricted_channels =
g_table_restricted_chan[li->restricted_channels];
wlc_cm->bandstate[band->bandunit].radar_channels =
g_table_radar_set[li->radar_channels];
/*
* set the channel availability, masking out the channels
* that may not be supported on this phy.
*/
wlc_phy_chanspec_band_validch(band->pi, band->bandtype,
&sup_chan);
brcms_c_locale_get_channels(li,
&wlc_cm->bandstate[band->bandunit].
valid_channels);
for (j = 0; j < sizeof(struct brcms_chanvec); j++)
wlc_cm->bandstate[band->bandunit].valid_channels.
vec[j] &= sup_chan.vec[j];
}
brcms_c_quiet_channels_reset(wlc_cm);
brcms_c_channels_commit(wlc_cm);
return 0;
}
/*
* set the driver's current country and regulatory information
* using a country code as the source. Look up built in country
* information found with the country code.
*/
static void
brcms_c_set_country_common(struct brcms_cm_info *wlc_cm,
const char *country_abbrev,
const char *ccode, uint regrev,
const struct country_info *country)
{
const struct locale_info *locale;
struct brcms_c_info *wlc = wlc_cm->wlc;
char prev_country_abbrev[BRCM_CNTRY_BUF_SZ];
/* save current country state */
wlc_cm->country = country;
memset(&prev_country_abbrev, 0, BRCM_CNTRY_BUF_SZ);
strncpy(prev_country_abbrev, wlc_cm->country_abbrev,
BRCM_CNTRY_BUF_SZ - 1);
strncpy(wlc_cm->country_abbrev, country_abbrev, BRCM_CNTRY_BUF_SZ - 1);
strncpy(wlc_cm->ccode, ccode, BRCM_CNTRY_BUF_SZ - 1);
wlc_cm->regrev = regrev;
if ((wlc->pub->_n_enab & SUPPORT_11N) !=
wlc->protection->nmode_user)
brcms_c_set_nmode(wlc);
brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_2G_INDEX]);
brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_5G_INDEX]);
/* set or restore gmode as required by regulatory */
locale = brcms_c_get_locale_2g(country->locale_2G);
if (locale && (locale->flags & BRCMS_NO_OFDM))
brcms_c_set_gmode(wlc, GMODE_LEGACY_B, false);
else
brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
brcms_c_channels_init(wlc_cm, country);
return;
}
static int
brcms_c_set_countrycode_rev(struct brcms_cm_info *wlc_cm,
const char *country_abbrev,
const char *ccode, int regrev)
{
const struct country_info *country;
char mapped_ccode[BRCM_CNTRY_BUF_SZ];
uint mapped_regrev;
/* if regrev is -1, lookup the mapped country code,
* otherwise use the ccode and regrev directly
*/
if (regrev == -1) {
/*
* map the country code to a built-in country
* code, regrev, and country_info
*/
country =
brcms_c_countrycode_map(wlc_cm, ccode, mapped_ccode,
&mapped_regrev);
} else {
/* find the matching built-in country definition */
country = brcms_c_country_lookup_direct(ccode, regrev);
strncpy(mapped_ccode, ccode, BRCM_CNTRY_BUF_SZ);
mapped_regrev = regrev;
}
if (country == NULL)
return -EINVAL;
/* set the driver state for the country */
brcms_c_set_country_common(wlc_cm, country_abbrev, mapped_ccode,
mapped_regrev, country);
return 0;
}
/*
* set the driver's current country and regulatory information using
* a country code as the source. Lookup built in country information
* found with the country code.
*/
static int
brcms_c_set_countrycode(struct brcms_cm_info *wlc_cm, const char *ccode)
{
char country_abbrev[BRCM_CNTRY_BUF_SZ];
strncpy(country_abbrev, ccode, BRCM_CNTRY_BUF_SZ);
return brcms_c_set_countrycode_rev(wlc_cm, country_abbrev, ccode, -1);
}
struct brcms_cm_info *brcms_c_channel_mgr_attach(struct brcms_c_info *wlc)
{
struct brcms_cm_info *wlc_cm;
char country_abbrev[BRCM_CNTRY_BUF_SZ];
const struct country_info *country;
struct brcms_pub *pub = wlc->pub;
char *ccode;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
wlc_cm = kzalloc(sizeof(struct brcms_cm_info), GFP_ATOMIC);
if (wlc_cm == NULL)
return NULL;
wlc_cm->pub = pub;
wlc_cm->wlc = wlc;
wlc->cmi = wlc_cm;
/* store the country code for passing up as a regulatory hint */
ccode = getvar(wlc->hw->sih, BRCMS_SROM_CCODE);
if (ccode)
strncpy(wlc->pub->srom_ccode, ccode, BRCM_CNTRY_BUF_SZ - 1);
/*
* internal country information which must match
* regulatory constraints in firmware
*/
memset(country_abbrev, 0, BRCM_CNTRY_BUF_SZ);
strncpy(country_abbrev, "X2", sizeof(country_abbrev) - 1);
country = brcms_c_country_lookup(wlc, country_abbrev);
/* save default country for exiting 11d regulatory mode */
strncpy(wlc->country_default, country_abbrev, BRCM_CNTRY_BUF_SZ - 1);
/* initialize autocountry_default to driver default */
strncpy(wlc->autocountry_default, "X2", BRCM_CNTRY_BUF_SZ - 1);
brcms_c_set_countrycode(wlc_cm, country_abbrev);
return wlc_cm;
}
void brcms_c_channel_mgr_detach(struct brcms_cm_info *wlc_cm)
{
kfree(wlc_cm);
}
u8
brcms_c_channel_locale_flags_in_band(struct brcms_cm_info *wlc_cm,
uint bandunit)
{
return wlc_cm->bandstate[bandunit].locale_flags;
}
static bool
brcms_c_quiet_chanspec(struct brcms_cm_info *wlc_cm, u16 chspec)
{
return (wlc_cm->wlc->pub->_n_enab & SUPPORT_11N) &&
CHSPEC_IS40(chspec) ?
(isset(wlc_cm->quiet_channels.vec,
lower_20_sb(CHSPEC_CHANNEL(chspec))) ||
isset(wlc_cm->quiet_channels.vec,
upper_20_sb(CHSPEC_CHANNEL(chspec)))) :
isset(wlc_cm->quiet_channels.vec, CHSPEC_CHANNEL(chspec));
}
void
brcms_c_channel_set_chanspec(struct brcms_cm_info *wlc_cm, u16 chanspec,
u8 local_constraint_qdbm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
struct txpwr_limits txpwr;
brcms_c_channel_reg_limits(wlc_cm, chanspec, &txpwr);
brcms_c_channel_min_txpower_limits_with_local_constraint(
wlc_cm, &txpwr, local_constraint_qdbm
);
brcms_b_set_chanspec(wlc->hw, chanspec,
(brcms_c_quiet_chanspec(wlc_cm, chanspec) != 0),
&txpwr);
}
#ifdef POWER_DBG
static void wlc_phy_txpower_limits_dump(struct txpwr_limits *txpwr)
{
int i;
char buf[80];
char fraction[4][4] = { " ", ".25", ".5 ", ".75" };
sprintf(buf, "CCK ");
for (i = 0; i < BRCMS_NUM_RATES_CCK; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->cck[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->cck[i] % BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "20 MHz OFDM SISO ");
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->ofdm[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->ofdm[i] % BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "20 MHz OFDM CDD ");
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->ofdm_cdd[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->ofdm_cdd[i] % BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "40 MHz OFDM SISO ");
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->ofdm_40_siso[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->ofdm_40_siso[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "40 MHz OFDM CDD ");
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->ofdm_40_cdd[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->ofdm_40_cdd[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "20 MHz MCS0-7 SISO ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_20_siso[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_20_siso[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "20 MHz MCS0-7 CDD ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_20_cdd[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_20_cdd[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "20 MHz MCS0-7 STBC ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_20_stbc[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_20_stbc[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "20 MHz MCS8-15 SDM ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_20_mimo[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_20_mimo[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "40 MHz MCS0-7 SISO ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_40_siso[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_40_siso[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "40 MHz MCS0-7 CDD ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_40_cdd[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_40_cdd[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "40 MHz MCS0-7 STBC ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_40_stbc[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_40_stbc[i] %
BRCMS_TXPWR_DB_FACTOR]);
printk(KERN_DEBUG "%s\n", buf);
sprintf(buf, "40 MHz MCS8-15 SDM ");
for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++)
sprintf(buf[strlen(buf)], " %2d%s",
txpwr->mcs_40_mimo[i] / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs_40_mimo[i] %
BRCMS_TXPWR_DB_FACTOR]);
}
printk(KERN_DEBUG "%s\n", buf);
printk(KERN_DEBUG "MCS32 %2d%s\n",
txpwr->mcs32 / BRCMS_TXPWR_DB_FACTOR,
fraction[txpwr->mcs32 % BRCMS_TXPWR_DB_FACTOR]);
}
#endif /* POWER_DBG */
void
brcms_c_channel_reg_limits(struct brcms_cm_info *wlc_cm, u16 chanspec,
struct txpwr_limits *txpwr)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint i;
uint chan;
int maxpwr;
int delta;
const struct country_info *country;
struct brcms_band *band;
const struct locale_info *li;
int conducted_max = BRCMS_TXPWR_MAX;
int conducted_ofdm_max = BRCMS_TXPWR_MAX;
const struct locale_mimo_info *li_mimo;
int maxpwr20, maxpwr40;
int maxpwr_idx;
uint j;
memset(txpwr, 0, sizeof(struct txpwr_limits));
if (!brcms_c_valid_chanspec_db(wlc_cm, chanspec)) {
country = brcms_c_country_lookup(wlc, wlc->autocountry_default);
if (country == NULL)
return;
} else {
country = wlc_cm->country;
}
chan = CHSPEC_CHANNEL(chanspec);
band = wlc->bandstate[chspec_bandunit(chanspec)];
li = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_locale_5g(country->locale_5G) :
brcms_c_get_locale_2g(country->locale_2G);
li_mimo = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_mimo_5g(country->locale_mimo_5G) :
brcms_c_get_mimo_2g(country->locale_mimo_2G);
if (li->flags & BRCMS_EIRP) {
delta = band->antgain;
} else {
delta = 0;
if (band->antgain > QDB(6))
delta = band->antgain - QDB(6); /* Excess over 6 dB */
}
if (li == &locale_i) {
conducted_max = QDB(22);
conducted_ofdm_max = QDB(22);
}
/* CCK txpwr limits for 2.4G band */
if (band->bandtype == BRCM_BAND_2G) {
maxpwr = li->maxpwr[CHANNEL_POWER_IDX_2G_CCK(chan)];
maxpwr = maxpwr - delta;
maxpwr = max(maxpwr, 0);
maxpwr = min(maxpwr, conducted_max);
for (i = 0; i < BRCMS_NUM_RATES_CCK; i++)
txpwr->cck[i] = (u8) maxpwr;
}
/* OFDM txpwr limits for 2.4G or 5G bands */
if (band->bandtype == BRCM_BAND_2G)
maxpwr = li->maxpwr[CHANNEL_POWER_IDX_2G_OFDM(chan)];
else
maxpwr = li->maxpwr[CHANNEL_POWER_IDX_5G(chan)];
maxpwr = maxpwr - delta;
maxpwr = max(maxpwr, 0);
maxpwr = min(maxpwr, conducted_ofdm_max);
/* Keep OFDM lmit below CCK limit */
if (band->bandtype == BRCM_BAND_2G)
maxpwr = min_t(int, maxpwr, txpwr->cck[0]);
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++)
txpwr->ofdm[i] = (u8) maxpwr;
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++) {
/*
* OFDM 40 MHz SISO has the same power as the corresponding
* MCS0-7 rate unless overriden by the locale specific code.
* We set this value to 0 as a flag (presumably 0 dBm isn't
* a possibility) and then copy the MCS0-7 value to the 40 MHz
* value if it wasn't explicitly set.
*/
txpwr->ofdm_40_siso[i] = 0;
txpwr->ofdm_cdd[i] = (u8) maxpwr;
txpwr->ofdm_40_cdd[i] = 0;
}
/* MIMO/HT specific limits */
if (li_mimo->flags & BRCMS_EIRP) {
delta = band->antgain;
} else {
delta = 0;
if (band->antgain > QDB(6))
delta = band->antgain - QDB(6); /* Excess over 6 dB */
}
if (band->bandtype == BRCM_BAND_2G)
maxpwr_idx = (chan - 1);
else
maxpwr_idx = CHANNEL_POWER_IDX_5G(chan);
maxpwr20 = li_mimo->maxpwr20[maxpwr_idx];
maxpwr40 = li_mimo->maxpwr40[maxpwr_idx];
maxpwr20 = maxpwr20 - delta;
maxpwr20 = max(maxpwr20, 0);
maxpwr40 = maxpwr40 - delta;
maxpwr40 = max(maxpwr40, 0);
/* Fill in the MCS 0-7 (SISO) rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
/*
* 20 MHz has the same power as the corresponding OFDM rate
* unless overriden by the locale specific code.
*/
txpwr->mcs_20_siso[i] = txpwr->ofdm[i];
txpwr->mcs_40_siso[i] = 0;
}
/* Fill in the MCS 0-7 CDD rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_cdd[i] = (u8) maxpwr20;
txpwr->mcs_40_cdd[i] = (u8) maxpwr40;
}
/*
* These locales have SISO expressed in the
* table and override CDD later
*/
if (li_mimo == &locale_bn) {
if (li_mimo == &locale_bn) {
maxpwr20 = QDB(16);
maxpwr40 = 0;
if (chan >= 3 && chan <= 11)
maxpwr40 = QDB(16);
}
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_siso[i] = (u8) maxpwr20;
txpwr->mcs_40_siso[i] = (u8) maxpwr40;
}
}
/* Fill in the MCS 0-7 STBC rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_stbc[i] = 0;
txpwr->mcs_40_stbc[i] = 0;
}
/* Fill in the MCS 8-15 SDM rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++) {
txpwr->mcs_20_mimo[i] = (u8) maxpwr20;
txpwr->mcs_40_mimo[i] = (u8) maxpwr40;
}
/* Fill in MCS32 */
txpwr->mcs32 = (u8) maxpwr40;
for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
if (txpwr->ofdm_40_cdd[i] == 0)
txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
if (i == 0) {
i = i + 1;
if (txpwr->ofdm_40_cdd[i] == 0)
txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
}
}
/*
* Copy the 40 MHZ MCS 0-7 CDD value to the 40 MHZ MCS 0-7 SISO
* value if it wasn't provided explicitly.
*/
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
if (txpwr->mcs_40_siso[i] == 0)
txpwr->mcs_40_siso[i] = txpwr->mcs_40_cdd[i];
}
for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
if (txpwr->ofdm_40_siso[i] == 0)
txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
if (i == 0) {
i = i + 1;
if (txpwr->ofdm_40_siso[i] == 0)
txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
}
}
/*
* Copy the 20 and 40 MHz MCS0-7 CDD values to the corresponding
* STBC values if they weren't provided explicitly.
*/
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
if (txpwr->mcs_20_stbc[i] == 0)
txpwr->mcs_20_stbc[i] = txpwr->mcs_20_cdd[i];
if (txpwr->mcs_40_stbc[i] == 0)
txpwr->mcs_40_stbc[i] = txpwr->mcs_40_cdd[i];
}
#ifdef POWER_DBG
wlc_phy_txpower_limits_dump(txpwr);
#endif
return;
}
/*
* Verify the chanspec is using a legal set of parameters, i.e. that the
* chanspec specified a band, bw, ctl_sb and channel and that the
* combination could be legal given any set of circumstances.
* RETURNS: true is the chanspec is malformed, false if it looks good.
*/
static bool brcms_c_chspec_malformed(u16 chanspec)
{
/* must be 2G or 5G band */
if (!CHSPEC_IS5G(chanspec) && !CHSPEC_IS2G(chanspec))
return true;
/* must be 20 or 40 bandwidth */
if (!CHSPEC_IS40(chanspec) && !CHSPEC_IS20(chanspec))
return true;
/* 20MHZ b/w must have no ctl sb, 40 must have a ctl sb */
if (CHSPEC_IS20(chanspec)) {
if (!CHSPEC_SB_NONE(chanspec))
return true;
} else if (!CHSPEC_SB_UPPER(chanspec) && !CHSPEC_SB_LOWER(chanspec)) {
return true;
}
return false;
}
/*
* Validate the chanspec for this locale, for 40MHZ we need to also
* check that the sidebands are valid 20MZH channels in this locale
* and they are also a legal HT combination
*/
static bool
brcms_c_valid_chanspec_ext(struct brcms_cm_info *wlc_cm, u16 chspec,
bool dualband)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
u8 channel = CHSPEC_CHANNEL(chspec);
/* check the chanspec */
if (brcms_c_chspec_malformed(chspec)) {
wiphy_err(wlc->wiphy, "wl%d: malformed chanspec 0x%x\n",
wlc->pub->unit, chspec);
return false;
}
if (CHANNEL_BANDUNIT(wlc_cm->wlc, channel) !=
chspec_bandunit(chspec))
return false;
/* Check a 20Mhz channel */
if (CHSPEC_IS20(chspec)) {
if (dualband)
return brcms_c_valid_channel20_db(wlc_cm->wlc->cmi,
channel);
else
return brcms_c_valid_channel20(wlc_cm->wlc->cmi,
channel);
}
#ifdef SUPPORT_40MHZ
/*
* We know we are now checking a 40MHZ channel, so we should
* only be here for NPHYS
*/
if (BRCMS_ISNPHY(wlc->band) || BRCMS_ISSSLPNPHY(wlc->band)) {
u8 upper_sideband = 0, idx;
u8 num_ch20_entries =
sizeof(chan20_info) / sizeof(struct chan20_info);
if (!VALID_40CHANSPEC_IN_BAND(wlc, chspec_bandunit(chspec)))
return false;
if (dualband) {
if (!brcms_c_valid_channel20_db(wlc->cmi,
lower_20_sb(channel)) ||
!brcms_c_valid_channel20_db(wlc->cmi,
upper_20_sb(channel)))
return false;
} else {
if (!brcms_c_valid_channel20(wlc->cmi,
lower_20_sb(channel)) ||
!brcms_c_valid_channel20(wlc->cmi,
upper_20_sb(channel)))
return false;
}
/* find the lower sideband info in the sideband array */
for (idx = 0; idx < num_ch20_entries; idx++) {
if (chan20_info[idx].sb == lower_20_sb(channel))
upper_sideband = chan20_info[idx].adj_sbs;
}
/* check that the lower sideband allows an upper sideband */
if ((upper_sideband & (CH_UPPER_SB | CH_EWA_VALID)) ==
(CH_UPPER_SB | CH_EWA_VALID))
return true;
return false;
}
#endif /* 40 MHZ */
return false;
}
bool brcms_c_valid_chanspec_db(struct brcms_cm_info *wlc_cm, u16 chspec)
{
return brcms_c_valid_chanspec_ext(wlc_cm, chspec, true);
}