blob: 4b0b830f9ab6d9aad8dbaec0fb4c0636c1e896c3 [file] [log] [blame]
/*++
Copyright (c) Realtek Semiconductor Corp. All rights reserved.
Module Name:
r8185b_init.c
Abstract:
Hardware Initialization and Hardware IO for RTL8185B
Major Change History:
When Who What
---------- --------------- -------------------------------
2006-11-15 Xiong Created
Notes:
This file is ported from RTL8185B Windows driver.
--*/
/*--------------------------Include File------------------------------------*/
#include <linux/spinlock.h>
#include "r8180_hw.h"
#include "r8180.h"
#include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
#include "r8180_93cx6.h" /* Card EEPROM */
#include "r8180_wx.h"
#include "ieee80211/dot11d.h"
/* #define CONFIG_RTL8180_IO_MAP */
#define TC_3W_POLL_MAX_TRY_CNT 5
static u8 MAC_REG_TABLE[][2] = {
/*PAGA 0: */
/* 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185() */
/* 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185(). */
/* 0x1F0~0x1F8 set in MacConfig_85BASIC() */
{0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
{0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
{0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
{0x94, 0x0F}, {0x95, 0x32},
{0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
{0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
{0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
{0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
{0xff, 0x00},
/*PAGE 1: */
/* For Flextronics system Logo PCIHCT failure: */
/* 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1 */
{0x5e, 0x01},
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
{0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
{0x82, 0xFF}, {0x83, 0x03},
{0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, /* lzm add 080826 */
{0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},/* lzm add 080826 */
{0xe2, 0x00},
/* PAGE 2: */
{0x5e, 0x02},
{0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
{0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
{0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
{0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
{0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
{0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
{0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
/* PAGA 0: */
{0x5e, 0x00}, {0x9f, 0x03}
};
static u8 ZEBRA_AGC[] = {
0,
0x7E, 0x7E, 0x7E, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x77, 0x76, 0x75, 0x74, 0x73, 0x72,
0x71, 0x70, 0x6F, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62,
0x48, 0x47, 0x46, 0x45, 0x44, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x15, 0x16,
0x17, 0x17, 0x18, 0x18, 0x19, 0x1a, 0x1a, 0x1b, 0x1b, 0x1c, 0x1c, 0x1d, 0x1d, 0x1d, 0x1e, 0x1e,
0x1f, 0x1f, 0x1f, 0x20, 0x20, 0x20, 0x20, 0x21, 0x21, 0x21, 0x22, 0x22, 0x22, 0x23, 0x23, 0x24,
0x24, 0x25, 0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F
};
static u32 ZEBRA_RF_RX_GAIN_TABLE[] = {
0x0096, 0x0076, 0x0056, 0x0036, 0x0016, 0x01f6, 0x01d6, 0x01b6,
0x0196, 0x0176, 0x00F7, 0x00D7, 0x00B7, 0x0097, 0x0077, 0x0057,
0x0037, 0x00FB, 0x00DB, 0x00BB, 0x00FF, 0x00E3, 0x00C3, 0x00A3,
0x0083, 0x0063, 0x0043, 0x0023, 0x0003, 0x01E3, 0x01C3, 0x01A3,
0x0183, 0x0163, 0x0143, 0x0123, 0x0103
};
static u8 OFDM_CONFIG[] = {
/* OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX */
/* OFDM reg0x3C[4]=1'b1: Enable RX power saving mode */
/* ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test */
/* 0x00 */
0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
/* 0x10 */
0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
/* 0x20 */
0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
/* 0x30 */
0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
0xD8, 0x3C, 0x7B, 0x10, 0x10
};
/* ---------------------------------------------------------------
* Hardware IO
* the code is ported from Windows source code
----------------------------------------------------------------*/
void
PlatformIOWrite1Byte(
struct net_device *dev,
u32 offset,
u8 data
)
{
write_nic_byte(dev, offset, data);
read_nic_byte(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
}
void
PlatformIOWrite2Byte(
struct net_device *dev,
u32 offset,
u16 data
)
{
write_nic_word(dev, offset, data);
read_nic_word(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
}
u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);
void
PlatformIOWrite4Byte(
struct net_device *dev,
u32 offset,
u32 data
)
{
/* {by amy 080312 */
if (offset == PhyAddr) {
/* For Base Band configuration. */
unsigned char cmdByte;
unsigned long dataBytes;
unsigned char idx;
u8 u1bTmp;
cmdByte = (u8)(data & 0x000000ff);
dataBytes = data>>8;
/*
071010, rcnjko:
The critical section is only BB read/write race condition.
Assumption:
1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
acquiring the spinlock in such context.
2. PlatformIOWrite4Byte() MUST NOT be recursive.
*/
/* NdisAcquireSpinLock( &(pDevice->IoSpinLock) ); */
for (idx = 0; idx < 30; idx++) {
/* Make sure command bit is clear before access it. */
u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
if ((u1bTmp & BIT7) == 0)
break;
else
mdelay(10);
}
for (idx = 0; idx < 3; idx++)
PlatformIOWrite1Byte(dev, offset+1+idx, ((u8 *)&dataBytes)[idx]);
write_nic_byte(dev, offset, cmdByte);
/* NdisReleaseSpinLock( &(pDevice->IoSpinLock) ); */
}
/* by amy 080312} */
else {
write_nic_dword(dev, offset, data);
read_nic_dword(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
}
}
u8
PlatformIORead1Byte(
struct net_device *dev,
u32 offset
)
{
u8 data = 0;
data = read_nic_byte(dev, offset);
return data;
}
u16
PlatformIORead2Byte(
struct net_device *dev,
u32 offset
)
{
u16 data = 0;
data = read_nic_word(dev, offset);
return data;
}
u32
PlatformIORead4Byte(
struct net_device *dev,
u32 offset
)
{
u32 data = 0;
data = read_nic_dword(dev, offset);
return data;
}
void SetOutputEnableOfRfPins(struct net_device *dev)
{
write_nic_word(dev, RFPinsEnable, 0x1bff);
}
static int
HwHSSIThreeWire(
struct net_device *dev,
u8 *pDataBuf,
u8 nDataBufBitCnt,
int bSI,
int bWrite
)
{
int bResult = 1;
u8 TryCnt;
u8 u1bTmp;
do {
/* Check if WE and RE are cleared. */
for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if ((u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0)
break;
udelay(10);
}
if (TryCnt == TC_3W_POLL_MAX_TRY_CNT) {
printk(KERN_ERR "rtl8187se: HwThreeWire(): CmdReg:"
" %#X RE|WE bits are not clear!!\n", u1bTmp);
dump_stack();
return 0;
}
/* RTL8187S HSSI Read/Write Function */
u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
if (bSI)
u1bTmp |= RF_SW_CFG_SI; /* reg08[1]=1 Serial Interface(SI) */
else
u1bTmp &= ~RF_SW_CFG_SI; /* reg08[1]=0 Parallel Interface(PI) */
write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
if (bSI) {
/* jong: HW SI read must set reg84[3]=0. */
u1bTmp = read_nic_byte(dev, RFPinsSelect);
u1bTmp &= ~BIT3;
write_nic_byte(dev, RFPinsSelect, u1bTmp);
}
/* Fill up data buffer for write operation. */
if (bWrite) {
if (nDataBufBitCnt == 16) {
write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
} else if (nDataBufBitCnt == 64) {
/* RTL8187S shouldn't enter this case */
write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
} else {
int idx;
int ByteCnt = nDataBufBitCnt / 8;
/* printk("%d\n",nDataBufBitCnt); */
if ((nDataBufBitCnt % 8) != 0) {
printk(KERN_ERR "rtl8187se: "
"HwThreeWire(): nDataBufBitCnt(%d)"
" should be multiple of 8!!!\n",
nDataBufBitCnt);
dump_stack();
nDataBufBitCnt += 8;
nDataBufBitCnt &= ~7;
}
if (nDataBufBitCnt > 64) {
printk(KERN_ERR "rtl8187se: HwThreeWire():"
" nDataBufBitCnt(%d) should <= 64!!!\n",
nDataBufBitCnt);
dump_stack();
nDataBufBitCnt = 64;
}
for (idx = 0; idx < ByteCnt; idx++)
write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
}
} else { /* read */
if (bSI) {
/* SI - reg274[3:0] : RF register's Address */
write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
} else {
/* PI - reg274[15:12] : RF register's Address */
write_nic_word(dev, SW_3W_DB0, (*((u16 *)pDataBuf)) << 12);
}
}
/* Set up command: WE or RE. */
if (bWrite)
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
else
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
/* Check if DONE is set. */
for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if ((u1bTmp & SW_3W_CMD1_DONE) != 0)
break;
udelay(10);
}
write_nic_byte(dev, SW_3W_CMD1, 0);
/* Read back data for read operation. */
if (bWrite == 0) {
if (bSI) {
/* Serial Interface : reg363_362[11:0] */
*((u16 *)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
} else {
/* Parallel Interface : reg361_360[11:0] */
*((u16 *)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
}
*((u16 *)pDataBuf) &= 0x0FFF;
}
} while (0);
return bResult;
}
void
RF_WriteReg(struct net_device *dev, u8 offset, u32 data)
{
u32 data2Write;
u8 len;
/* Pure HW 3-wire. */
data2Write = (data << 4) | (u32)(offset & 0x0f);
len = 16;
HwHSSIThreeWire(dev, (u8 *)(&data2Write), len, 1, 1);
}
u32 RF_ReadReg(struct net_device *dev, u8 offset)
{
u32 data2Write;
u8 wlen;
u32 dataRead;
data2Write = ((u32)(offset & 0x0f));
wlen = 16;
HwHSSIThreeWire(dev, (u8 *)(&data2Write), wlen, 1, 0);
dataRead = data2Write;
return dataRead;
}
/* by Owen on 04/07/14 for writing BB register successfully */
void
WriteBBPortUchar(
struct net_device *dev,
u32 Data
)
{
/* u8 TimeoutCounter; */
u8 RegisterContent;
u8 UCharData;
UCharData = (u8)((Data & 0x0000ff00) >> 8);
PlatformIOWrite4Byte(dev, PhyAddr, Data);
/* for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--) */
{
PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
/*if(UCharData == RegisterContent) */
/* break; */
}
}
u8
ReadBBPortUchar(
struct net_device *dev,
u32 addr
)
{
/*u8 TimeoutCounter; */
u8 RegisterContent;
PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
return RegisterContent;
}
/* {by amy 080312 */
/*
Description:
Perform Antenna settings with antenna diversity on 87SE.
Created by Roger, 2008.01.25.
*/
bool
SetAntennaConfig87SE(
struct net_device *dev,
u8 DefaultAnt, /* 0: Main, 1: Aux. */
bool bAntDiversity /* 1:Enable, 0: Disable. */
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bAntennaSwitched = true;
/* printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity); */
/* Threshold for antenna diversity. */
write_phy_cck(dev, 0x0c, 0x09); /* Reg0c : 09 */
if (bAntDiversity) { /* Enable Antenna Diversity. */
if (DefaultAnt == 1) { /* aux antenna */
/* Mac register, aux antenna */
write_nic_byte(dev, ANTSEL, 0x00);
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
} else { /* use main antenna */
/* Mac register, main antenna */
write_nic_byte(dev, ANTSEL, 0x03);
/* base band */
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0d, 0x5c); /* Reg0d : 5c */
write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
}
} else {
/* Disable Antenna Diversity. */
if (DefaultAnt == 1) { /* aux Antenna */
/* Mac register, aux antenna */
write_nic_byte(dev, ANTSEL, 0x00);
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
write_phy_ofdm(dev, 0x18, 0x32); /* Reg18 : 32 */
} else { /* main Antenna */
/* Mac register, main antenna */
write_nic_byte(dev, ANTSEL, 0x03);
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x5c); /* Reg0d : 5c */
write_phy_ofdm(dev, 0x18, 0x32); /*Reg18 : 32 */
}
}
priv->CurrAntennaIndex = DefaultAnt; /* Update default settings. */
return bAntennaSwitched;
}
/* by amy 080312 */
/*
---------------------------------------------------------------
* Hardware Initialization.
* the code is ported from Windows source code
----------------------------------------------------------------*/
void
ZEBRA_Config_85BASIC_HardCode(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u32 i;
u32 addr, data;
u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
u8 u1b24E;
int d_cut = 0;
/*
=============================================================================
87S_PCIE :: RADIOCFG.TXT
=============================================================================
*/
/* Page1 : reg16-reg30 */
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); /* switch to page1 */
u4bRF23 = RF_ReadReg(dev, 0x08); mdelay(1);
u4bRF24 = RF_ReadReg(dev, 0x09); mdelay(1);
if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) {
d_cut = 1;
printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n");
}
/* Page0 : reg0-reg15 */
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);/* 1 */
RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1);
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);/* 2 */
RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);/* 3 */
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1);
RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1);
RF_WriteReg(dev, 0x06, 0x0ae6); mdelay(1);
RF_WriteReg(dev, 0x07, 0x00ca); mdelay(1);
RF_WriteReg(dev, 0x08, 0x0e1c); mdelay(1);
RF_WriteReg(dev, 0x09, 0x02f0); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x09d0); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x01ba); mdelay(1);
RF_WriteReg(dev, 0x0c, 0x0640); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0020); mdelay(1);
RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1);
/* Page1 : reg16-reg30 */
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1);
RF_WriteReg(dev, 0x03, 0x0806); mdelay(1);
RF_WriteReg(dev, 0x04, 0x03a7); mdelay(1);
RF_WriteReg(dev, 0x05, 0x059b); mdelay(1);
RF_WriteReg(dev, 0x06, 0x0081); mdelay(1);
RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1);
/* Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl. */
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1);
if (d_cut) {
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); /* RX LO buffer */
} else {
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); /* RX LO buffer */
}
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1); /* 6 */
RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1);
RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1);
for (i = 0; i <= 36; i++) {
RF_WriteReg(dev, 0x01, i); mdelay(1);
RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
}
RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /* 203, 343 */
RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); /* 400 */
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30, and HSSI disable 137 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); /* Z4 synthesizer loop filter setting, 392 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); /* switch to reg0-reg15, and HSSI disable */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); /* CBC on, Tx Rx disable, High gain */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); /* Z4 setted channel 1 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); /* LC calibration */
mdelay(200); /* Deay 200 ms. */ /* 0xfd */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30 137, and HSSI disable 137 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x07, 0x0000); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0180); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0220); mdelay(1);
RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1);
/* DAC calibration off 20070702 */
RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
/* {by amy 080312 */
/* For crystal calibration, added by Roger, 2007.12.11. */
if (priv->bXtalCalibration) { /* reg 30. */
/* enable crystal calibration.
RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0].
(2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
(3)RF signal on/off when calibration[13], default: on, set BIT13=0.
So we should minus 4 BITs offset. */
RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9); mdelay(1);
printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
(priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9);
} else {
/* using default value. Xin=6, Xout=6. */
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
}
/* by amy 080312 */
RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); /* switch to reg0-reg15, and HSSI enable */
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); /* Rx BB start calibration, 00c//+edward */
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); /* temperature meter off */
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); /* Rx mode */
mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
/* power save parameters. */
u1b24E = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
/*=============================================================================
=============================================================================
CCKCONF.TXT
=============================================================================
*/
/* [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
CCK reg0x00[7]=1'b1 :power saving for TX (default)
CCK reg0x00[6]=1'b1: power saving for RX (default)
CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
*/
write_phy_cck(dev, 0x00, 0xc8);
write_phy_cck(dev, 0x06, 0x1c);
write_phy_cck(dev, 0x10, 0x78);
write_phy_cck(dev, 0x2e, 0xd0);
write_phy_cck(dev, 0x2f, 0x06);
write_phy_cck(dev, 0x01, 0x46);
/* power control */
write_nic_byte(dev, CCK_TXAGC, 0x10);
write_nic_byte(dev, OFDM_TXAGC, 0x1B);
write_nic_byte(dev, ANTSEL, 0x03);
/*
=============================================================================
AGC.txt
=============================================================================
*/
write_phy_ofdm(dev, 0x00, 0x12);
for (i = 0; i < 128; i++) {
data = ZEBRA_AGC[i+1];
data = data << 8;
data = data | 0x0000008F;
addr = i + 0x80; /* enable writing AGC table */
addr = addr << 8;
addr = addr | 0x0000008E;
WriteBBPortUchar(dev, data);
WriteBBPortUchar(dev, addr);
WriteBBPortUchar(dev, 0x0000008E);
}
PlatformIOWrite4Byte(dev, PhyAddr, 0x00001080); /* Annie, 2006-05-05 */
/*
=============================================================================
=============================================================================
OFDMCONF.TXT
=============================================================================
*/
for (i = 0; i < 60; i++) {
u4bRegOffset = i;
u4bRegValue = OFDM_CONFIG[i];
WriteBBPortUchar(dev,
(0x00000080 |
(u4bRegOffset & 0x7f) |
((u4bRegValue & 0xff) << 8)));
}
/*
=============================================================================
by amy for antenna
=============================================================================
*/
/* {by amy 080312 */
/* Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26. */
SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
/* by amy 080312} */
/* by amy for antenna */
}
void
UpdateInitialGain(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/* lzm add 080826 */
if (priv->eRFPowerState != eRfOn) {
/* Don't access BB/RF under disable PLL situation.
RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
Back to the original state
*/
priv->InitialGain = priv->InitialGainBackUp;
return;
}
switch (priv->InitialGain) {
case 1: /* m861dBm */
write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
case 2: /* m862dBm */
write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
case 3: /* m863dBm */
write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 4: /* m864dBm */
write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 5: /* m82dBm */
write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 6: /* m78dBm */
write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
case 7: /* m74dBm */
write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
write_phy_ofdm(dev, 0x24, 0xa6); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
case 8:
write_phy_ofdm(dev, 0x17, 0x66); mdelay(1);
write_phy_ofdm(dev, 0x24, 0xb6); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
default: /* MP */
write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
}
}
/*
Description:
Tx Power tracking mechanism routine on 87SE.
Created by Roger, 2007.12.11.
*/
void
InitTxPwrTracking87SE(
struct net_device *dev
)
{
u32 u4bRfReg;
u4bRfReg = RF_ReadReg(dev, 0x02);
/* Enable Thermal meter indication. */
RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1);
}
void
PhyConfig8185(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, RCR, priv->ReceiveConfig);
priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
/* RF config */
ZEBRA_Config_85BASIC_HardCode(dev);
/* {by amy 080312 */
/* Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06. */
if (priv->bDigMechanism) {
if (priv->InitialGain == 0)
priv->InitialGain = 4;
}
/*
Enable thermal meter indication to implement TxPower tracking on 87SE.
We initialize thermal meter here to avoid unsuccessful configuration.
Added by Roger, 2007.12.11.
*/
if (priv->bTxPowerTrack)
InitTxPwrTracking87SE(dev);
/* by amy 080312} */
priv->InitialGainBackUp = priv->InitialGain;
UpdateInitialGain(dev);
return;
}
void
HwConfigureRTL8185(
struct net_device *dev
)
{
/* RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control. */
u8 bUNIVERSAL_CONTROL_RL = 0;
u8 bUNIVERSAL_CONTROL_AGC = 1;
u8 bUNIVERSAL_CONTROL_ANT = 1;
u8 bAUTO_RATE_FALLBACK_CTL = 1;
u8 val8;
write_nic_word(dev, BRSR, 0x0fff);
/* Retry limit */
val8 = read_nic_byte(dev, CW_CONF);
if (bUNIVERSAL_CONTROL_RL)
val8 = val8 & 0xfd;
else
val8 = val8 | 0x02;
write_nic_byte(dev, CW_CONF, val8);
/* Tx AGC */
val8 = read_nic_byte(dev, TXAGC_CTL);
if (bUNIVERSAL_CONTROL_AGC) {
write_nic_byte(dev, CCK_TXAGC, 128);
write_nic_byte(dev, OFDM_TXAGC, 128);
val8 = val8 & 0xfe;
} else {
val8 = val8 | 0x01 ;
}
write_nic_byte(dev, TXAGC_CTL, val8);
/* Tx Antenna including Feedback control */
val8 = read_nic_byte(dev, TXAGC_CTL);
if (bUNIVERSAL_CONTROL_ANT) {
write_nic_byte(dev, ANTSEL, 0x00);
val8 = val8 & 0xfd;
} else {
val8 = val8 & (val8|0x02); /* xiong-2006-11-15 */
}
write_nic_byte(dev, TXAGC_CTL, val8);
/* Auto Rate fallback control */
val8 = read_nic_byte(dev, RATE_FALLBACK);
val8 &= 0x7c;
if (bAUTO_RATE_FALLBACK_CTL) {
val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
/* <RJ_TODO_8185B> We shall set up the ARFR according to user's setting. */
PlatformIOWrite2Byte(dev, ARFR, 0x0fff); /* set 1M ~ 54Mbps. */
}
write_nic_byte(dev, RATE_FALLBACK, val8);
}
static void
MacConfig_85BASIC_HardCode(
struct net_device *dev)
{
/*
============================================================================
MACREG.TXT
============================================================================
*/
int nLinesRead = 0;
u32 u4bRegOffset, u4bRegValue, u4bPageIndex = 0;
int i;
nLinesRead = sizeof(MAC_REG_TABLE)/2;
for (i = 0; i < nLinesRead; i++) { /* nLinesRead=101 */
u4bRegOffset = MAC_REG_TABLE[i][0];
u4bRegValue = MAC_REG_TABLE[i][1];
if (u4bRegOffset == 0x5e)
u4bPageIndex = u4bRegValue;
else
u4bRegOffset |= (u4bPageIndex << 8);
write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
}
/* ============================================================================ */
}
static void
MacConfig_85BASIC(
struct net_device *dev)
{
u8 u1DA;
MacConfig_85BASIC_HardCode(dev);
/* ============================================================================ */
/* Follow TID_AC_MAP of WMac. */
write_nic_word(dev, TID_AC_MAP, 0xfa50);
/* Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko. */
write_nic_word(dev, IntMig, 0x0000);
/* Prevent TPC to cause CRC error. Added by Annie, 2006-06-10. */
PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
/* Asked for by SD3 CM Lin, 2006.06.27, by rcnjko. */
/* power save parameter based on "87SE power save parameters 20071127.doc", as follow. */
/* Enable DA10 TX power saving */
u1DA = read_nic_byte(dev, PHYPR);
write_nic_byte(dev, PHYPR, (u1DA | BIT2));
/* POWER: */
write_nic_word(dev, 0x360, 0x1000);
write_nic_word(dev, 0x362, 0x1000);
/* AFE. */
write_nic_word(dev, 0x370, 0x0560);
write_nic_word(dev, 0x372, 0x0560);
write_nic_word(dev, 0x374, 0x0DA4);
write_nic_word(dev, 0x376, 0x0DA4);
write_nic_word(dev, 0x378, 0x0560);
write_nic_word(dev, 0x37A, 0x0560);
write_nic_word(dev, 0x37C, 0x00EC);
write_nic_word(dev, 0x37E, 0x00EC); /*+edward */
write_nic_byte(dev, 0x24E, 0x01);
}
u8
GetSupportedWirelessMode8185(
struct net_device *dev
)
{
u8 btSupportedWirelessMode = 0;
btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
return btSupportedWirelessMode;
}
void
ActUpdateChannelAccessSetting(
struct net_device *dev,
WIRELESS_MODE WirelessMode,
PCHANNEL_ACCESS_SETTING ChnlAccessSetting
)
{
struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
AC_CODING eACI;
AC_PARAM AcParam;
u8 bFollowLegacySetting = 0;
u8 u1bAIFS;
/*
<RJ_TODO_8185B>
TODO: We still don't know how to set up these registers, just follow WMAC to
verify 8185B FPAG.
<RJ_TODO_8185B>
Jong said CWmin/CWmax register are not functional in 8185B,
so we shall fill channel access realted register into AC parameter registers,
even in nQBss.
*/
ChnlAccessSetting->SIFS_Timer = 0x22; /* Suggested by Jong, 2005.12.08. */
ChnlAccessSetting->DIFS_Timer = 0x1C; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->SlotTimeTimer = 9; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->EIFS_Timer = 0x5B; /* Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
ChnlAccessSetting->CWminIndex = 3; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->CWmaxIndex = 7; /* 2006.06.02, by rcnjko. */
write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); /* Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29. */
u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer);
write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
write_nic_byte(dev, AckTimeOutReg, 0x5B); /* <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
{ /* Legacy 802.11. */
bFollowLegacySetting = 1;
}
/* this setting is copied from rtl8187B. xiong-2006-11-13 */
if (bFollowLegacySetting) {
/*
Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
2005.12.01, by rcnjko.
*/
AcParam.longData = 0;
AcParam.f.AciAifsn.f.AIFSN = 2; /* Follow 802.11 DIFS. */
AcParam.f.AciAifsn.f.ACM = 0;
AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; /* Follow 802.11 CWmin. */
AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; /* Follow 802.11 CWmax. */
AcParam.f.TXOPLimit = 0;
/* lzm reserved 080826 */
/* For turbo mode setting. port from 87B by Isaiah 2008-08-01 */
if (ieee->current_network.Turbo_Enable == 1)
AcParam.f.TXOPLimit = 0x01FF;
/* For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB) */
if (ieee->iw_mode == IW_MODE_ADHOC)
AcParam.f.TXOPLimit = 0x0020;
for (eACI = 0; eACI < AC_MAX; eACI++) {
AcParam.f.AciAifsn.f.ACI = (u8)eACI;
{
PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam);
AC_CODING eACI;
u8 u1bAIFS;
u32 u4bAcParam;
/* Retrive paramters to udpate. */
eACI = pAcParam->f.AciAifsn.f.ACI;
u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
u4bAcParam = ((((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) |
(((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
switch (eACI) {
case AC1_BK:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
case AC0_BE:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
case AC2_VI:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
case AC3_VO:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
default:
DMESGW("SetHwReg8185(): invalid ACI: %d !\n", eACI);
break;
}
/* Cehck ACM bit. */
/* If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13. */
{
PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
AC_CODING eACI = pAciAifsn->f.ACI;
/*modified Joseph */
/*for 8187B AsynIORead issue */
u8 AcmCtrl = 0;
if (pAciAifsn->f.ACM) {
/* ACM bit is 1. */
switch (eACI) {
case AC0_BE:
AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); /* or 0x21 */
break;
case AC2_VI:
AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); /* or 0x42 */
break;
case AC3_VO:
AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); /* or 0x84 */
break;
default:
DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI);
break;
}
} else {
/* ACM bit is 0. */
switch (eACI) {
case AC0_BE:
AcmCtrl &= ((~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xDE */
break;
case AC2_VI:
AcmCtrl &= ((~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xBD */
break;
case AC3_VO:
AcmCtrl &= ((~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0x7B */
break;
default:
break;
}
}
write_nic_byte(dev, ACM_CONTROL, 0);
}
}
}
}
}
void
ActSetWirelessMode8185(
struct net_device *dev,
u8 btWirelessMode
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if ((btWirelessMode & btSupportedWirelessMode) == 0) {
/* Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko. */
DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
btWirelessMode, btSupportedWirelessMode);
return;
}
/* 1. Assign wireless mode to swtich if necessary. */
if (btWirelessMode == WIRELESS_MODE_AUTO) {
if ((btSupportedWirelessMode & WIRELESS_MODE_A)) {
btWirelessMode = WIRELESS_MODE_A;
} else if (btSupportedWirelessMode & WIRELESS_MODE_G) {
btWirelessMode = WIRELESS_MODE_G;
} else if ((btSupportedWirelessMode & WIRELESS_MODE_B)) {
btWirelessMode = WIRELESS_MODE_B;
} else {
DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
btSupportedWirelessMode);
btWirelessMode = WIRELESS_MODE_B;
}
}
/* 2. Swtich band: RF or BB specific actions,
* for example, refresh tables in omc8255, or change initial gain if necessary.
* Nothing to do for Zebra to switch band.
* Update current wireless mode if we swtich to specified band successfully. */
ieee->mode = (WIRELESS_MODE)btWirelessMode;
/* 3. Change related setting. */
if( ieee->mode == WIRELESS_MODE_A ) {
DMESG("WIRELESS_MODE_A\n");
} else if( ieee->mode == WIRELESS_MODE_B ) {
DMESG("WIRELESS_MODE_B\n");
} else if( ieee->mode == WIRELESS_MODE_G ) {
DMESG("WIRELESS_MODE_G\n");
}
ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
}
void rtl8185b_irq_enable(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
priv->irq_enabled = 1;
write_nic_dword(dev, IMR, priv->IntrMask);
}
/* by amy for power save */
void
DrvIFIndicateDisassociation(
struct net_device *dev,
u16 reason
)
{
/* nothing is needed after disassociation request. */
}
void
MgntDisconnectIBSS(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i;
DrvIFIndicateDisassociation(dev, unspec_reason);
for (i = 0; i < 6 ; i++)
priv->ieee80211->current_network.bssid[i] = 0x55;
priv->ieee80211->state = IEEE80211_NOLINK;
/*
Stop Beacon.
Vista add a Adhoc profile, HW radio off until OID_DOT11_RESET_REQUEST
Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
Disable Beacon Queue Own bit, suggested by jong */
ieee80211_stop_send_beacons(priv->ieee80211);
priv->ieee80211->link_change(dev);
notify_wx_assoc_event(priv->ieee80211);
}
void
MlmeDisassociateRequest(
struct net_device *dev,
u8 *asSta,
u8 asRsn
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i;
SendDisassociation(priv->ieee80211, asSta, asRsn);
if (memcmp(priv->ieee80211->current_network.bssid, asSta, 6) == 0) {
/*ShuChen TODO: change media status. */
/*ShuChen TODO: What to do when disassociate. */
DrvIFIndicateDisassociation(dev, unspec_reason);
for (i = 0; i < 6; i++)
priv->ieee80211->current_network.bssid[i] = 0x22;
ieee80211_disassociate(priv->ieee80211);
}
}
void
MgntDisconnectAP(
struct net_device *dev,
u8 asRsn
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/*
Commented out by rcnjko, 2005.01.27:
I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
2004.10.11, by rcnjko. */
MlmeDisassociateRequest(dev, priv->ieee80211->current_network.bssid, asRsn);
priv->ieee80211->state = IEEE80211_NOLINK;
}
bool
MgntDisconnect(
struct net_device *dev,
u8 asRsn
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/*
Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
*/
if (IS_DOT11D_ENABLE(priv->ieee80211))
Dot11d_Reset(priv->ieee80211);
/* In adhoc mode, update beacon frame. */
if (priv->ieee80211->state == IEEE80211_LINKED) {
if (priv->ieee80211->iw_mode == IW_MODE_ADHOC)
MgntDisconnectIBSS(dev);
if (priv->ieee80211->iw_mode == IW_MODE_INFRA) {
/* We clear key here instead of MgntDisconnectAP() because that
MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
used to handle disassociation related things to AP, e.g. send Disassoc
frame to AP. 2005.01.27, by rcnjko. */
MgntDisconnectAP(dev, asRsn);
}
/* Inidicate Disconnect, 2005.02.23, by rcnjko. */
}
return true;
}
/*
Description:
Chang RF Power State.
Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
Assumption:
PASSIVE LEVEL.
*/
bool
SetRFPowerState(
struct net_device *dev,
RT_RF_POWER_STATE eRFPowerState
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bResult = false;
if (eRFPowerState == priv->eRFPowerState)
return bResult;
bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
return bResult;
}
void
HalEnableRx8185Dummy(
struct net_device *dev
)
{
}
void
HalDisableRx8185Dummy(
struct net_device *dev
)
{
}
bool
MgntActSet_RF_State(
struct net_device *dev,
RT_RF_POWER_STATE StateToSet,
u32 ChangeSource
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bActionAllowed = false;
bool bConnectBySSID = false;
RT_RF_POWER_STATE rtState;
u16 RFWaitCounter = 0;
unsigned long flag;
/*
Prevent the race condition of RF state change. By Bruce, 2007-11-28.
Only one thread can change the RF state at one time, and others should wait to be executed.
*/
while (true) {
spin_lock_irqsave(&priv->rf_ps_lock, flag);
if (priv->RFChangeInProgress) {
spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
/* Set RF after the previous action is done. */
while (priv->RFChangeInProgress) {
RFWaitCounter++;
udelay(1000); /* 1 ms */
/* Wait too long, return FALSE to avoid to be stuck here. */
if (RFWaitCounter > 1000) { /* 1sec */
printk("MgntActSet_RF_State(): Wait too long to set RF\n");
/* TODO: Reset RF state? */
return false;
}
}
} else {
priv->RFChangeInProgress = true;
spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
break;
}
}
rtState = priv->eRFPowerState;
switch (StateToSet) {
case eRfOn:
/*
Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
*/
priv->RfOffReason &= (~ChangeSource);
if (!priv->RfOffReason) {
priv->RfOffReason = 0;
bActionAllowed = true;
if (rtState == eRfOff && ChangeSource >= RF_CHANGE_BY_HW && !priv->bInHctTest)
bConnectBySSID = true;
} else
;
break;
case eRfOff:
/* 070125, rcnjko: we always keep connected in AP mode. */
if (priv->RfOffReason > RF_CHANGE_BY_IPS) {
/*
060808, Annie:
Disconnect to current BSS when radio off. Asked by QuanTa.
Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
because we do NOT need to set ssid to dummy ones.
*/
MgntDisconnect(dev, disas_lv_ss);
/* Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI. */
}
priv->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
case eRfSleep:
priv->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
default:
break;
}
if (bActionAllowed) {
/* Config HW to the specified mode. */
SetRFPowerState(dev, StateToSet);
/* Turn on RF. */
if (StateToSet == eRfOn) {
HalEnableRx8185Dummy(dev);
if (bConnectBySSID) {
/* by amy not supported */
}
}
/* Turn off RF. */
else if (StateToSet == eRfOff)
HalDisableRx8185Dummy(dev);
}
/* Release RF spinlock */
spin_lock_irqsave(&priv->rf_ps_lock, flag);
priv->RFChangeInProgress = false;
spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
return bActionAllowed;
}
void
InactivePowerSave(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/*
This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
is really scheduled.
The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
blocks the IPS procedure of switching RF.
*/
priv->bSwRfProcessing = true;
MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
/*
To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
*/
priv->bSwRfProcessing = false;
}
/*
Description:
Enter the inactive power save mode. RF will be off
*/
void
IPSEnter(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState;
if (priv->bInactivePs) {
rtState = priv->eRFPowerState;
/*
Do not enter IPS in the following conditions:
(1) RF is already OFF or Sleep
(2) bSwRfProcessing (indicates the IPS is still under going)
(3) Connectted (only disconnected can trigger IPS)
(4) IBSS (send Beacon)
(5) AP mode (send Beacon)
*/
if (rtState == eRfOn && !priv->bSwRfProcessing
&& (priv->ieee80211->state != IEEE80211_LINKED)) {
priv->eInactivePowerState = eRfOff;
InactivePowerSave(dev);
}
}
}
void
IPSLeave(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState;
if (priv->bInactivePs) {
rtState = priv->eRFPowerState;
if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS) {
priv->eInactivePowerState = eRfOn;
InactivePowerSave(dev);
}
}
}
void rtl8185b_adapter_start(struct net_device *dev)
{
struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
u8 SupportedWirelessMode;
u8 InitWirelessMode;
u8 bInvalidWirelessMode = 0;
u8 tmpu8;
u8 btCR9346;
u8 TmpU1b;
u8 btPSR;
write_nic_byte(dev, 0x24e, (BIT5|BIT6|BIT0));
rtl8180_reset(dev);
priv->dma_poll_mask = 0;
priv->dma_poll_stop_mask = 0;
HwConfigureRTL8185(dev);
write_nic_dword(dev, MAC0, ((u32 *)dev->dev_addr)[0]);
write_nic_word(dev, MAC4, ((u32 *)dev->dev_addr)[1] & 0xffff);
write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); /* default network type to 'No Link' */
write_nic_word(dev, BcnItv, 100);
write_nic_word(dev, AtimWnd, 2);
PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
write_nic_byte(dev, WPA_CONFIG, 0);
MacConfig_85BASIC(dev);
/* Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko. */
/* BT_DEMO_BOARD type */
PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
/*
-----------------------------------------------------------------------------
Set up PHY related.
-----------------------------------------------------------------------------
*/
/* Enable Config3.PARAM_En to revise AnaaParm. */
write_nic_byte(dev, CR9346, 0xc0); /* enable config register write */
tmpu8 = read_nic_byte(dev, CONFIG3);
write_nic_byte(dev, CONFIG3, (tmpu8 | CONFIG3_PARM_En));
/* Turn on Analog power. */
/* Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko. */
write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
write_nic_word(dev, ANAPARAM3, 0x0010);
write_nic_byte(dev, CONFIG3, tmpu8);
write_nic_byte(dev, CR9346, 0x00);
/* enable EEM0 and EEM1 in 9346CR */
btCR9346 = read_nic_byte(dev, CR9346);
write_nic_byte(dev, CR9346, (btCR9346 | 0xC0));
/* B cut use LED1 to control HW RF on/off */
TmpU1b = read_nic_byte(dev, CONFIG5);
TmpU1b = TmpU1b & ~BIT3;
write_nic_byte(dev, CONFIG5, TmpU1b);
/* disable EEM0 and EEM1 in 9346CR */
btCR9346 &= ~(0xC0);
write_nic_byte(dev, CR9346, btCR9346);
/* Enable Led (suggested by Jong) */
/* B-cut RF Radio on/off 5e[3]=0 */
btPSR = read_nic_byte(dev, PSR);
write_nic_byte(dev, PSR, (btPSR | BIT3));
/* setup initial timing for RFE. */
write_nic_word(dev, RFPinsOutput, 0x0480);
SetOutputEnableOfRfPins(dev);
write_nic_word(dev, RFPinsSelect, 0x2488);
/* PHY config. */
PhyConfig8185(dev);
/*
We assume RegWirelessMode has already been initialized before,
however, we has to validate the wireless mode here and provide a
reasonable initialized value if necessary. 2005.01.13, by rcnjko.
*/
SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if ((ieee->mode != WIRELESS_MODE_B) &&
(ieee->mode != WIRELESS_MODE_G) &&
(ieee->mode != WIRELESS_MODE_A) &&
(ieee->mode != WIRELESS_MODE_AUTO)) {
/* It should be one of B, G, A, or AUTO. */
bInvalidWirelessMode = 1;
} else {
/* One of B, G, A, or AUTO. */
/* Check if the wireless mode is supported by RF. */
if ((ieee->mode != WIRELESS_MODE_AUTO) &&
(ieee->mode & SupportedWirelessMode) == 0) {
bInvalidWirelessMode = 1;
}
}
if (bInvalidWirelessMode || ieee->mode == WIRELESS_MODE_AUTO) {
/* Auto or other invalid value. */
/* Assigne a wireless mode to initialize. */
if ((SupportedWirelessMode & WIRELESS_MODE_A)) {
InitWirelessMode = WIRELESS_MODE_A;
} else if ((SupportedWirelessMode & WIRELESS_MODE_G)) {
InitWirelessMode = WIRELESS_MODE_G;
} else if ((SupportedWirelessMode & WIRELESS_MODE_B)) {
InitWirelessMode = WIRELESS_MODE_B;
} else {
DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
SupportedWirelessMode);
InitWirelessMode = WIRELESS_MODE_B;
}
/* Initialize RegWirelessMode if it is not a valid one. */
if (bInvalidWirelessMode)
ieee->mode = (WIRELESS_MODE)InitWirelessMode;
} else {
/* One of B, G, A. */
InitWirelessMode = ieee->mode;
}
/* by amy for power save */
priv->eRFPowerState = eRfOff;
priv->RfOffReason = 0;
{
MgntActSet_RF_State(dev, eRfOn, 0);
}
/*
If inactive power mode is enabled, disable rf while in disconnected state.
*/
if (priv->bInactivePs)
MgntActSet_RF_State(dev , eRfOff, RF_CHANGE_BY_IPS);
/* by amy for power save */
ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
/* ----------------------------------------------------------------------------- */
rtl8185b_irq_enable(dev);
netif_start_queue(dev);
}
void rtl8185b_rx_enable(struct net_device *dev)
{
u8 cmd;
/* for now we accept data, management & ctl frame*/
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
if (dev->flags & IFF_PROMISC)
DMESG("NIC in promisc mode");
if (priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
dev->flags & IFF_PROMISC) {
priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
}
if (priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
if (priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
write_nic_dword(dev, RCR, priv->ReceiveConfig);
fix_rx_fifo(dev);
cmd = read_nic_byte(dev, CMD);
write_nic_byte(dev, CMD, cmd | (1<<CMD_RX_ENABLE_SHIFT));
}
void rtl8185b_tx_enable(struct net_device *dev)
{
u8 cmd;
u8 byte;
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, TCR, priv->TransmitConfig);
byte = read_nic_byte(dev, MSR);
byte |= MSR_LINK_ENEDCA;
write_nic_byte(dev, MSR, byte);
fix_tx_fifo(dev);
cmd = read_nic_byte(dev, CMD);
write_nic_byte(dev, CMD, cmd | (1<<CMD_TX_ENABLE_SHIFT));
}