blob: 16e939fa15d64190dfd5835a4268d25baf332c2a [file] [log] [blame]
#include "headers.h"
#define STATUS_IMAGE_CHECKSUM_MISMATCH -199
#define EVENT_SIGNALED 1
static B_UINT16 CFG_CalculateChecksum(B_UINT8 *pu8Buffer, B_UINT32 u32Size)
{
B_UINT16 u16CheckSum=0;
while(u32Size--) {
u16CheckSum += (B_UINT8)~(*pu8Buffer);
pu8Buffer++;
}
return u16CheckSum;
}
BOOLEAN IsReqGpioIsLedInNVM(PMINI_ADAPTER Adapter, UINT gpios)
{
INT Status ;
Status = (Adapter->gpioBitMap & gpios) ^ gpios ;
if(Status)
return FALSE;
else
return TRUE;
}
static INT LED_Blink(PMINI_ADAPTER Adapter, UINT GPIO_Num, UCHAR uiLedIndex, ULONG timeout, INT num_of_time, LedEventInfo_t currdriverstate)
{
int Status = STATUS_SUCCESS;
BOOLEAN bInfinite = FALSE;
/*Check if num_of_time is -ve. If yes, blink led in infinite loop*/
if(num_of_time < 0)
{
bInfinite = TRUE;
num_of_time = 1;
}
while(num_of_time)
{
if(currdriverstate == Adapter->DriverState)
TURN_ON_LED(GPIO_Num, uiLedIndex);
/*Wait for timeout after setting on the LED*/
Status = wait_event_interruptible_timeout(Adapter->LEDInfo.notify_led_event,
currdriverstate != Adapter->DriverState || kthread_should_stop(),
msecs_to_jiffies(timeout));
if(kthread_should_stop())
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting");
Adapter->LEDInfo.led_thread_running= BCM_LED_THREAD_DISABLED;
TURN_OFF_LED(GPIO_Num, uiLedIndex);
Status=EVENT_SIGNALED;
break;
}
if(Status)
{
TURN_OFF_LED(GPIO_Num, uiLedIndex);
Status=EVENT_SIGNALED;
break;
}
TURN_OFF_LED(GPIO_Num, uiLedIndex);
Status = wait_event_interruptible_timeout(Adapter->LEDInfo.notify_led_event,
currdriverstate!= Adapter->DriverState || kthread_should_stop(),
msecs_to_jiffies(timeout));
if(bInfinite == FALSE)
num_of_time--;
}
return Status;
}
static INT ScaleRateofTransfer(ULONG rate)
{
if(rate <= 3)
return rate;
else if((rate > 3) && (rate <= 100))
return 5;
else if((rate > 100) && (rate <= 200))
return 6;
else if((rate > 200) && (rate <= 300))
return 7;
else if((rate > 300) && (rate <= 400))
return 8;
else if((rate > 400) && (rate <= 500))
return 9;
else if((rate > 500) && (rate <= 600))
return 10;
else
return MAX_NUM_OF_BLINKS;
}
static INT LED_Proportional_Blink(PMINI_ADAPTER Adapter, UCHAR GPIO_Num_tx,
UCHAR uiTxLedIndex, UCHAR GPIO_Num_rx, UCHAR uiRxLedIndex, LedEventInfo_t currdriverstate)
{
/* Initial values of TX and RX packets*/
ULONG64 Initial_num_of_packts_tx = 0, Initial_num_of_packts_rx = 0;
/*values of TX and RX packets after 1 sec*/
ULONG64 Final_num_of_packts_tx = 0, Final_num_of_packts_rx = 0;
/*Rate of transfer of Tx and Rx in 1 sec*/
ULONG64 rate_of_transfer_tx = 0, rate_of_transfer_rx = 0;
int Status = STATUS_SUCCESS;
INT num_of_time = 0, num_of_time_tx = 0, num_of_time_rx = 0;
UINT remDelay = 0;
BOOLEAN bBlinkBothLED = TRUE;
//UINT GPIO_num = DISABLE_GPIO_NUM;
ulong timeout = 0;
/*Read initial value of packets sent/received */
Initial_num_of_packts_tx = Adapter->dev->stats.tx_packets;
Initial_num_of_packts_rx = Adapter->dev->stats.rx_packets;
/*Scale the rate of transfer to no of blinks.*/
num_of_time_tx= ScaleRateofTransfer((ULONG)rate_of_transfer_tx);
num_of_time_rx= ScaleRateofTransfer((ULONG)rate_of_transfer_rx);
while((Adapter->device_removed == FALSE))
{
timeout = 50;
/*Blink Tx and Rx LED when both Tx and Rx is in normal bandwidth*/
if(bBlinkBothLED)
{
/*Assign minimum number of blinks of either Tx or Rx.*/
if(num_of_time_tx > num_of_time_rx)
num_of_time = num_of_time_rx;
else
num_of_time = num_of_time_tx;
if(num_of_time > 0)
{
/*Blink both Tx and Rx LEDs*/
if(LED_Blink(Adapter, 1<<GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time,currdriverstate)
== EVENT_SIGNALED)
{
return EVENT_SIGNALED;
}
if(LED_Blink(Adapter, 1<<GPIO_Num_rx, uiRxLedIndex, timeout, num_of_time,currdriverstate)
== EVENT_SIGNALED)
{
return EVENT_SIGNALED;
}
}
if(num_of_time == num_of_time_tx)
{
/*Blink pending rate of Rx*/
if(LED_Blink(Adapter, (1 << GPIO_Num_rx), uiRxLedIndex, timeout,
num_of_time_rx-num_of_time,currdriverstate) == EVENT_SIGNALED)
{
return EVENT_SIGNALED;
}
num_of_time = num_of_time_rx;
}
else
{
/*Blink pending rate of Tx*/
if(LED_Blink(Adapter, 1<<GPIO_Num_tx, uiTxLedIndex, timeout,
num_of_time_tx-num_of_time,currdriverstate) == EVENT_SIGNALED)
{
return EVENT_SIGNALED;
}
num_of_time = num_of_time_tx;
}
}
else
{
if(num_of_time == num_of_time_tx)
{
/*Blink pending rate of Rx*/
if(LED_Blink(Adapter, 1<<GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time,currdriverstate)
== EVENT_SIGNALED)
{
return EVENT_SIGNALED;
}
}
else
{
/*Blink pending rate of Tx*/
if(LED_Blink(Adapter, 1<<GPIO_Num_rx, uiRxLedIndex, timeout,
num_of_time,currdriverstate) == EVENT_SIGNALED)
{
return EVENT_SIGNALED;
}
}
}
/* If Tx/Rx rate is less than maximum blinks per second,
* wait till delay completes to 1 second
*/
remDelay = MAX_NUM_OF_BLINKS - num_of_time;
if(remDelay > 0)
{
timeout= 100 * remDelay;
Status = wait_event_interruptible_timeout(Adapter->LEDInfo.notify_led_event,
currdriverstate!= Adapter->DriverState ||kthread_should_stop() ,
msecs_to_jiffies (timeout));
if(kthread_should_stop())
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting");
Adapter->LEDInfo.led_thread_running= BCM_LED_THREAD_DISABLED;
return EVENT_SIGNALED;
}
if(Status)
return EVENT_SIGNALED;
}
/*Turn off both Tx and Rx LEDs before next second*/
TURN_OFF_LED(1<<GPIO_Num_tx, uiTxLedIndex);
TURN_OFF_LED(1<<GPIO_Num_rx, uiTxLedIndex);
/*
* Read the Tx & Rx packets transmission after 1 second and
* calculate rate of transfer
*/
Final_num_of_packts_tx = Adapter->dev->stats.tx_packets;
Final_num_of_packts_rx = Adapter->dev->stats.rx_packets;
rate_of_transfer_tx = Final_num_of_packts_tx - Initial_num_of_packts_tx;
rate_of_transfer_rx = Final_num_of_packts_rx - Initial_num_of_packts_rx;
/*Read initial value of packets sent/received */
Initial_num_of_packts_tx = Final_num_of_packts_tx;
Initial_num_of_packts_rx = Final_num_of_packts_rx ;
/*Scale the rate of transfer to no of blinks.*/
num_of_time_tx= ScaleRateofTransfer((ULONG)rate_of_transfer_tx);
num_of_time_rx= ScaleRateofTransfer((ULONG)rate_of_transfer_rx);
}
return Status;
}
//-----------------------------------------------------------------------------
// Procedure: ValidateDSDParamsChecksum
//
// Description: Reads DSD Params and validates checkusm.
//
// Arguments:
// Adapter - Pointer to Adapter structure.
// ulParamOffset - Start offset of the DSD parameter to be read and validated.
// usParamLen - Length of the DSD Parameter.
//
// Returns:
// <OSAL_STATUS_CODE>
//-----------------------------------------------------------------------------
static INT ValidateDSDParamsChecksum(
PMINI_ADAPTER Adapter,
ULONG ulParamOffset,
USHORT usParamLen )
{
INT Status = STATUS_SUCCESS;
PUCHAR puBuffer = NULL;
USHORT usChksmOrg = 0;
USHORT usChecksumCalculated = 0;
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread:ValidateDSDParamsChecksum: 0x%lx 0x%X",ulParamOffset, usParamLen);
puBuffer = kmalloc(usParamLen, GFP_KERNEL);
if(!puBuffer)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: ValidateDSDParamsChecksum Allocation failed");
return -ENOMEM;
}
//
// Read the DSD data from the parameter offset.
//
if(STATUS_SUCCESS != BeceemNVMRead(Adapter,(PUINT)puBuffer,ulParamOffset,usParamLen))
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed");
Status=STATUS_IMAGE_CHECKSUM_MISMATCH;
goto exit;
}
//
// Calculate the checksum of the data read from the DSD parameter.
//
usChecksumCalculated = CFG_CalculateChecksum(puBuffer,usParamLen);
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: usCheckSumCalculated = 0x%x\n", usChecksumCalculated);
//
// End of the DSD parameter will have a TWO bytes checksum stored in it. Read it and compare with the calculated
// Checksum.
//
if(STATUS_SUCCESS != BeceemNVMRead(Adapter,(PUINT)&usChksmOrg,ulParamOffset+usParamLen,2))
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed");
Status=STATUS_IMAGE_CHECKSUM_MISMATCH;
goto exit;
}
usChksmOrg = ntohs(usChksmOrg);
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: usChksmOrg = 0x%x", usChksmOrg);
//
// Compare the checksum calculated with the checksum read from DSD section
//
if(usChecksumCalculated ^ usChksmOrg)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: ValidateDSDParamsChecksum: Checksums don't match");
Status = STATUS_IMAGE_CHECKSUM_MISMATCH;
goto exit;
}
exit:
kfree(puBuffer);
return Status;
}
//-----------------------------------------------------------------------------
// Procedure: ValidateHWParmStructure
//
// Description: Validates HW Parameters.
//
// Arguments:
// Adapter - Pointer to Adapter structure.
// ulHwParamOffset - Start offset of the HW parameter Section to be read and validated.
//
// Returns:
// <OSAL_STATUS_CODE>
//-----------------------------------------------------------------------------
static INT ValidateHWParmStructure(PMINI_ADAPTER Adapter, ULONG ulHwParamOffset)
{
INT Status = STATUS_SUCCESS ;
USHORT HwParamLen = 0;
// Add DSD start offset to the hwParamOffset to get the actual address.
ulHwParamOffset += DSD_START_OFFSET;
/*Read the Length of HW_PARAM structure*/
BeceemNVMRead(Adapter,(PUINT)&HwParamLen,ulHwParamOffset,2);
HwParamLen = ntohs(HwParamLen);
if(0==HwParamLen || HwParamLen > Adapter->uiNVMDSDSize)
{
return STATUS_IMAGE_CHECKSUM_MISMATCH;
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread:HwParamLen = 0x%x", HwParamLen);
Status =ValidateDSDParamsChecksum(Adapter,ulHwParamOffset,HwParamLen);
return Status;
} /* ValidateHWParmStructure() */
static int ReadLEDInformationFromEEPROM(PMINI_ADAPTER Adapter, UCHAR GPIO_Array[])
{
int Status = STATUS_SUCCESS;
ULONG dwReadValue = 0;
USHORT usHwParamData = 0;
USHORT usEEPROMVersion = 0;
UCHAR ucIndex = 0;
UCHAR ucGPIOInfo[32] = {0};
BeceemNVMRead(Adapter,(PUINT)&usEEPROMVersion,EEPROM_VERSION_OFFSET,2);
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"usEEPROMVersion: Minor:0x%X Major:0x%x",usEEPROMVersion&0xFF, ((usEEPROMVersion>>8)&0xFF));
if(((usEEPROMVersion>>8)&0xFF) < EEPROM_MAP5_MAJORVERSION)
{
BeceemNVMRead(Adapter,(PUINT)&usHwParamData,EEPROM_HW_PARAM_POINTER_ADDRESS,2);
usHwParamData = ntohs(usHwParamData);
dwReadValue = usHwParamData;
}
else
{
//
// Validate Compatibility section and then read HW param if compatibility section is valid.
//
Status = ValidateDSDParamsChecksum(Adapter,
DSD_START_OFFSET,
COMPATIBILITY_SECTION_LENGTH_MAP5);
if(Status != STATUS_SUCCESS)
{
return Status;
}
BeceemNVMRead(Adapter,(PUINT)&dwReadValue,EEPROM_HW_PARAM_POINTER_ADDRRES_MAP5,4);
dwReadValue = ntohl(dwReadValue);
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: Start address of HW_PARAM structure = 0x%lx",dwReadValue);
//
// Validate if the address read out is within the DSD.
// Adapter->uiNVMDSDSize gives whole DSD size inclusive of Autoinit.
// lower limit should be above DSD_START_OFFSET and
// upper limit should be below (Adapter->uiNVMDSDSize-DSD_START_OFFSET)
//
if(dwReadValue < DSD_START_OFFSET ||
dwReadValue > (Adapter->uiNVMDSDSize-DSD_START_OFFSET))
{
return STATUS_IMAGE_CHECKSUM_MISMATCH;
}
Status = ValidateHWParmStructure(Adapter, dwReadValue);
if(Status){
return Status;
}
/*
Add DSD_START_OFFSET to the offset read from the EEPROM.
This will give the actual start HW Parameters start address.
To read GPIO section, add GPIO offset further.
*/
dwReadValue += DSD_START_OFFSET; // = start address of hw param section.
dwReadValue += GPIO_SECTION_START_OFFSET; // = GPIO start offset within HW Param section.
/* Read the GPIO values for 32 GPIOs from EEPROM and map the function
* number to GPIO pin number to GPIO_Array
*/
BeceemNVMRead(Adapter, (UINT *)ucGPIOInfo,dwReadValue,32);
for(ucIndex = 0; ucIndex < 32; ucIndex++)
{
switch(ucGPIOInfo[ucIndex])
{
case RED_LED:
{
GPIO_Array[RED_LED] = ucIndex;
Adapter->gpioBitMap |= (1<<ucIndex);
break;
}
case BLUE_LED:
{
GPIO_Array[BLUE_LED] = ucIndex;
Adapter->gpioBitMap |= (1<<ucIndex);
break;
}
case YELLOW_LED:
{
GPIO_Array[YELLOW_LED] = ucIndex;
Adapter->gpioBitMap |= (1<<ucIndex);
break;
}
case GREEN_LED:
{
GPIO_Array[GREEN_LED] = ucIndex;
Adapter->gpioBitMap |= (1<<ucIndex);
break;
}
default:
break;
}
}
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"GPIO's bit map correspond to LED :0x%X",Adapter->gpioBitMap);
return Status;
}
static int ReadConfigFileStructure(PMINI_ADAPTER Adapter, BOOLEAN *bEnableThread)
{
int Status = STATUS_SUCCESS;
UCHAR GPIO_Array[NUM_OF_LEDS+1]; /*Array to store GPIO numbers from EEPROM*/
UINT uiIndex = 0;
UINT uiNum_of_LED_Type = 0;
PUCHAR puCFGData = NULL;
UCHAR bData = 0;
memset(GPIO_Array, DISABLE_GPIO_NUM, NUM_OF_LEDS+1);
if(!Adapter->pstargetparams || IS_ERR(Adapter->pstargetparams))
{
BCM_DEBUG_PRINT (Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Target Params not Avail.\n");
return -ENOENT;
}
/*Populate GPIO_Array with GPIO numbers for LED functions*/
/*Read the GPIO numbers from EEPROM*/
Status = ReadLEDInformationFromEEPROM(Adapter, GPIO_Array);
if(Status == STATUS_IMAGE_CHECKSUM_MISMATCH)
{
*bEnableThread = FALSE;
return STATUS_SUCCESS;
}
else if(Status)
{
*bEnableThread = FALSE;
return Status;
}
/*
* CONFIG file read successfully. Deallocate the memory of
* uiFileNameBufferSize
*/
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: Config file read successfully\n");
puCFGData = (PUCHAR) &Adapter->pstargetparams->HostDrvrConfig1;
/*
* Offset for HostDrvConfig1, HostDrvConfig2, HostDrvConfig3 which
* will have the information of LED type, LED on state for different
* driver state and LED blink state.
*/
for(uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
bData = *puCFGData;
/*Check Bit 8 for polarity. If it is set, polarity is reverse polarity*/
if(bData & 0x80)
{
Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 0;
/*unset the bit 8*/
bData = bData & 0x7f;
}
Adapter->LEDInfo.LEDState[uiIndex].LED_Type = bData;
if(bData <= NUM_OF_LEDS)
Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num = GPIO_Array[bData];
else
Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num = DISABLE_GPIO_NUM;
puCFGData++;
bData = *puCFGData;
Adapter->LEDInfo.LEDState[uiIndex].LED_On_State = bData;
puCFGData++;
bData = *puCFGData;
Adapter->LEDInfo.LEDState[uiIndex].LED_Blink_State= bData;
puCFGData++;
}
/*Check if all the LED settings are disabled. If it is disabled, dont launch the LED control thread.*/
for(uiIndex = 0; uiIndex<NUM_OF_LEDS; uiIndex++)
{
if((Adapter->LEDInfo.LEDState[uiIndex].LED_Type == DISABLE_GPIO_NUM) ||
(Adapter->LEDInfo.LEDState[uiIndex].LED_Type == 0x7f) ||
(Adapter->LEDInfo.LEDState[uiIndex].LED_Type == 0))
uiNum_of_LED_Type++;
}
if(uiNum_of_LED_Type >= NUM_OF_LEDS)
*bEnableThread = FALSE;
return Status;
}
//--------------------------------------------------------------------------
// Procedure: LedGpioInit
//
// Description: Initializes LED GPIOs. Makes the LED GPIOs to OUTPUT mode and make the
// initial state to be OFF.
//
// Arguments:
// Adapter - Pointer to MINI_ADAPTER structure.
//
// Returns: VOID
//
//-----------------------------------------------------------------------------
static VOID LedGpioInit(PMINI_ADAPTER Adapter)
{
UINT uiResetValue = 0;
UINT uiIndex = 0;
/* Set all LED GPIO Mode to output mode */
if(rdmalt(Adapter, GPIO_MODE_REGISTER, &uiResetValue, sizeof(uiResetValue)) <0)
BCM_DEBUG_PRINT (Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: RDM Failed\n");
for(uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if(Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM)
uiResetValue |= (1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num);
TURN_OFF_LED(1<<Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num,uiIndex);
}
if(wrmalt(Adapter, GPIO_MODE_REGISTER, &uiResetValue, sizeof(uiResetValue)) < 0)
BCM_DEBUG_PRINT (Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: WRM Failed\n");
Adapter->LEDInfo.bIdle_led_off = FALSE;
}
//-----------------------------------------------------------------------------
static INT BcmGetGPIOPinInfo(PMINI_ADAPTER Adapter, UCHAR *GPIO_num_tx, UCHAR *GPIO_num_rx ,UCHAR *uiLedTxIndex, UCHAR *uiLedRxIndex,LedEventInfo_t currdriverstate)
{
UINT uiIndex = 0;
*GPIO_num_tx = DISABLE_GPIO_NUM;
*GPIO_num_rx = DISABLE_GPIO_NUM;
for(uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if((currdriverstate == NORMAL_OPERATION)||
(currdriverstate == IDLEMODE_EXIT)||
(currdriverstate == FW_DOWNLOAD))
{
if(Adapter->LEDInfo.LEDState[uiIndex].LED_Blink_State & currdriverstate)
{
if(Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM)
{
if(*GPIO_num_tx == DISABLE_GPIO_NUM)
{
*GPIO_num_tx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num;
*uiLedTxIndex = uiIndex;
}
else
{
*GPIO_num_rx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num;
*uiLedRxIndex = uiIndex;
}
}
}
}
else
{
if(Adapter->LEDInfo.LEDState[uiIndex].LED_On_State & currdriverstate)
{
if(Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM)
{
*GPIO_num_tx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num;
*uiLedTxIndex = uiIndex;
}
}
}
}
return STATUS_SUCCESS ;
}
static VOID LEDControlThread(PMINI_ADAPTER Adapter)
{
UINT uiIndex = 0;
UCHAR GPIO_num = 0;
UCHAR uiLedIndex = 0 ;
UINT uiResetValue = 0;
LedEventInfo_t currdriverstate = 0;
ulong timeout = 0;
INT Status = 0;
UCHAR dummyGPIONum = 0;
UCHAR dummyIndex = 0;
//currdriverstate = Adapter->DriverState;
Adapter->LEDInfo.bIdleMode_tx_from_host = FALSE;
/*Wait till event is triggered*/
//wait_event(Adapter->LEDInfo.notify_led_event,
// currdriverstate!= Adapter->DriverState);
GPIO_num = DISABLE_GPIO_NUM ;
while(TRUE)
{
/*Wait till event is triggered*/
if( (GPIO_num == DISABLE_GPIO_NUM)
||
((currdriverstate != FW_DOWNLOAD) &&
(currdriverstate != NORMAL_OPERATION) &&
(currdriverstate != LOWPOWER_MODE_ENTER))
||
(currdriverstate == LED_THREAD_INACTIVE) )
{
Status = wait_event_interruptible(Adapter->LEDInfo.notify_led_event,
currdriverstate != Adapter->DriverState || kthread_should_stop());
}
if(kthread_should_stop() || Adapter->device_removed )
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting");
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED;
TURN_OFF_LED(1<<GPIO_num, uiLedIndex);
return ;//STATUS_FAILURE;
}
if(GPIO_num != DISABLE_GPIO_NUM)
{
TURN_OFF_LED(1<<GPIO_num, uiLedIndex);
}
if(Adapter->LEDInfo.bLedInitDone == FALSE)
{
LedGpioInit(Adapter);
Adapter->LEDInfo.bLedInitDone = TRUE;
}
switch(Adapter->DriverState)
{
case DRIVER_INIT:
{
currdriverstate = DRIVER_INIT;//Adapter->DriverState;
BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate);
if(GPIO_num != DISABLE_GPIO_NUM)
{
TURN_ON_LED(1<<GPIO_num, uiLedIndex);
}
}
break;
case FW_DOWNLOAD:
{
//BCM_DEBUG_PRINT (Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: FW_DN_DONE called\n");
currdriverstate = FW_DOWNLOAD;
BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate);
if(GPIO_num != DISABLE_GPIO_NUM)
{
timeout = 50;
LED_Blink(Adapter, 1<<GPIO_num, uiLedIndex, timeout, -1,currdriverstate);
}
}
break;
case FW_DOWNLOAD_DONE:
{
currdriverstate = FW_DOWNLOAD_DONE;
BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex,currdriverstate);
if(GPIO_num != DISABLE_GPIO_NUM)
{
TURN_ON_LED(1<<GPIO_num, uiLedIndex);
}
}
break;
case SHUTDOWN_EXIT:
//no break, continue to NO_NETWORK_ENTRY state as well.
case NO_NETWORK_ENTRY:
{
currdriverstate = NO_NETWORK_ENTRY;
BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex,&dummyGPIONum,currdriverstate);
if(GPIO_num != DISABLE_GPIO_NUM)
{
TURN_ON_LED(1<<GPIO_num, uiLedIndex);
}
}
break;
case NORMAL_OPERATION:
{
UCHAR GPIO_num_tx = DISABLE_GPIO_NUM;
UCHAR GPIO_num_rx = DISABLE_GPIO_NUM;
UCHAR uiLEDTx = 0;
UCHAR uiLEDRx = 0;
currdriverstate = NORMAL_OPERATION;
Adapter->LEDInfo.bIdle_led_off = FALSE;
BcmGetGPIOPinInfo(Adapter, &GPIO_num_tx, &GPIO_num_rx, &uiLEDTx,&uiLEDRx,currdriverstate);
if((GPIO_num_tx == DISABLE_GPIO_NUM) && (GPIO_num_rx == DISABLE_GPIO_NUM))
{
GPIO_num = DISABLE_GPIO_NUM ;
}
else
{
/*If single LED is selected, use same for both Tx and Rx*/
if(GPIO_num_tx == DISABLE_GPIO_NUM)
{
GPIO_num_tx = GPIO_num_rx;
uiLEDTx = uiLEDRx;
}
else if(GPIO_num_rx == DISABLE_GPIO_NUM)
{
GPIO_num_rx = GPIO_num_tx;
uiLEDRx = uiLEDTx;
}
/*Blink the LED in proportionate to Tx and Rx transmissions.*/
LED_Proportional_Blink(Adapter, GPIO_num_tx, uiLEDTx, GPIO_num_rx, uiLEDRx,currdriverstate);
}
}
break;
case LOWPOWER_MODE_ENTER:
{
currdriverstate = LOWPOWER_MODE_ENTER;
if( DEVICE_POWERSAVE_MODE_AS_MANUAL_CLOCK_GATING == Adapter->ulPowerSaveMode)
{
/* Turn OFF all the LED */
uiResetValue = 0;
for(uiIndex =0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if(Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM)
TURN_OFF_LED((1<<Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num),uiIndex);
}
}
/* Turn off LED And WAKE-UP for Sendinf IDLE mode ACK */
Adapter->LEDInfo.bLedInitDone = FALSE;
Adapter->LEDInfo.bIdle_led_off = TRUE;
wake_up(&Adapter->LEDInfo.idleModeSyncEvent);
GPIO_num = DISABLE_GPIO_NUM;
break;
}
case IDLEMODE_CONTINUE:
{
currdriverstate = IDLEMODE_CONTINUE;
GPIO_num = DISABLE_GPIO_NUM;
}
break;
case IDLEMODE_EXIT:
{
}
break;
case DRIVER_HALT:
{
currdriverstate = DRIVER_HALT;
GPIO_num = DISABLE_GPIO_NUM;
for(uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if(Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num !=
DISABLE_GPIO_NUM)
TURN_OFF_LED((1<<Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num),uiIndex);
}
//Adapter->DriverState = DRIVER_INIT;
}
break;
case LED_THREAD_INACTIVE :
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"InActivating LED thread...");
currdriverstate = LED_THREAD_INACTIVE;
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_INACTIVELY ;
Adapter->LEDInfo.bLedInitDone = FALSE ;
//disable ALL LED
for(uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if(Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num !=
DISABLE_GPIO_NUM)
TURN_OFF_LED((1<<Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num),uiIndex);
}
}
break;
case LED_THREAD_ACTIVE :
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"Activating LED thread again...");
if(Adapter->LinkUpStatus == FALSE)
Adapter->DriverState = NO_NETWORK_ENTRY;
else
Adapter->DriverState = NORMAL_OPERATION;
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_ACTIVELY ;
}
break;
//return;
default:
break;
}
}
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED;
}
int InitLedSettings(PMINI_ADAPTER Adapter)
{
int Status = STATUS_SUCCESS;
BOOLEAN bEnableThread = TRUE;
UCHAR uiIndex = 0;
/*Initially set BitPolarity to normal polarity. The bit 8 of LED type
* is used to change the polarity of the LED.*/
for(uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 1;
}
/*Read the LED settings of CONFIG file and map it to GPIO numbers in EEPROM*/
Status = ReadConfigFileStructure(Adapter, &bEnableThread);
if(STATUS_SUCCESS != Status)
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: FAILED in ReadConfigFileStructure\n");
return Status;
}
if(Adapter->LEDInfo.led_thread_running)
{
if(bEnableThread)
;
else
{
Adapter->DriverState = DRIVER_HALT;
wake_up(&Adapter->LEDInfo.notify_led_event);
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED;
}
}
else if(bEnableThread)
{
/*Create secondary thread to handle the LEDs*/
init_waitqueue_head(&Adapter->LEDInfo.notify_led_event);
init_waitqueue_head(&Adapter->LEDInfo.idleModeSyncEvent);
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_ACTIVELY;
Adapter->LEDInfo.bIdle_led_off = FALSE;
Adapter->LEDInfo.led_cntrl_threadid = kthread_run((int (*)(void *))
LEDControlThread, Adapter, "led_control_thread");
if(IS_ERR(Adapter->LEDInfo.led_cntrl_threadid))
{
BCM_DEBUG_PRINT(Adapter,DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Not able to spawn Kernel Thread\n");
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED;
return PTR_ERR(Adapter->LEDInfo.led_cntrl_threadid);
}
}
return Status;
}