blob: 922d9b5fe3d5c9b9863691ffff89c3122f103b21 [file] [log] [blame]
/*
* Freescale hypervisor call interface
*
* Copyright 2008-2010 Freescale Semiconductor, Inc.
*
* Author: Timur Tabi <timur@freescale.com>
*
* This file is provided under a dual BSD/GPL license. When using or
* redistributing this file, you may do so under either license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _FSL_HCALLS_H
#define _FSL_HCALLS_H
#include <linux/types.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <asm/epapr_hcalls.h>
#define FH_API_VERSION 1
#define FH_ERR_GET_INFO 1
#define FH_PARTITION_GET_DTPROP 2
#define FH_PARTITION_SET_DTPROP 3
#define FH_PARTITION_RESTART 4
#define FH_PARTITION_GET_STATUS 5
#define FH_PARTITION_START 6
#define FH_PARTITION_STOP 7
#define FH_PARTITION_MEMCPY 8
#define FH_DMA_ENABLE 9
#define FH_DMA_DISABLE 10
#define FH_SEND_NMI 11
#define FH_VMPIC_GET_MSIR 12
#define FH_SYSTEM_RESET 13
#define FH_GET_CORE_STATE 14
#define FH_ENTER_NAP 15
#define FH_EXIT_NAP 16
#define FH_CLAIM_DEVICE 17
#define FH_PARTITION_STOP_DMA 18
/* vendor ID: Freescale Semiconductor */
#define FH_HCALL_TOKEN(num) _EV_HCALL_TOKEN(EV_FSL_VENDOR_ID, num)
/*
* We use "uintptr_t" to define a register because it's guaranteed to be a
* 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit
* platform.
*
* All registers are either input/output or output only. Registers that are
* initialized before making the hypercall are input/output. All
* input/output registers are represented with "+r". Output-only registers
* are represented with "=r". Do not specify any unused registers. The
* clobber list will tell the compiler that the hypercall modifies those
* registers, which is good enough.
*/
/**
* fh_send_nmi - send NMI to virtual cpu(s).
* @vcpu_mask: send NMI to virtual cpu(s) specified by this mask.
*
* Returns 0 for success, or EINVAL for invalid vcpu_mask.
*/
static inline unsigned int fh_send_nmi(unsigned int vcpu_mask)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_SEND_NMI);
r3 = vcpu_mask;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/* Arbitrary limits to avoid excessive memory allocation in hypervisor */
#define FH_DTPROP_MAX_PATHLEN 4096
#define FH_DTPROP_MAX_PROPLEN 32768
/**
* fh_partiton_get_dtprop - get a property from a guest device tree.
* @handle: handle of partition whose device tree is to be accessed
* @dtpath_addr: physical address of device tree path to access
* @propname_addr: physical address of name of property
* @propvalue_addr: physical address of property value buffer
* @propvalue_len: length of buffer on entry, length of property on return
*
* Returns zero on success, non-zero on error.
*/
static inline unsigned int fh_partition_get_dtprop(int handle,
uint64_t dtpath_addr,
uint64_t propname_addr,
uint64_t propvalue_addr,
uint32_t *propvalue_len)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
register uintptr_t r8 __asm__("r8");
register uintptr_t r9 __asm__("r9");
register uintptr_t r10 __asm__("r10");
r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_DTPROP);
r3 = handle;
#ifdef CONFIG_PHYS_64BIT
r4 = dtpath_addr >> 32;
r6 = propname_addr >> 32;
r8 = propvalue_addr >> 32;
#else
r4 = 0;
r6 = 0;
r8 = 0;
#endif
r5 = (uint32_t)dtpath_addr;
r7 = (uint32_t)propname_addr;
r9 = (uint32_t)propvalue_addr;
r10 = *propvalue_len;
__asm__ __volatile__ ("sc 1"
: "+r" (r11),
"+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7),
"+r" (r8), "+r" (r9), "+r" (r10)
: : EV_HCALL_CLOBBERS8
);
*propvalue_len = r4;
return r3;
}
/**
* Set a property in a guest device tree.
* @handle: handle of partition whose device tree is to be accessed
* @dtpath_addr: physical address of device tree path to access
* @propname_addr: physical address of name of property
* @propvalue_addr: physical address of property value
* @propvalue_len: length of property
*
* Returns zero on success, non-zero on error.
*/
static inline unsigned int fh_partition_set_dtprop(int handle,
uint64_t dtpath_addr,
uint64_t propname_addr,
uint64_t propvalue_addr,
uint32_t propvalue_len)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r6 __asm__("r6");
register uintptr_t r8 __asm__("r8");
register uintptr_t r5 __asm__("r5");
register uintptr_t r7 __asm__("r7");
register uintptr_t r9 __asm__("r9");
register uintptr_t r10 __asm__("r10");
r11 = FH_HCALL_TOKEN(FH_PARTITION_SET_DTPROP);
r3 = handle;
#ifdef CONFIG_PHYS_64BIT
r4 = dtpath_addr >> 32;
r6 = propname_addr >> 32;
r8 = propvalue_addr >> 32;
#else
r4 = 0;
r6 = 0;
r8 = 0;
#endif
r5 = (uint32_t)dtpath_addr;
r7 = (uint32_t)propname_addr;
r9 = (uint32_t)propvalue_addr;
r10 = propvalue_len;
__asm__ __volatile__ ("sc 1"
: "+r" (r11),
"+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7),
"+r" (r8), "+r" (r9), "+r" (r10)
: : EV_HCALL_CLOBBERS8
);
return r3;
}
/**
* fh_partition_restart - reboot the current partition
* @partition: partition ID
*
* Returns an error code if reboot failed. Does not return if it succeeds.
*/
static inline unsigned int fh_partition_restart(unsigned int partition)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_PARTITION_RESTART);
r3 = partition;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
#define FH_PARTITION_STOPPED 0
#define FH_PARTITION_RUNNING 1
#define FH_PARTITION_STARTING 2
#define FH_PARTITION_STOPPING 3
#define FH_PARTITION_PAUSING 4
#define FH_PARTITION_PAUSED 5
#define FH_PARTITION_RESUMING 6
/**
* fh_partition_get_status - gets the status of a partition
* @partition: partition ID
* @status: returned status code
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_partition_get_status(unsigned int partition,
unsigned int *status)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_STATUS);
r3 = partition;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "=r" (r4)
: : EV_HCALL_CLOBBERS2
);
*status = r4;
return r3;
}
/**
* fh_partition_start - boots and starts execution of the specified partition
* @partition: partition ID
* @entry_point: guest physical address to start execution
*
* The hypervisor creates a 1-to-1 virtual/physical IMA mapping, so at boot
* time, guest physical address are the same as guest virtual addresses.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_partition_start(unsigned int partition,
uint32_t entry_point, int load)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
r11 = FH_HCALL_TOKEN(FH_PARTITION_START);
r3 = partition;
r4 = entry_point;
r5 = load;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5)
: : EV_HCALL_CLOBBERS3
);
return r3;
}
/**
* fh_partition_stop - stops another partition
* @partition: partition ID
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_partition_stop(unsigned int partition)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP);
r3 = partition;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* struct fh_sg_list: definition of the fh_partition_memcpy S/G list
* @source: guest physical address to copy from
* @target: guest physical address to copy to
* @size: number of bytes to copy
* @reserved: reserved, must be zero
*
* The scatter/gather list for fh_partition_memcpy() is an array of these
* structures. The array must be guest physically contiguous.
*
* This structure must be aligned on 32-byte boundary, so that no single
* strucuture can span two pages.
*/
struct fh_sg_list {
uint64_t source; /**< guest physical address to copy from */
uint64_t target; /**< guest physical address to copy to */
uint64_t size; /**< number of bytes to copy */
uint64_t reserved; /**< reserved, must be zero */
} __attribute__ ((aligned(32)));
/**
* fh_partition_memcpy - copies data from one guest to another
* @source: the ID of the partition to copy from
* @target: the ID of the partition to copy to
* @sg_list: guest physical address of an array of &fh_sg_list structures
* @count: the number of entries in @sg_list
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_partition_memcpy(unsigned int source,
unsigned int target, phys_addr_t sg_list, unsigned int count)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
r11 = FH_HCALL_TOKEN(FH_PARTITION_MEMCPY);
r3 = source;
r4 = target;
r5 = (uint32_t) sg_list;
#ifdef CONFIG_PHYS_64BIT
r6 = sg_list >> 32;
#else
r6 = 0;
#endif
r7 = count;
__asm__ __volatile__ ("sc 1"
: "+r" (r11),
"+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7)
: : EV_HCALL_CLOBBERS5
);
return r3;
}
/**
* fh_dma_enable - enable DMA for the specified device
* @liodn: the LIODN of the I/O device for which to enable DMA
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_dma_enable(unsigned int liodn)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_DMA_ENABLE);
r3 = liodn;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* fh_dma_disable - disable DMA for the specified device
* @liodn: the LIODN of the I/O device for which to disable DMA
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_dma_disable(unsigned int liodn)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_DMA_DISABLE);
r3 = liodn;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* fh_vmpic_get_msir - returns the MPIC-MSI register value
* @interrupt: the interrupt number
* @msir_val: returned MPIC-MSI register value
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_vmpic_get_msir(unsigned int interrupt,
unsigned int *msir_val)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = FH_HCALL_TOKEN(FH_VMPIC_GET_MSIR);
r3 = interrupt;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "=r" (r4)
: : EV_HCALL_CLOBBERS2
);
*msir_val = r4;
return r3;
}
/**
* fh_system_reset - reset the system
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_system_reset(void)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_SYSTEM_RESET);
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "=r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* fh_err_get_info - get platform error information
* @queue id:
* 0 for guest error event queue
* 1 for global error event queue
*
* @pointer to store the platform error data:
* platform error data is returned in registers r4 - r11
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_err_get_info(int queue, uint32_t *bufsize,
uint32_t addr_hi, uint32_t addr_lo, int peek)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
r11 = FH_HCALL_TOKEN(FH_ERR_GET_INFO);
r3 = queue;
r4 = *bufsize;
r5 = addr_hi;
r6 = addr_lo;
r7 = peek;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6),
"+r" (r7)
: : EV_HCALL_CLOBBERS5
);
*bufsize = r4;
return r3;
}
#define FH_VCPU_RUN 0
#define FH_VCPU_IDLE 1
#define FH_VCPU_NAP 2
/**
* fh_get_core_state - get the state of a vcpu
*
* @handle: handle of partition containing the vcpu
* @vcpu: vcpu number within the partition
* @state:the current state of the vcpu, see FH_VCPU_*
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_get_core_state(unsigned int handle,
unsigned int vcpu, unsigned int *state)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = FH_HCALL_TOKEN(FH_GET_CORE_STATE);
r3 = handle;
r4 = vcpu;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "+r" (r4)
: : EV_HCALL_CLOBBERS2
);
*state = r4;
return r3;
}
/**
* fh_enter_nap - enter nap on a vcpu
*
* Note that though the API supports entering nap on a vcpu other
* than the caller, this may not be implmented and may return EINVAL.
*
* @handle: handle of partition containing the vcpu
* @vcpu: vcpu number within the partition
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_enter_nap(unsigned int handle, unsigned int vcpu)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = FH_HCALL_TOKEN(FH_ENTER_NAP);
r3 = handle;
r4 = vcpu;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "+r" (r4)
: : EV_HCALL_CLOBBERS2
);
return r3;
}
/**
* fh_exit_nap - exit nap on a vcpu
* @handle: handle of partition containing the vcpu
* @vcpu: vcpu number within the partition
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_exit_nap(unsigned int handle, unsigned int vcpu)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = FH_HCALL_TOKEN(FH_EXIT_NAP);
r3 = handle;
r4 = vcpu;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3), "+r" (r4)
: : EV_HCALL_CLOBBERS2
);
return r3;
}
/**
* fh_claim_device - claim a "claimable" shared device
* @handle: fsl,hv-device-handle of node to claim
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_claim_device(unsigned int handle)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_CLAIM_DEVICE);
r3 = handle;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* Run deferred DMA disabling on a partition's private devices
*
* This applies to devices which a partition owns either privately,
* or which are claimable and still actively owned by that partition,
* and which do not have the no-dma-disable property.
*
* @handle: partition (must be stopped) whose DMA is to be disabled
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int fh_partition_stop_dma(unsigned int handle)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP_DMA);
r3 = handle;
__asm__ __volatile__ ("sc 1"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
#endif