| /* bnx2x_init_ops.h: Broadcom Everest network driver. |
| * Static functions needed during the initialization. |
| * This file is "included" in bnx2x_main.c. |
| * |
| * Copyright (c) 2007-2011 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| * Written by: Vladislav Zolotarov <vladz@broadcom.com> |
| */ |
| |
| #ifndef BNX2X_INIT_OPS_H |
| #define BNX2X_INIT_OPS_H |
| |
| |
| #ifndef BP_ILT |
| #define BP_ILT(bp) NULL |
| #endif |
| |
| #ifndef BP_FUNC |
| #define BP_FUNC(bp) 0 |
| #endif |
| |
| #ifndef BP_PORT |
| #define BP_PORT(bp) 0 |
| #endif |
| |
| #ifndef BNX2X_ILT_FREE |
| #define BNX2X_ILT_FREE(x, y, sz) |
| #endif |
| |
| #ifndef BNX2X_ILT_ZALLOC |
| #define BNX2X_ILT_ZALLOC(x, y, sz) |
| #endif |
| |
| #ifndef ILOG2 |
| #define ILOG2(x) x |
| #endif |
| |
| static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); |
| static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, |
| dma_addr_t phys_addr, u32 addr, |
| u32 len); |
| |
| static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, |
| const u32 *data, u32 len) |
| { |
| u32 i; |
| |
| for (i = 0; i < len; i++) |
| REG_WR(bp, addr + i*4, data[i]); |
| } |
| |
| static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, |
| const u32 *data, u32 len) |
| { |
| u32 i; |
| |
| for (i = 0; i < len; i++) |
| bnx2x_reg_wr_ind(bp, addr + i*4, data[i]); |
| } |
| |
| static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len, |
| u8 wb) |
| { |
| if (bp->dmae_ready) |
| bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); |
| else if (wb) |
| /* |
| * Wide bus registers with no dmae need to be written |
| * using indirect write. |
| */ |
| bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); |
| else |
| bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); |
| } |
| |
| static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, |
| u32 len, u8 wb) |
| { |
| u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); |
| u32 buf_len32 = buf_len/4; |
| u32 i; |
| |
| memset(GUNZIP_BUF(bp), (u8)fill, buf_len); |
| |
| for (i = 0; i < len; i += buf_len32) { |
| u32 cur_len = min(buf_len32, len - i); |
| |
| bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb); |
| } |
| } |
| |
| static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) |
| { |
| if (bp->dmae_ready) |
| bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); |
| else |
| bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); |
| } |
| |
| static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, |
| const u32 *data, u32 len64) |
| { |
| u32 buf_len32 = FW_BUF_SIZE/4; |
| u32 len = len64*2; |
| u64 data64 = 0; |
| u32 i; |
| |
| /* 64 bit value is in a blob: first low DWORD, then high DWORD */ |
| data64 = HILO_U64((*(data + 1)), (*data)); |
| |
| len64 = min((u32)(FW_BUF_SIZE/8), len64); |
| for (i = 0; i < len64; i++) { |
| u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i; |
| |
| *pdata = data64; |
| } |
| |
| for (i = 0; i < len; i += buf_len32) { |
| u32 cur_len = min(buf_len32, len - i); |
| |
| bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len); |
| } |
| } |
| |
| /********************************************************* |
| There are different blobs for each PRAM section. |
| In addition, each blob write operation is divided into a few operations |
| in order to decrease the amount of phys. contiguous buffer needed. |
| Thus, when we select a blob the address may be with some offset |
| from the beginning of PRAM section. |
| The same holds for the INT_TABLE sections. |
| **********************************************************/ |
| #define IF_IS_INT_TABLE_ADDR(base, addr) \ |
| if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) |
| |
| #define IF_IS_PRAM_ADDR(base, addr) \ |
| if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) |
| |
| static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, |
| const u8 *data) |
| { |
| IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) |
| data = INIT_TSEM_INT_TABLE_DATA(bp); |
| else |
| IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) |
| data = INIT_CSEM_INT_TABLE_DATA(bp); |
| else |
| IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) |
| data = INIT_USEM_INT_TABLE_DATA(bp); |
| else |
| IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) |
| data = INIT_XSEM_INT_TABLE_DATA(bp); |
| else |
| IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) |
| data = INIT_TSEM_PRAM_DATA(bp); |
| else |
| IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) |
| data = INIT_CSEM_PRAM_DATA(bp); |
| else |
| IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) |
| data = INIT_USEM_PRAM_DATA(bp); |
| else |
| IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) |
| data = INIT_XSEM_PRAM_DATA(bp); |
| |
| return data; |
| } |
| |
| static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, |
| const u32 *data, u32 len) |
| { |
| if (bp->dmae_ready) |
| VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); |
| else |
| bnx2x_init_ind_wr(bp, addr, data, len); |
| } |
| |
| static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, |
| u32 val_hi) |
| { |
| u32 wb_write[2]; |
| |
| wb_write[0] = val_lo; |
| wb_write[1] = val_hi; |
| REG_WR_DMAE_LEN(bp, reg, wb_write, 2); |
| } |
| static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, |
| u32 blob_off) |
| { |
| const u8 *data = NULL; |
| int rc; |
| u32 i; |
| |
| data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; |
| |
| rc = bnx2x_gunzip(bp, data, len); |
| if (rc) |
| return; |
| |
| /* gunzip_outlen is in dwords */ |
| len = GUNZIP_OUTLEN(bp); |
| for (i = 0; i < len; i++) |
| ((u32 *)GUNZIP_BUF(bp))[i] = |
| cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]); |
| |
| bnx2x_write_big_buf_wb(bp, addr, len); |
| } |
| |
| static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) |
| { |
| u16 op_start = |
| INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, |
| STAGE_START)]; |
| u16 op_end = |
| INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, |
| STAGE_END)]; |
| union init_op *op; |
| u32 op_idx, op_type, addr, len; |
| const u32 *data, *data_base; |
| |
| /* If empty block */ |
| if (op_start == op_end) |
| return; |
| |
| data_base = INIT_DATA(bp); |
| |
| for (op_idx = op_start; op_idx < op_end; op_idx++) { |
| |
| op = (union init_op *)&(INIT_OPS(bp)[op_idx]); |
| /* Get generic data */ |
| op_type = op->raw.op; |
| addr = op->raw.offset; |
| /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and |
| * OP_WR64 (we assume that op_arr_write and op_write have the |
| * same structure). |
| */ |
| len = op->arr_wr.data_len; |
| data = data_base + op->arr_wr.data_off; |
| |
| switch (op_type) { |
| case OP_RD: |
| REG_RD(bp, addr); |
| break; |
| case OP_WR: |
| REG_WR(bp, addr, op->write.val); |
| break; |
| case OP_SW: |
| bnx2x_init_str_wr(bp, addr, data, len); |
| break; |
| case OP_WB: |
| bnx2x_init_wr_wb(bp, addr, data, len); |
| break; |
| case OP_ZR: |
| bnx2x_init_fill(bp, addr, 0, op->zero.len, 0); |
| break; |
| case OP_WB_ZR: |
| bnx2x_init_fill(bp, addr, 0, op->zero.len, 1); |
| break; |
| case OP_ZP: |
| bnx2x_init_wr_zp(bp, addr, len, |
| op->arr_wr.data_off); |
| break; |
| case OP_WR_64: |
| bnx2x_init_wr_64(bp, addr, data, len); |
| break; |
| case OP_IF_MODE_AND: |
| /* if any of the flags doesn't match, skip the |
| * conditional block. |
| */ |
| if ((INIT_MODE_FLAGS(bp) & |
| op->if_mode.mode_bit_map) != |
| op->if_mode.mode_bit_map) |
| op_idx += op->if_mode.cmd_offset; |
| break; |
| case OP_IF_MODE_OR: |
| /* if all the flags don't match, skip the conditional |
| * block. |
| */ |
| if ((INIT_MODE_FLAGS(bp) & |
| op->if_mode.mode_bit_map) == 0) |
| op_idx += op->if_mode.cmd_offset; |
| break; |
| default: |
| /* Should never get here! */ |
| |
| break; |
| } |
| } |
| } |
| |
| |
| /**************************************************************************** |
| * PXP Arbiter |
| ****************************************************************************/ |
| /* |
| * This code configures the PCI read/write arbiter |
| * which implements a weighted round robin |
| * between the virtual queues in the chip. |
| * |
| * The values were derived for each PCI max payload and max request size. |
| * since max payload and max request size are only known at run time, |
| * this is done as a separate init stage. |
| */ |
| |
| #define NUM_WR_Q 13 |
| #define NUM_RD_Q 29 |
| #define MAX_RD_ORD 3 |
| #define MAX_WR_ORD 2 |
| |
| /* configuration for one arbiter queue */ |
| struct arb_line { |
| int l; |
| int add; |
| int ubound; |
| }; |
| |
| /* derived configuration for each read queue for each max request size */ |
| static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { |
| /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, |
| { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, |
| { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, |
| { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, |
| { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, |
| /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, |
| { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } |
| }; |
| |
| /* derived configuration for each write queue for each max request size */ |
| static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { |
| /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, |
| { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, |
| { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, |
| { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, |
| { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, |
| { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, |
| { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, |
| { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, |
| { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, |
| /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, |
| { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, |
| { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, |
| { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } |
| }; |
| |
| /* register addresses for read queues */ |
| static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { |
| /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, |
| PXP2_REG_RQ_BW_RD_UBOUND0}, |
| {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, |
| PXP2_REG_PSWRQ_BW_UB1}, |
| {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, |
| PXP2_REG_PSWRQ_BW_UB2}, |
| {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, |
| PXP2_REG_PSWRQ_BW_UB3}, |
| {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, |
| PXP2_REG_RQ_BW_RD_UBOUND4}, |
| {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, |
| PXP2_REG_RQ_BW_RD_UBOUND5}, |
| {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, |
| PXP2_REG_PSWRQ_BW_UB6}, |
| {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, |
| PXP2_REG_PSWRQ_BW_UB7}, |
| {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, |
| PXP2_REG_PSWRQ_BW_UB8}, |
| /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, |
| PXP2_REG_PSWRQ_BW_UB9}, |
| {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, |
| PXP2_REG_PSWRQ_BW_UB10}, |
| {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, |
| PXP2_REG_PSWRQ_BW_UB11}, |
| {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, |
| PXP2_REG_RQ_BW_RD_UBOUND12}, |
| {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, |
| PXP2_REG_RQ_BW_RD_UBOUND13}, |
| {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, |
| PXP2_REG_RQ_BW_RD_UBOUND14}, |
| {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, |
| PXP2_REG_RQ_BW_RD_UBOUND15}, |
| {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, |
| PXP2_REG_RQ_BW_RD_UBOUND16}, |
| {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, |
| PXP2_REG_RQ_BW_RD_UBOUND17}, |
| {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, |
| PXP2_REG_RQ_BW_RD_UBOUND18}, |
| /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, |
| PXP2_REG_RQ_BW_RD_UBOUND19}, |
| {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, |
| PXP2_REG_RQ_BW_RD_UBOUND20}, |
| {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, |
| PXP2_REG_RQ_BW_RD_UBOUND22}, |
| {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, |
| PXP2_REG_RQ_BW_RD_UBOUND23}, |
| {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, |
| PXP2_REG_RQ_BW_RD_UBOUND24}, |
| {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, |
| PXP2_REG_RQ_BW_RD_UBOUND25}, |
| {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, |
| PXP2_REG_RQ_BW_RD_UBOUND26}, |
| {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, |
| PXP2_REG_RQ_BW_RD_UBOUND27}, |
| {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, |
| PXP2_REG_PSWRQ_BW_UB28} |
| }; |
| |
| /* register addresses for write queues */ |
| static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { |
| /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, |
| PXP2_REG_PSWRQ_BW_UB1}, |
| {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, |
| PXP2_REG_PSWRQ_BW_UB2}, |
| {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, |
| PXP2_REG_PSWRQ_BW_UB3}, |
| {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, |
| PXP2_REG_PSWRQ_BW_UB6}, |
| {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, |
| PXP2_REG_PSWRQ_BW_UB7}, |
| {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, |
| PXP2_REG_PSWRQ_BW_UB8}, |
| {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, |
| PXP2_REG_PSWRQ_BW_UB9}, |
| {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, |
| PXP2_REG_PSWRQ_BW_UB10}, |
| {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, |
| PXP2_REG_PSWRQ_BW_UB11}, |
| /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, |
| PXP2_REG_PSWRQ_BW_UB28}, |
| {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, |
| PXP2_REG_RQ_BW_WR_UBOUND29}, |
| {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, |
| PXP2_REG_RQ_BW_WR_UBOUND30} |
| }; |
| |
| static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, |
| int w_order) |
| { |
| u32 val, i; |
| |
| if (r_order > MAX_RD_ORD) { |
| DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", |
| r_order, MAX_RD_ORD); |
| r_order = MAX_RD_ORD; |
| } |
| if (w_order > MAX_WR_ORD) { |
| DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", |
| w_order, MAX_WR_ORD); |
| w_order = MAX_WR_ORD; |
| } |
| if (CHIP_REV_IS_FPGA(bp)) { |
| DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); |
| w_order = 0; |
| } |
| DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); |
| |
| for (i = 0; i < NUM_RD_Q-1; i++) { |
| REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); |
| REG_WR(bp, read_arb_addr[i].add, |
| read_arb_data[i][r_order].add); |
| REG_WR(bp, read_arb_addr[i].ubound, |
| read_arb_data[i][r_order].ubound); |
| } |
| |
| for (i = 0; i < NUM_WR_Q-1; i++) { |
| if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || |
| (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { |
| |
| REG_WR(bp, write_arb_addr[i].l, |
| write_arb_data[i][w_order].l); |
| |
| REG_WR(bp, write_arb_addr[i].add, |
| write_arb_data[i][w_order].add); |
| |
| REG_WR(bp, write_arb_addr[i].ubound, |
| write_arb_data[i][w_order].ubound); |
| } else { |
| |
| val = REG_RD(bp, write_arb_addr[i].l); |
| REG_WR(bp, write_arb_addr[i].l, |
| val | (write_arb_data[i][w_order].l << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].add); |
| REG_WR(bp, write_arb_addr[i].add, |
| val | (write_arb_data[i][w_order].add << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].ubound); |
| REG_WR(bp, write_arb_addr[i].ubound, |
| val | (write_arb_data[i][w_order].ubound << 7)); |
| } |
| } |
| |
| val = write_arb_data[NUM_WR_Q-1][w_order].add; |
| val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; |
| val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); |
| |
| val = read_arb_data[NUM_RD_Q-1][r_order].add; |
| val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; |
| val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); |
| |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); |
| |
| if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD)) |
| REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); |
| |
| if (CHIP_IS_E3(bp)) |
| REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order)); |
| else if (CHIP_IS_E2(bp)) |
| REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order)); |
| else |
| REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); |
| |
| if (!CHIP_IS_E1(bp)) { |
| /* MPS w_order optimal TH presently TH |
| * 128 0 0 2 |
| * 256 1 1 3 |
| * >=512 2 2 3 |
| */ |
| /* DMAE is special */ |
| if (!CHIP_IS_E1H(bp)) { |
| /* E2 can use optimal TH */ |
| val = w_order; |
| REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val); |
| } else { |
| val = ((w_order == 0) ? 2 : 3); |
| REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); |
| } |
| |
| REG_WR(bp, PXP2_REG_WR_HC_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_QM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_TM_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); |
| REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); |
| } |
| |
| /* Validate number of tags suppoted by device */ |
| #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980 |
| val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST); |
| val &= 0xFF; |
| if (val <= 0x20) |
| REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20); |
| } |
| |
| /**************************************************************************** |
| * ILT management |
| ****************************************************************************/ |
| /* |
| * This codes hides the low level HW interaction for ILT management and |
| * configuration. The API consists of a shadow ILT table which is set by the |
| * driver and a set of routines to use it to configure the HW. |
| * |
| */ |
| |
| /* ILT HW init operations */ |
| |
| /* ILT memory management operations */ |
| #define ILT_MEMOP_ALLOC 0 |
| #define ILT_MEMOP_FREE 1 |
| |
| /* the phys address is shifted right 12 bits and has an added |
| * 1=valid bit added to the 53rd bit |
| * then since this is a wide register(TM) |
| * we split it into two 32 bit writes |
| */ |
| #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) |
| #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) |
| #define ILT_RANGE(f, l) (((l) << 10) | f) |
| |
| static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, |
| struct ilt_line *line, u32 size, u8 memop) |
| { |
| if (memop == ILT_MEMOP_FREE) { |
| BNX2X_ILT_FREE(line->page, line->page_mapping, line->size); |
| return 0; |
| } |
| BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size); |
| if (!line->page) |
| return -1; |
| line->size = size; |
| return 0; |
| } |
| |
| |
| static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, |
| u8 memop) |
| { |
| int i, rc; |
| struct bnx2x_ilt *ilt = BP_ILT(bp); |
| struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; |
| |
| if (!ilt || !ilt->lines) |
| return -1; |
| |
| if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM)) |
| return 0; |
| |
| for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) { |
| rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i], |
| ilt_cli->page_size, memop); |
| } |
| return rc; |
| } |
| |
| static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop) |
| { |
| int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop); |
| if (!rc) |
| rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop); |
| if (!rc) |
| rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); |
| if (!rc) |
| rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop); |
| |
| return rc; |
| } |
| |
| static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx, |
| dma_addr_t page_mapping) |
| { |
| u32 reg; |
| |
| if (CHIP_IS_E1(bp)) |
| reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8; |
| else |
| reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8; |
| |
| bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping)); |
| } |
| |
| static void bnx2x_ilt_line_init_op(struct bnx2x *bp, |
| struct bnx2x_ilt *ilt, int idx, u8 initop) |
| { |
| dma_addr_t null_mapping; |
| int abs_idx = ilt->start_line + idx; |
| |
| |
| switch (initop) { |
| case INITOP_INIT: |
| /* set in the init-value array */ |
| case INITOP_SET: |
| bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping); |
| break; |
| case INITOP_CLEAR: |
| null_mapping = 0; |
| bnx2x_ilt_line_wr(bp, abs_idx, null_mapping); |
| break; |
| } |
| } |
| |
| static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp, |
| struct ilt_client_info *ilt_cli, |
| u32 ilt_start, u8 initop) |
| { |
| u32 start_reg = 0; |
| u32 end_reg = 0; |
| |
| /* The boundary is either SET or INIT, |
| CLEAR => SET and for now SET ~~ INIT */ |
| |
| /* find the appropriate regs */ |
| if (CHIP_IS_E1(bp)) { |
| switch (ilt_cli->client_num) { |
| case ILT_CLIENT_CDU: |
| start_reg = PXP2_REG_PSWRQ_CDU0_L2P; |
| break; |
| case ILT_CLIENT_QM: |
| start_reg = PXP2_REG_PSWRQ_QM0_L2P; |
| break; |
| case ILT_CLIENT_SRC: |
| start_reg = PXP2_REG_PSWRQ_SRC0_L2P; |
| break; |
| case ILT_CLIENT_TM: |
| start_reg = PXP2_REG_PSWRQ_TM0_L2P; |
| break; |
| } |
| REG_WR(bp, start_reg + BP_FUNC(bp)*4, |
| ILT_RANGE((ilt_start + ilt_cli->start), |
| (ilt_start + ilt_cli->end))); |
| } else { |
| switch (ilt_cli->client_num) { |
| case ILT_CLIENT_CDU: |
| start_reg = PXP2_REG_RQ_CDU_FIRST_ILT; |
| end_reg = PXP2_REG_RQ_CDU_LAST_ILT; |
| break; |
| case ILT_CLIENT_QM: |
| start_reg = PXP2_REG_RQ_QM_FIRST_ILT; |
| end_reg = PXP2_REG_RQ_QM_LAST_ILT; |
| break; |
| case ILT_CLIENT_SRC: |
| start_reg = PXP2_REG_RQ_SRC_FIRST_ILT; |
| end_reg = PXP2_REG_RQ_SRC_LAST_ILT; |
| break; |
| case ILT_CLIENT_TM: |
| start_reg = PXP2_REG_RQ_TM_FIRST_ILT; |
| end_reg = PXP2_REG_RQ_TM_LAST_ILT; |
| break; |
| } |
| REG_WR(bp, start_reg, (ilt_start + ilt_cli->start)); |
| REG_WR(bp, end_reg, (ilt_start + ilt_cli->end)); |
| } |
| } |
| |
| static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp, |
| struct bnx2x_ilt *ilt, |
| struct ilt_client_info *ilt_cli, |
| u8 initop) |
| { |
| int i; |
| |
| if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) |
| return; |
| |
| for (i = ilt_cli->start; i <= ilt_cli->end; i++) |
| bnx2x_ilt_line_init_op(bp, ilt, i, initop); |
| |
| /* init/clear the ILT boundries */ |
| bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop); |
| } |
| |
| static void bnx2x_ilt_client_init_op(struct bnx2x *bp, |
| struct ilt_client_info *ilt_cli, u8 initop) |
| { |
| struct bnx2x_ilt *ilt = BP_ILT(bp); |
| |
| bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop); |
| } |
| |
| static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp, |
| int cli_num, u8 initop) |
| { |
| struct bnx2x_ilt *ilt = BP_ILT(bp); |
| struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; |
| |
| bnx2x_ilt_client_init_op(bp, ilt_cli, initop); |
| } |
| |
| static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop) |
| { |
| bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop); |
| bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop); |
| bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); |
| bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop); |
| } |
| |
| static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num, |
| u32 psz_reg, u8 initop) |
| { |
| struct bnx2x_ilt *ilt = BP_ILT(bp); |
| struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; |
| |
| if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) |
| return; |
| |
| switch (initop) { |
| case INITOP_INIT: |
| /* set in the init-value array */ |
| case INITOP_SET: |
| REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12)); |
| break; |
| case INITOP_CLEAR: |
| break; |
| } |
| } |
| |
| /* |
| * called during init common stage, ilt clients should be initialized |
| * prioir to calling this function |
| */ |
| static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop) |
| { |
| bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU, |
| PXP2_REG_RQ_CDU_P_SIZE, initop); |
| bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM, |
| PXP2_REG_RQ_QM_P_SIZE, initop); |
| bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC, |
| PXP2_REG_RQ_SRC_P_SIZE, initop); |
| bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM, |
| PXP2_REG_RQ_TM_P_SIZE, initop); |
| } |
| |
| /**************************************************************************** |
| * QM initializations |
| ****************************************************************************/ |
| #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */ |
| #define QM_INIT_MIN_CID_COUNT 31 |
| #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT) |
| |
| /* called during init port stage */ |
| static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count, |
| u8 initop) |
| { |
| int port = BP_PORT(bp); |
| |
| if (QM_INIT(qm_cid_count)) { |
| switch (initop) { |
| case INITOP_INIT: |
| /* set in the init-value array */ |
| case INITOP_SET: |
| REG_WR(bp, QM_REG_CONNNUM_0 + port*4, |
| qm_cid_count/16 - 1); |
| break; |
| case INITOP_CLEAR: |
| break; |
| } |
| } |
| } |
| |
| static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count) |
| { |
| int i; |
| u32 wb_data[2]; |
| |
| wb_data[0] = wb_data[1] = 0; |
| |
| for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) { |
| REG_WR(bp, QM_REG_BASEADDR + i*4, |
| qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); |
| bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8, |
| wb_data, 2); |
| |
| if (CHIP_IS_E1H(bp)) { |
| REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4, |
| qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); |
| bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8, |
| wb_data, 2); |
| } |
| } |
| } |
| |
| /* called during init common stage */ |
| static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count, |
| u8 initop) |
| { |
| if (!QM_INIT(qm_cid_count)) |
| return; |
| |
| switch (initop) { |
| case INITOP_INIT: |
| /* set in the init-value array */ |
| case INITOP_SET: |
| bnx2x_qm_set_ptr_table(bp, qm_cid_count); |
| break; |
| case INITOP_CLEAR: |
| break; |
| } |
| } |
| |
| /**************************************************************************** |
| * SRC initializations |
| ****************************************************************************/ |
| #ifdef BCM_CNIC |
| /* called during init func stage */ |
| static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2, |
| dma_addr_t t2_mapping, int src_cid_count) |
| { |
| int i; |
| int port = BP_PORT(bp); |
| |
| /* Initialize T2 */ |
| for (i = 0; i < src_cid_count-1; i++) |
| t2[i].next = (u64)(t2_mapping + |
| (i+1)*sizeof(struct src_ent)); |
| |
| /* tell the searcher where the T2 table is */ |
| REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count); |
| |
| bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16, |
| U64_LO(t2_mapping), U64_HI(t2_mapping)); |
| |
| bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16, |
| U64_LO((u64)t2_mapping + |
| (src_cid_count-1) * sizeof(struct src_ent)), |
| U64_HI((u64)t2_mapping + |
| (src_cid_count-1) * sizeof(struct src_ent))); |
| } |
| #endif |
| #endif /* BNX2X_INIT_OPS_H */ |