blob: 58a12934b404c147afddd6dd4564a27fbfea282c [file] [log] [blame]
/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
* $Revision: #58 $
* $Date: 2011/09/15 $
* $Change: 1846647 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
#ifndef DWC_DEVICE_ONLY
#ifndef __DWC_HCD_H__
#define __DWC_HCD_H__
#include "dwc_otg_os_dep.h"
#include "usb.h"
#include "dwc_otg_hcd_if.h"
#include "dwc_otg_core_if.h"
#include "dwc_list.h"
#include "dwc_otg_cil.h"
/**
* @file
*
* This file contains the structures, constants, and interfaces for
* the Host Contoller Driver (HCD).
*
* The Host Controller Driver (HCD) is responsible for translating requests
* from the USB Driver into the appropriate actions on the DWC_otg controller.
* It isolates the USBD from the specifics of the controller by providing an
* API to the USBD.
*/
struct dwc_otg_hcd_pipe_info {
uint8_t dev_addr;
uint8_t ep_num;
uint8_t pipe_type;
uint8_t pipe_dir;
uint16_t mps;
};
struct dwc_otg_hcd_iso_packet_desc {
uint32_t offset;
uint32_t length;
uint32_t actual_length;
uint32_t status;
};
struct dwc_otg_qtd;
struct dwc_otg_hcd_urb {
void *priv;
struct dwc_otg_qtd *qtd;
void *buf;
dwc_dma_t dma;
void *setup_packet;
dwc_dma_t setup_dma;
uint32_t length;
uint32_t actual_length;
uint32_t status;
uint32_t error_count;
uint32_t packet_count;
uint32_t flags;
uint16_t interval;
struct dwc_otg_hcd_pipe_info pipe_info;
struct dwc_otg_hcd_iso_packet_desc iso_descs[0];
};
static inline uint8_t dwc_otg_hcd_get_ep_num(struct dwc_otg_hcd_pipe_info *pipe)
{
return pipe->ep_num;
}
static inline uint8_t dwc_otg_hcd_get_pipe_type(struct dwc_otg_hcd_pipe_info
*pipe)
{
return pipe->pipe_type;
}
static inline uint16_t dwc_otg_hcd_get_mps(struct dwc_otg_hcd_pipe_info *pipe)
{
return pipe->mps;
}
static inline uint8_t dwc_otg_hcd_get_dev_addr(struct dwc_otg_hcd_pipe_info
*pipe)
{
return pipe->dev_addr;
}
static inline uint8_t dwc_otg_hcd_is_pipe_isoc(struct dwc_otg_hcd_pipe_info
*pipe)
{
return (pipe->pipe_type == UE_ISOCHRONOUS);
}
static inline uint8_t dwc_otg_hcd_is_pipe_int(struct dwc_otg_hcd_pipe_info
*pipe)
{
return (pipe->pipe_type == UE_INTERRUPT);
}
static inline uint8_t dwc_otg_hcd_is_pipe_bulk(struct dwc_otg_hcd_pipe_info
*pipe)
{
return (pipe->pipe_type == UE_BULK);
}
static inline uint8_t dwc_otg_hcd_is_pipe_control(struct dwc_otg_hcd_pipe_info
*pipe)
{
return (pipe->pipe_type == UE_CONTROL);
}
static inline uint8_t dwc_otg_hcd_is_pipe_in(struct dwc_otg_hcd_pipe_info *pipe)
{
return (pipe->pipe_dir == UE_DIR_IN);
}
static inline uint8_t dwc_otg_hcd_is_pipe_out(struct dwc_otg_hcd_pipe_info
*pipe)
{
return (!dwc_otg_hcd_is_pipe_in(pipe));
}
static inline void dwc_otg_hcd_fill_pipe(struct dwc_otg_hcd_pipe_info *pipe,
uint8_t devaddr, uint8_t ep_num,
uint8_t pipe_type, uint8_t pipe_dir,
uint16_t mps)
{
pipe->dev_addr = devaddr;
pipe->ep_num = ep_num;
pipe->pipe_type = pipe_type;
pipe->pipe_dir = pipe_dir;
pipe->mps = mps;
}
/**
* Phases for control transfers.
*/
typedef enum dwc_otg_control_phase {
DWC_OTG_CONTROL_SETUP,
DWC_OTG_CONTROL_DATA,
DWC_OTG_CONTROL_STATUS
} dwc_otg_control_phase_e;
/** Transaction types. */
typedef enum dwc_otg_transaction_type {
DWC_OTG_TRANSACTION_NONE,
DWC_OTG_TRANSACTION_PERIODIC,
DWC_OTG_TRANSACTION_NON_PERIODIC,
DWC_OTG_TRANSACTION_ALL
} dwc_otg_transaction_type_e;
struct dwc_otg_qh;
/**
* A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
* interrupt, or isochronous transfer. A single QTD is created for each URB
* (of one of these types) submitted to the HCD. The transfer associated with
* a QTD may require one or multiple transactions.
*
* A QTD is linked to a Queue Head, which is entered in either the
* non-periodic or periodic schedule for execution. When a QTD is chosen for
* execution, some or all of its transactions may be executed. After
* execution, the state of the QTD is updated. The QTD may be retired if all
* its transactions are complete or if an error occurred. Otherwise, it
* remains in the schedule so more transactions can be executed later.
*/
typedef struct dwc_otg_qtd {
/**
* Determines the PID of the next data packet for the data phase of
* control transfers. Ignored for other transfer types.<br>
* One of the following values:
* - DWC_OTG_HC_PID_DATA0
* - DWC_OTG_HC_PID_DATA1
*/
uint8_t data_toggle;
/** Current phase for control transfers (Setup, Data, or Status). */
dwc_otg_control_phase_e control_phase;
/** Keep track of the current split type
* for FS/LS endpoints on a HS Hub */
uint8_t complete_split;
/** How many bytes transferred during SSPLIT OUT */
uint32_t ssplit_out_xfer_count;
/**
* Holds the number of bus errors that have occurred for a transaction
* within this transfer.
*/
uint8_t error_count;
/**
* Index of the next frame descriptor for an isochronous transfer. A
* frame descriptor describes the buffer position and length of the
* data to be transferred in the next scheduled (micro)frame of an
* isochronous transfer. It also holds status for that transaction.
* The frame index starts at 0.
*/
uint16_t isoc_frame_index;
/** Position of the ISOC split on full/low speed */
uint8_t isoc_split_pos;
/** Position of the ISOC split in the buffer for the current frame */
uint16_t isoc_split_offset;
/** URB for this transfer */
struct dwc_otg_hcd_urb *urb;
struct dwc_otg_qh *qh;
/** This list of QTDs */
DWC_CIRCLEQ_ENTRY(dwc_otg_qtd) qtd_list_entry;
/** Indicates if this QTD is currently processed by HW. */
uint8_t in_process;
/** Number of DMA descriptors for this QTD */
uint8_t n_desc;
/**
* Last activated frame(packet) index.
* Used in Descriptor DMA mode only.
*/
uint16_t isoc_frame_index_last;
} dwc_otg_qtd_t;
DWC_CIRCLEQ_HEAD(dwc_otg_qtd_list, dwc_otg_qtd);
/**
* A Queue Head (QH) holds the static characteristics of an endpoint and
* maintains a list of transfers (QTDs) for that endpoint. A QH structure may
* be entered in either the non-periodic or periodic schedule.
*/
typedef struct dwc_otg_qh {
/**
* Endpoint type.
* One of the following values:
* - UE_CONTROL
* - UE_BULK
* - UE_INTERRUPT
* - UE_ISOCHRONOUS
*/
uint8_t ep_type;
uint8_t ep_is_in;
/** wMaxPacketSize Field of Endpoint Descriptor. */
uint16_t maxp;
/**
* Device speed.
* One of the following values:
* - DWC_OTG_EP_SPEED_LOW
* - DWC_OTG_EP_SPEED_FULL
* - DWC_OTG_EP_SPEED_HIGH
*/
uint8_t dev_speed;
/**
* Determines the PID of the next data packet for non-control
* transfers. Ignored for control transfers.<br>
* One of the following values:
* - DWC_OTG_HC_PID_DATA0
* - DWC_OTG_HC_PID_DATA1
*/
uint8_t data_toggle;
/** Ping state if 1. */
uint8_t ping_state;
/**
* List of QTDs for this QH.
*/
struct dwc_otg_qtd_list qtd_list;
/** Host channel currently processing transfers for this QH. */
struct dwc_hc *channel;
/** Full/low speed endpoint on high-speed hub requires split. */
uint8_t do_split;
/** @name Periodic schedule information */
/** @{ */
/** Bandwidth in microseconds per (micro)frame. */
uint16_t usecs;
/** Interval between transfers in (micro)frames. */
uint16_t interval;
/**
* (micro)frame to initialize a periodic transfer. The transfer
* executes in the following (micro)frame.
*/
uint16_t sched_frame;
/** (micro)frame at which last start split was initialized. */
uint16_t start_split_frame;
/** @} */
/**
* Used instead of original buffer if
* it(physical address) is not dword-aligned.
*/
uint8_t *dw_align_buf;
dwc_dma_t dw_align_buf_dma;
/** Entry for QH in either the periodic or non-periodic schedule. */
dwc_list_link_t qh_list_entry;
/** @name Descriptor DMA support */
/** @{ */
/** Descriptor List. */
dwc_otg_host_dma_desc_t *desc_list;
/** Descriptor List physical address. */
dwc_dma_t desc_list_dma;
/**
* Xfer Bytes array.
* Each element corresponds to a descriptor and indicates
* original XferSize size value for the descriptor.
*/
uint32_t *n_bytes;
/** Actual number of transfer descriptors in a list. */
uint16_t ntd;
/** First activated isochronous transfer descriptor index. */
uint8_t td_first;
/** Last activated isochronous transfer descriptor index. */
uint8_t td_last;
/** @} */
} dwc_otg_qh_t;
DWC_CIRCLEQ_HEAD(hc_list, dwc_hc);
/**
* This structure holds the state of the HCD, including the non-periodic and
* periodic schedules.
*/
struct dwc_otg_hcd {
/** The DWC otg device pointer */
struct dwc_otg_device *otg_dev;
/** DWC OTG Core Interface Layer */
dwc_otg_core_if_t *core_if;
/** Function HCD driver callbacks */
struct dwc_otg_hcd_function_ops *fops;
/** Internal DWC HCD Flags */
volatile union dwc_otg_hcd_internal_flags {
uint32_t d32;
struct {
unsigned port_connect_status_change:1;
unsigned port_connect_status:1;
unsigned port_reset_change:1;
unsigned port_enable_change:1;
unsigned port_suspend_change:1;
unsigned port_over_current_change:1;
unsigned port_l1_change:1;
unsigned reserved:26;
} b;
} flags;
/**
* Inactive items in the non-periodic schedule. This is a list of
* Queue Heads. Transfers associated with these Queue Heads are not
* currently assigned to a host channel.
*/
dwc_list_link_t non_periodic_sched_inactive;
/**
* Active items in the non-periodic schedule. This is a list of
* Queue Heads. Transfers associated with these Queue Heads are
* currently assigned to a host channel.
*/
dwc_list_link_t non_periodic_sched_active;
/**
* Pointer to the next Queue Head to process in the active
* non-periodic schedule.
*/
dwc_list_link_t *non_periodic_qh_ptr;
/**
* Inactive items in the periodic schedule. This is a list of QHs for
* periodic transfers that are _not_ scheduled for the next frame.
* Each QH in the list has an interval counter that determines when it
* needs to be scheduled for execution. This scheduling mechanism
* allows only a simple calculation for periodic bandwidth used (i.e.
* must assume that all periodic transfers may need to execute in the
* same frame). However, it greatly simplifies scheduling and should
* be sufficient for the vast majority of OTG hosts, which need to
* connect to a small number of peripherals at one time.
*
* Items move from this list to periodic_sched_ready when the QH
* interval counter is 0 at SOF.
*/
dwc_list_link_t periodic_sched_inactive;
/**
* List of periodic QHs that are ready for execution in the next
* frame, but have not yet been assigned to host channels.
*
* Items move from this list to periodic_sched_assigned as host
* channels become available during the current frame.
*/
dwc_list_link_t periodic_sched_ready;
/**
* List of periodic QHs to be executed in the next frame that are
* assigned to host channels.
*
* Items move from this list to periodic_sched_queued as the
* transactions for the QH are queued to the DWC_otg controller.
*/
dwc_list_link_t periodic_sched_assigned;
/**
* List of periodic QHs that have been queued for execution.
*
* Items move from this list to either periodic_sched_inactive or
* periodic_sched_ready when the channel associated with the transfer
* is released. If the interval for the QH is 1, the item moves to
* periodic_sched_ready because it must be rescheduled for the next
* frame. Otherwise, the item moves to periodic_sched_inactive.
*/
dwc_list_link_t periodic_sched_queued;
/**
* Total bandwidth claimed so far for periodic transfers. This value
* is in microseconds per (micro)frame. The assumption is that all
* periodic transfers may occur in the same (micro)frame.
*/
uint16_t periodic_usecs;
/**
* Frame number read from the core at SOF. The value ranges from 0 to
* DWC_HFNUM_MAX_FRNUM.
*/
uint16_t frame_number;
/**
* Count of periodic QHs, if using several eps. For SOF enable/disable.
*/
uint16_t periodic_qh_count;
/**
* Free host channels in the controller. This is a list of
* dwc_hc_t items.
*/
struct hc_list free_hc_list;
/**
* Number of host channels assigned to periodic transfers. Currently
* assuming that there is a dedicated host channel for each periodic
* transaction and at least one host channel available for
* non-periodic transactions.
*/
int periodic_channels;
/**
* Number of host channels assigned to non-periodic transfers.
*/
int non_periodic_channels;
/**
* Array of pointers to the host channel descriptors. Allows accessing
* a host channel descriptor given the host channel number. This is
* useful in interrupt handlers.
*/
struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS];
/**
* Buffer to use for any data received during the status phase of a
* control transfer. Normally no data is transferred during the status
* phase. This buffer is used as a bit bucket.
*/
uint8_t *status_buf;
/**
* DMA address for status_buf.
*/
dma_addr_t status_buf_dma;
#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
/**
* Connection timer. An OTG host must display a message if the device
* does not connect. Started when the VBus power is turned on via
* sysfs attribute "buspower".
*/
dwc_timer_t *conn_timer;
/* Tasket to do a reset */
dwc_tasklet_t *reset_tasklet;
/* */
dwc_spinlock_t *lock;
/**
* Private data that could be used by OS wrapper.
*/
void *priv;
uint8_t otg_port;
/** Frame List */
uint32_t *frame_list;
/** Frame List DMA address */
dma_addr_t frame_list_dma;
#ifdef DEBUG
uint32_t frrem_samples;
uint64_t frrem_accum;
uint32_t hfnum_7_samples_a;
uint64_t hfnum_7_frrem_accum_a;
uint32_t hfnum_0_samples_a;
uint64_t hfnum_0_frrem_accum_a;
uint32_t hfnum_other_samples_a;
uint64_t hfnum_other_frrem_accum_a;
uint32_t hfnum_7_samples_b;
uint64_t hfnum_7_frrem_accum_b;
uint32_t hfnum_0_samples_b;
uint64_t hfnum_0_frrem_accum_b;
uint32_t hfnum_other_samples_b;
uint64_t hfnum_other_frrem_accum_b;
#endif
};
/** @name Transaction Execution Functions */
/** @{ */
extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t
* hcd);
extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t * hcd,
dwc_otg_transaction_type_e tr_type);
/** @} */
/** @name Interrupt Handler Functions */
/** @{ */
extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t * dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t * dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *
dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *
dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *
dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *
dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t * dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *
dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t * dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t * dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t * dwc_otg_hcd,
uint32_t num);
extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t * dwc_otg_hcd);
extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *
dwc_otg_hcd);
/** @} */
/** @name Schedule Queue Functions */
/** @{ */
/* Implemented in dwc_otg_hcd_queue.c */
extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t * hcd,
dwc_otg_hcd_urb_t * urb, int atomic_alloc);
extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
int sched_csplit);
/** Remove and free a QH */
static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t * hcd,
dwc_otg_qh_t * qh)
{
dwc_irqflags_t flags;
DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
dwc_otg_hcd_qh_remove(hcd, qh);
DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
dwc_otg_hcd_qh_free(hcd, qh);
}
/** Allocates memory for a QH structure.
* @return Returns the memory allocate or NULL on error. */
static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(int atomic_alloc)
{
if (atomic_alloc)
return (dwc_otg_qh_t *) DWC_ALLOC_ATOMIC(sizeof(dwc_otg_qh_t));
else
return (dwc_otg_qh_t *) DWC_ALLOC(sizeof(dwc_otg_qh_t));
}
extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(dwc_otg_hcd_urb_t * urb,
int atomic_alloc);
extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t * qtd, dwc_otg_hcd_urb_t * urb);
extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * qtd, dwc_otg_hcd_t * dwc_otg_hcd,
dwc_otg_qh_t ** qh, int atomic_alloc);
/** Allocates memory for a QTD structure.
* @return Returns the memory allocate or NULL on error. */
static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(int atomic_alloc)
{
if (atomic_alloc)
return (dwc_otg_qtd_t *) DWC_ALLOC_ATOMIC(sizeof(dwc_otg_qtd_t));
else
return (dwc_otg_qtd_t *) DWC_ALLOC(sizeof(dwc_otg_qtd_t));
}
/** Frees the memory for a QTD structure. QTD should already be removed from
* list.
* @param qtd QTD to free.*/
static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t * qtd)
{
DWC_FREE(qtd);
}
/** Removes a QTD from list.
* @param hcd HCD instance.
* @param qtd QTD to remove from list.
* @param qh QTD belongs to.
*/
static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t * hcd,
dwc_otg_qtd_t * qtd,
dwc_otg_qh_t * qh)
{
DWC_CIRCLEQ_REMOVE(&qh->qtd_list, qtd, qtd_list_entry);
}
/** Remove and free a QTD
* Need to disable IRQ and hold hcd lock while calling this function out of
* interrupt servicing chain */
static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t * hcd,
dwc_otg_qtd_t * qtd,
dwc_otg_qh_t * qh)
{
dwc_otg_hcd_qtd_remove(hcd, qtd, qh);
dwc_otg_hcd_qtd_free(qtd);
}
/** @} */
/** @name Descriptor DMA Supporting Functions */
/** @{ */
extern void dwc_otg_hcd_start_xfer_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
extern void dwc_otg_hcd_complete_xfer_ddma(dwc_otg_hcd_t * hcd,
dwc_hc_t * hc,
dwc_otg_hc_regs_t * hc_regs,
dwc_otg_halt_status_e halt_status);
extern int dwc_otg_hcd_qh_init_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
extern void dwc_otg_hcd_qh_free_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
/** @} */
/** @name Internal Functions */
/** @{ */
dwc_otg_qh_t *dwc_urb_to_qh(dwc_otg_hcd_urb_t * urb);
/** @} */
#ifdef CONFIG_USB_DWC_OTG_LPM
extern int dwc_otg_hcd_get_hc_for_lpm_tran(dwc_otg_hcd_t * hcd,
uint8_t devaddr);
extern void dwc_otg_hcd_free_hc_from_lpm(dwc_otg_hcd_t * hcd);
#endif
/** Gets the QH that contains the list_head */
#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
/** Gets the QTD that contains the list_head */
#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
/** Check if QH is non-periodic */
#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == UE_BULK) || \
(_qh_ptr_->ep_type == UE_CONTROL))
/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
/** Packet size for any kind of endpoint descriptor */
#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
/**
* Returns true if _frame1 is less than or equal to _frame2. The comparison is
* done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
* frame number when the max frame number is reached.
*/
static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
{
return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
(DWC_HFNUM_MAX_FRNUM >> 1);
}
/**
* Returns true if _frame1 is greater than _frame2. The comparison is done
* modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
* number when the max frame number is reached.
*/
static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
{
return (frame1 != frame2) &&
(((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
(DWC_HFNUM_MAX_FRNUM >> 1));
}
/**
* Increments _frame by the amount specified by _inc. The addition is done
* modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
*/
static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
{
return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
}
static inline uint16_t dwc_full_frame_num(uint16_t frame)
{
return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
}
static inline uint16_t dwc_micro_frame_num(uint16_t frame)
{
return frame & 0x7;
}
void dwc_otg_hcd_save_data_toggle(dwc_hc_t * hc,
dwc_otg_hc_regs_t * hc_regs,
dwc_otg_qtd_t * qtd);
#ifdef DEBUG
/**
* Macro to sample the remaining PHY clocks left in the current frame. This
* may be used during debugging to determine the average time it takes to
* execute sections of code. There are two possible sample points, "a" and
* "b", so the _letter argument must be one of these values.
*
* To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
* example, "cat /sys/devices/lm0/hcd_frrem".
*/
#define dwc_sample_frrem(_hcd, _qh, _letter) \
{ \
hfnum_data_t hfnum; \
dwc_otg_qtd_t *qtd; \
qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
hfnum.d32 = DWC_READ_REG32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
switch (hfnum.b.frnum & 0x7) { \
case 7: \
_hcd->hfnum_7_samples_##_letter++; \
_hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
break; \
case 0: \
_hcd->hfnum_0_samples_##_letter++; \
_hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
break; \
default: \
_hcd->hfnum_other_samples_##_letter++; \
_hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
break; \
} \
} \
}
#else
#define dwc_sample_frrem(_hcd, _qh, _letter)
#endif
#endif
#endif /* DWC_DEVICE_ONLY */