blob: 61287fcca61aa323742e86ffa04899b1e662dd2e [file] [log] [blame]
/*
* USB RedRat3 IR Transceiver rc-core driver
*
* Copyright (c) 2011 by Jarod Wilson <jarod@redhat.com>
* based heavily on the work of Stephen Cox, with additional
* help from RedRat Ltd.
*
* This driver began life based an an old version of the first-generation
* lirc_mceusb driver from the lirc 0.7.2 distribution. It was then
* significantly rewritten by Stephen Cox with the aid of RedRat Ltd's
* Chris Dodge.
*
* The driver was then ported to rc-core and significantly rewritten again,
* by Jarod, using the in-kernel mceusb driver as a guide, after an initial
* port effort was started by Stephen.
*
* TODO LIST:
* - fix lirc not showing repeats properly
* --
*
* The RedRat3 is a USB transceiver with both send & receive,
* with 2 separate sensors available for receive to enable
* both good long range reception for general use, and good
* short range reception when required for learning a signal.
*
* http://www.redrat.co.uk/
*
* It uses its own little protocol to communicate, the required
* parts of which are embedded within this driver.
* --
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/input.h>
#include <media/rc-core.h>
/* Driver Information */
#define DRIVER_VERSION "0.70"
#define DRIVER_AUTHOR "Jarod Wilson <jarod@redhat.com>"
#define DRIVER_AUTHOR2 "The Dweller, Stephen Cox"
#define DRIVER_DESC "RedRat3 USB IR Transceiver Driver"
#define DRIVER_NAME "redrat3"
/* module parameters */
#ifdef CONFIG_USB_DEBUG
static int debug = 1;
#else
static int debug;
#endif
#define RR3_DEBUG_STANDARD 0x1
#define RR3_DEBUG_FUNCTION_TRACE 0x2
#define rr3_dbg(dev, fmt, ...) \
do { \
if (debug & RR3_DEBUG_STANDARD) \
dev_info(dev, fmt, ## __VA_ARGS__); \
} while (0)
#define rr3_ftr(dev, fmt, ...) \
do { \
if (debug & RR3_DEBUG_FUNCTION_TRACE) \
dev_info(dev, fmt, ## __VA_ARGS__); \
} while (0)
/* bulk data transfer types */
#define RR3_ERROR 0x01
#define RR3_MOD_SIGNAL_IN 0x20
#define RR3_MOD_SIGNAL_OUT 0x21
/* Get the RR firmware version */
#define RR3_FW_VERSION 0xb1
#define RR3_FW_VERSION_LEN 64
/* Send encoded signal bulk-sent earlier*/
#define RR3_TX_SEND_SIGNAL 0xb3
#define RR3_SET_IR_PARAM 0xb7
#define RR3_GET_IR_PARAM 0xb8
/* Blink the red LED on the device */
#define RR3_BLINK_LED 0xb9
/* Read serial number of device */
#define RR3_READ_SER_NO 0xba
#define RR3_SER_NO_LEN 4
/* Start capture with the RC receiver */
#define RR3_RC_DET_ENABLE 0xbb
/* Stop capture with the RC receiver */
#define RR3_RC_DET_DISABLE 0xbc
/* Return the status of RC detector capture */
#define RR3_RC_DET_STATUS 0xbd
/* Reset redrat */
#define RR3_RESET 0xa0
/* Max number of lengths in the signal. */
#define RR3_IR_IO_MAX_LENGTHS 0x01
/* Periods to measure mod. freq. */
#define RR3_IR_IO_PERIODS_MF 0x02
/* Size of memory for main signal data */
#define RR3_IR_IO_SIG_MEM_SIZE 0x03
/* Delta value when measuring lengths */
#define RR3_IR_IO_LENGTH_FUZZ 0x04
/* Timeout for end of signal detection */
#define RR3_IR_IO_SIG_TIMEOUT 0x05
/* Minumum value for pause recognition. */
#define RR3_IR_IO_MIN_PAUSE 0x06
/* Clock freq. of EZ-USB chip */
#define RR3_CLK 24000000
/* Clock periods per timer count */
#define RR3_CLK_PER_COUNT 12
/* (RR3_CLK / RR3_CLK_PER_COUNT) */
#define RR3_CLK_CONV_FACTOR 2000000
/* USB bulk-in IR data endpoint address */
#define RR3_BULK_IN_EP_ADDR 0x82
/* Raw Modulated signal data value offsets */
#define RR3_PAUSE_OFFSET 0
#define RR3_FREQ_COUNT_OFFSET 4
#define RR3_NUM_PERIOD_OFFSET 6
#define RR3_MAX_LENGTHS_OFFSET 8
#define RR3_NUM_LENGTHS_OFFSET 9
#define RR3_MAX_SIGS_OFFSET 10
#define RR3_NUM_SIGS_OFFSET 12
#define RR3_REPEATS_OFFSET 14
/* Size of the fixed-length portion of the signal */
#define RR3_HEADER_LENGTH 15
#define RR3_DRIVER_MAXLENS 128
#define RR3_MAX_SIG_SIZE 512
#define RR3_MAX_BUF_SIZE \
((2 * RR3_HEADER_LENGTH) + RR3_DRIVER_MAXLENS + RR3_MAX_SIG_SIZE)
#define RR3_TIME_UNIT 50
#define RR3_END_OF_SIGNAL 0x7f
#define RR3_TX_HEADER_OFFSET 4
#define RR3_TX_TRAILER_LEN 2
#define RR3_RX_MIN_TIMEOUT 5
#define RR3_RX_MAX_TIMEOUT 2000
/* The 8051's CPUCS Register address */
#define RR3_CPUCS_REG_ADDR 0x7f92
#define USB_RR3USB_VENDOR_ID 0x112a
#define USB_RR3USB_PRODUCT_ID 0x0001
#define USB_RR3IIUSB_PRODUCT_ID 0x0005
/* table of devices that work with this driver */
static struct usb_device_id redrat3_dev_table[] = {
/* Original version of the RedRat3 */
{USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3USB_PRODUCT_ID)},
/* Second Version/release of the RedRat3 - RetRat3-II */
{USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3IIUSB_PRODUCT_ID)},
{} /* Terminating entry */
};
/* Structure to hold all of our device specific stuff */
struct redrat3_dev {
/* core device bits */
struct rc_dev *rc;
struct device *dev;
/* save off the usb device pointer */
struct usb_device *udev;
/* the receive endpoint */
struct usb_endpoint_descriptor *ep_in;
/* the buffer to receive data */
unsigned char *bulk_in_buf;
/* urb used to read ir data */
struct urb *read_urb;
/* the send endpoint */
struct usb_endpoint_descriptor *ep_out;
/* the buffer to send data */
unsigned char *bulk_out_buf;
/* the urb used to send data */
struct urb *write_urb;
/* usb dma */
dma_addr_t dma_in;
dma_addr_t dma_out;
/* locks this structure */
struct mutex lock;
/* rx signal timeout timer */
struct timer_list rx_timeout;
u32 hw_timeout;
/* is the detector enabled*/
bool det_enabled;
/* Is the device currently transmitting?*/
bool transmitting;
/* store for current packet */
char pbuf[RR3_MAX_BUF_SIZE];
u16 pktlen;
u16 pkttype;
u16 bytes_read;
/* indicate whether we are going to reprocess
* the USB callback with a bigger buffer */
int buftoosmall;
char *datap;
u32 carrier;
char name[128];
char phys[64];
};
/* All incoming data buffers adhere to a very specific data format */
struct redrat3_signal_header {
u16 length; /* Length of data being transferred */
u16 transfer_type; /* Type of data transferred */
u32 pause; /* Pause between main and repeat signals */
u16 mod_freq_count; /* Value of timer on mod. freq. measurement */
u16 no_periods; /* No. of periods over which mod. freq. is measured */
u8 max_lengths; /* Max no. of lengths (i.e. size of array) */
u8 no_lengths; /* Actual no. of elements in lengths array */
u16 max_sig_size; /* Max no. of values in signal data array */
u16 sig_size; /* Acuto no. of values in signal data array */
u8 no_repeats; /* No. of repeats of repeat signal section */
/* Here forward is the lengths and signal data */
};
static void redrat3_dump_signal_header(struct redrat3_signal_header *header)
{
pr_info("%s:\n", __func__);
pr_info(" * length: %u, transfer_type: 0x%02x\n",
header->length, header->transfer_type);
pr_info(" * pause: %u, freq_count: %u, no_periods: %u\n",
header->pause, header->mod_freq_count, header->no_periods);
pr_info(" * lengths: %u (max: %u)\n",
header->no_lengths, header->max_lengths);
pr_info(" * sig_size: %u (max: %u)\n",
header->sig_size, header->max_sig_size);
pr_info(" * repeats: %u\n", header->no_repeats);
}
static void redrat3_dump_signal_data(char *buffer, u16 len)
{
int offset, i;
char *data_vals;
pr_info("%s:", __func__);
offset = RR3_TX_HEADER_OFFSET + RR3_HEADER_LENGTH
+ (RR3_DRIVER_MAXLENS * sizeof(u16));
/* read RR3_DRIVER_MAXLENS from ctrl msg */
data_vals = buffer + offset;
for (i = 0; i < len; i++) {
if (i % 10 == 0)
pr_cont("\n * ");
pr_cont("%02x ", *data_vals++);
}
pr_cont("\n");
}
/*
* redrat3_issue_async
*
* Issues an async read to the ir data in port..
* sets the callback to be redrat3_handle_async
*/
static void redrat3_issue_async(struct redrat3_dev *rr3)
{
int res;
rr3_ftr(rr3->dev, "Entering %s\n", __func__);
if (!rr3->det_enabled) {
dev_warn(rr3->dev, "not issuing async read, "
"detector not enabled\n");
return;
}
memset(rr3->bulk_in_buf, 0, rr3->ep_in->wMaxPacketSize);
res = usb_submit_urb(rr3->read_urb, GFP_ATOMIC);
if (res)
rr3_dbg(rr3->dev, "%s: receive request FAILED! "
"(res %d, len %d)\n", __func__, res,
rr3->read_urb->transfer_buffer_length);
}
static void redrat3_dump_fw_error(struct redrat3_dev *rr3, int code)
{
if (!rr3->transmitting && (code != 0x40))
dev_info(rr3->dev, "fw error code 0x%02x: ", code);
switch (code) {
case 0x00:
pr_cont("No Error\n");
break;
/* Codes 0x20 through 0x2f are IR Firmware Errors */
case 0x20:
pr_cont("Initial signal pulse not long enough "
"to measure carrier frequency\n");
break;
case 0x21:
pr_cont("Not enough length values allocated for signal\n");
break;
case 0x22:
pr_cont("Not enough memory allocated for signal data\n");
break;
case 0x23:
pr_cont("Too many signal repeats\n");
break;
case 0x28:
pr_cont("Insufficient memory available for IR signal "
"data memory allocation\n");
break;
case 0x29:
pr_cont("Insufficient memory available "
"for IrDa signal data memory allocation\n");
break;
/* Codes 0x30 through 0x3f are USB Firmware Errors */
case 0x30:
pr_cont("Insufficient memory available for bulk "
"transfer structure\n");
break;
/*
* Other error codes... These are primarily errors that can occur in
* the control messages sent to the redrat
*/
case 0x40:
if (!rr3->transmitting)
pr_cont("Signal capture has been terminated\n");
break;
case 0x41:
pr_cont("Attempt to set/get and unknown signal I/O "
"algorithm parameter\n");
break;
case 0x42:
pr_cont("Signal capture already started\n");
break;
default:
pr_cont("Unknown Error\n");
break;
}
}
static u32 redrat3_val_to_mod_freq(struct redrat3_signal_header *ph)
{
u32 mod_freq = 0;
if (ph->mod_freq_count != 0)
mod_freq = (RR3_CLK * ph->no_periods) /
(ph->mod_freq_count * RR3_CLK_PER_COUNT);
return mod_freq;
}
/* this function scales down the figures for the same result... */
static u32 redrat3_len_to_us(u32 length)
{
u32 biglen = length * 1000;
u32 divisor = (RR3_CLK_CONV_FACTOR) / 1000;
u32 result = (u32) (biglen / divisor);
/* don't allow zero lengths to go back, breaks lirc */
return result ? result : 1;
}
/*
* convert us back into redrat3 lengths
*
* length * 1000 length * 1000000
* ------------- = ---------------- = micro
* rr3clk / 1000 rr3clk
* 6 * 2 4 * 3 micro * rr3clk micro * rr3clk / 1000
* ----- = 4 ----- = 6 -------------- = len ---------------------
* 3 2 1000000 1000
*/
static u32 redrat3_us_to_len(u32 microsec)
{
u32 result;
u32 divisor;
microsec &= IR_MAX_DURATION;
divisor = (RR3_CLK_CONV_FACTOR / 1000);
result = (u32)(microsec * divisor) / 1000;
/* don't allow zero lengths to go back, breaks lirc */
return result ? result : 1;
}
/* timer callback to send reset event */
static void redrat3_rx_timeout(unsigned long data)
{
struct redrat3_dev *rr3 = (struct redrat3_dev *)data;
rr3_dbg(rr3->dev, "calling ir_raw_event_reset\n");
ir_raw_event_reset(rr3->rc);
}
static void redrat3_process_ir_data(struct redrat3_dev *rr3)
{
DEFINE_IR_RAW_EVENT(rawir);
struct redrat3_signal_header header;
struct device *dev;
int i, trailer = 0;
unsigned long delay;
u32 mod_freq, single_len;
u16 *len_vals;
u8 *data_vals;
u32 tmp32;
u16 tmp16;
char *sig_data;
if (!rr3) {
pr_err("%s called with no context!\n", __func__);
return;
}
rr3_ftr(rr3->dev, "Entered %s\n", __func__);
dev = rr3->dev;
sig_data = rr3->pbuf;
header.length = rr3->pktlen;
header.transfer_type = rr3->pkttype;
/* Sanity check */
if (!(header.length >= RR3_HEADER_LENGTH))
dev_warn(dev, "read returned less than rr3 header len\n");
/* Make sure we reset the IR kfifo after a bit of inactivity */
delay = usecs_to_jiffies(rr3->hw_timeout);
mod_timer(&rr3->rx_timeout, jiffies + delay);
memcpy(&tmp32, sig_data + RR3_PAUSE_OFFSET, sizeof(tmp32));
header.pause = be32_to_cpu(tmp32);
memcpy(&tmp16, sig_data + RR3_FREQ_COUNT_OFFSET, sizeof(tmp16));
header.mod_freq_count = be16_to_cpu(tmp16);
memcpy(&tmp16, sig_data + RR3_NUM_PERIOD_OFFSET, sizeof(tmp16));
header.no_periods = be16_to_cpu(tmp16);
header.max_lengths = sig_data[RR3_MAX_LENGTHS_OFFSET];
header.no_lengths = sig_data[RR3_NUM_LENGTHS_OFFSET];
memcpy(&tmp16, sig_data + RR3_MAX_SIGS_OFFSET, sizeof(tmp16));
header.max_sig_size = be16_to_cpu(tmp16);
memcpy(&tmp16, sig_data + RR3_NUM_SIGS_OFFSET, sizeof(tmp16));
header.sig_size = be16_to_cpu(tmp16);
header.no_repeats= sig_data[RR3_REPEATS_OFFSET];
if (debug) {
redrat3_dump_signal_header(&header);
redrat3_dump_signal_data(sig_data, header.sig_size);
}
mod_freq = redrat3_val_to_mod_freq(&header);
rr3_dbg(dev, "Got mod_freq of %u\n", mod_freq);
/* Here we pull out the 'length' values from the signal */
len_vals = (u16 *)(sig_data + RR3_HEADER_LENGTH);
data_vals = sig_data + RR3_HEADER_LENGTH +
(header.max_lengths * sizeof(u16));
/* process each rr3 encoded byte into an int */
for (i = 0; i < header.sig_size; i++) {
u16 val = len_vals[data_vals[i]];
single_len = redrat3_len_to_us((u32)be16_to_cpu(val));
/* we should always get pulse/space/pulse/space samples */
if (i % 2)
rawir.pulse = false;
else
rawir.pulse = true;
rawir.duration = US_TO_NS(single_len);
/* Save initial pulse length to fudge trailer */
if (i == 0)
trailer = rawir.duration;
/* cap the value to IR_MAX_DURATION */
rawir.duration &= IR_MAX_DURATION;
rr3_dbg(dev, "storing %s with duration %d (i: %d)\n",
rawir.pulse ? "pulse" : "space", rawir.duration, i);
ir_raw_event_store_with_filter(rr3->rc, &rawir);
}
/* add a trailing space, if need be */
if (i % 2) {
rawir.pulse = false;
/* this duration is made up, and may not be ideal... */
if (trailer < US_TO_NS(1000))
rawir.duration = US_TO_NS(2800);
else
rawir.duration = trailer;
rr3_dbg(dev, "storing trailing space with duration %d\n",
rawir.duration);
ir_raw_event_store_with_filter(rr3->rc, &rawir);
}
rr3_dbg(dev, "calling ir_raw_event_handle\n");
ir_raw_event_handle(rr3->rc);
return;
}
/* Util fn to send rr3 cmds */
static u8 redrat3_send_cmd(int cmd, struct redrat3_dev *rr3)
{
struct usb_device *udev;
u8 *data;
int res;
data = kzalloc(sizeof(u8), GFP_KERNEL);
if (!data)
return -ENOMEM;
udev = rr3->udev;
res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), cmd,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0x0000, 0x0000, data, sizeof(u8), HZ * 10);
if (res < 0) {
dev_err(rr3->dev, "%s: Error sending rr3 cmd res %d, data %d",
__func__, res, *data);
res = -EIO;
} else
res = (u8)data[0];
kfree(data);
return res;
}
/* Enables the long range detector and starts async receive */
static int redrat3_enable_detector(struct redrat3_dev *rr3)
{
struct device *dev = rr3->dev;
u8 ret;
rr3_ftr(dev, "Entering %s\n", __func__);
ret = redrat3_send_cmd(RR3_RC_DET_ENABLE, rr3);
if (ret != 0)
dev_dbg(dev, "%s: unexpected ret of %d\n",
__func__, ret);
ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3);
if (ret != 1) {
dev_err(dev, "%s: detector status: %d, should be 1\n",
__func__, ret);
return -EIO;
}
rr3->det_enabled = true;
redrat3_issue_async(rr3);
return 0;
}
/* Disables the rr3 long range detector */
static void redrat3_disable_detector(struct redrat3_dev *rr3)
{
struct device *dev = rr3->dev;
u8 ret;
rr3_ftr(dev, "Entering %s\n", __func__);
ret = redrat3_send_cmd(RR3_RC_DET_DISABLE, rr3);
if (ret != 0)
dev_err(dev, "%s: failure!\n", __func__);
ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3);
if (ret != 0)
dev_warn(dev, "%s: detector status: %d, should be 0\n",
__func__, ret);
rr3->det_enabled = false;
}
static inline void redrat3_delete(struct redrat3_dev *rr3,
struct usb_device *udev)
{
rr3_ftr(rr3->dev, "%s cleaning up\n", __func__);
usb_kill_urb(rr3->read_urb);
usb_kill_urb(rr3->write_urb);
usb_free_urb(rr3->read_urb);
usb_free_urb(rr3->write_urb);
usb_free_coherent(udev, rr3->ep_in->wMaxPacketSize,
rr3->bulk_in_buf, rr3->dma_in);
usb_free_coherent(udev, rr3->ep_out->wMaxPacketSize,
rr3->bulk_out_buf, rr3->dma_out);
kfree(rr3);
}
static u32 redrat3_get_timeout(struct redrat3_dev *rr3)
{
u32 *tmp;
u32 timeout = MS_TO_US(150); /* a sane default, if things go haywire */
int len, ret, pipe;
len = sizeof(*tmp);
tmp = kzalloc(len, GFP_KERNEL);
if (!tmp) {
dev_warn(rr3->dev, "Memory allocation faillure\n");
return timeout;
}
pipe = usb_rcvctrlpipe(rr3->udev, 0);
ret = usb_control_msg(rr3->udev, pipe, RR3_GET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
RR3_IR_IO_SIG_TIMEOUT, 0, tmp, len, HZ * 5);
if (ret != len) {
dev_warn(rr3->dev, "Failed to read timeout from hardware\n");
return timeout;
}
timeout = redrat3_len_to_us(be32_to_cpu(*tmp));
rr3_dbg(rr3->dev, "Got timeout of %d ms\n", timeout / 1000);
return timeout;
}
static void redrat3_reset(struct redrat3_dev *rr3)
{
struct usb_device *udev = rr3->udev;
struct device *dev = rr3->dev;
int rc, rxpipe, txpipe;
u8 *val;
int len = sizeof(u8);
rr3_ftr(dev, "Entering %s\n", __func__);
rxpipe = usb_rcvctrlpipe(udev, 0);
txpipe = usb_sndctrlpipe(udev, 0);
val = kzalloc(len, GFP_KERNEL);
if (!val) {
dev_err(dev, "Memory allocation failure\n");
return;
}
*val = 0x01;
rc = usb_control_msg(udev, rxpipe, RR3_RESET,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
RR3_CPUCS_REG_ADDR, 0, val, len, HZ * 25);
rr3_dbg(dev, "reset returned 0x%02x\n", rc);
*val = 5;
rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_LENGTH_FUZZ, 0, val, len, HZ * 25);
rr3_dbg(dev, "set ir parm len fuzz %d rc 0x%02x\n", *val, rc);
*val = RR3_DRIVER_MAXLENS;
rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_MAX_LENGTHS, 0, val, len, HZ * 25);
rr3_dbg(dev, "set ir parm max lens %d rc 0x%02x\n", *val, rc);
kfree(val);
}
static void redrat3_get_firmware_rev(struct redrat3_dev *rr3)
{
int rc = 0;
char *buffer;
rr3_ftr(rr3->dev, "Entering %s\n", __func__);
buffer = kzalloc(sizeof(char) * (RR3_FW_VERSION_LEN + 1), GFP_KERNEL);
if (!buffer) {
dev_err(rr3->dev, "Memory allocation failure\n");
return;
}
rc = usb_control_msg(rr3->udev, usb_rcvctrlpipe(rr3->udev, 0),
RR3_FW_VERSION,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0, 0, buffer, RR3_FW_VERSION_LEN, HZ * 5);
if (rc >= 0)
dev_info(rr3->dev, "Firmware rev: %s", buffer);
else
dev_err(rr3->dev, "Problem fetching firmware ID\n");
kfree(buffer);
rr3_ftr(rr3->dev, "Exiting %s\n", __func__);
}
static void redrat3_read_packet_start(struct redrat3_dev *rr3, int len)
{
u16 tx_error;
u16 hdrlen;
rr3_ftr(rr3->dev, "Entering %s\n", __func__);
/* grab the Length and type of transfer */
memcpy(&(rr3->pktlen), (unsigned char *) rr3->bulk_in_buf,
sizeof(rr3->pktlen));
memcpy(&(rr3->pkttype), ((unsigned char *) rr3->bulk_in_buf +
sizeof(rr3->pktlen)),
sizeof(rr3->pkttype));
/*data needs conversion to know what its real values are*/
rr3->pktlen = be16_to_cpu(rr3->pktlen);
rr3->pkttype = be16_to_cpu(rr3->pkttype);
switch (rr3->pkttype) {
case RR3_ERROR:
memcpy(&tx_error, ((unsigned char *)rr3->bulk_in_buf
+ (sizeof(rr3->pktlen) + sizeof(rr3->pkttype))),
sizeof(tx_error));
tx_error = be16_to_cpu(tx_error);
redrat3_dump_fw_error(rr3, tx_error);
break;
case RR3_MOD_SIGNAL_IN:
hdrlen = sizeof(rr3->pktlen) + sizeof(rr3->pkttype);
rr3->bytes_read = len;
rr3->bytes_read -= hdrlen;
rr3->datap = &(rr3->pbuf[0]);
memcpy(rr3->datap, ((unsigned char *)rr3->bulk_in_buf + hdrlen),
rr3->bytes_read);
rr3->datap += rr3->bytes_read;
rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n",
rr3->bytes_read, rr3->pktlen);
break;
default:
rr3_dbg(rr3->dev, "ignoring packet with type 0x%02x, "
"len of %d, 0x%02x\n", rr3->pkttype, len, rr3->pktlen);
break;
}
}
static void redrat3_read_packet_continue(struct redrat3_dev *rr3, int len)
{
rr3_ftr(rr3->dev, "Entering %s\n", __func__);
memcpy(rr3->datap, (unsigned char *)rr3->bulk_in_buf, len);
rr3->datap += len;
rr3->bytes_read += len;
rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n",
rr3->bytes_read, rr3->pktlen);
}
/* gather IR data from incoming urb, process it when we have enough */
static int redrat3_get_ir_data(struct redrat3_dev *rr3, int len)
{
struct device *dev = rr3->dev;
int ret = 0;
rr3_ftr(dev, "Entering %s\n", __func__);
if (rr3->pktlen > RR3_MAX_BUF_SIZE) {
dev_err(rr3->dev, "error: packet larger than buffer\n");
ret = -EINVAL;
goto out;
}
if ((rr3->bytes_read == 0) &&
(len >= (sizeof(rr3->pkttype) + sizeof(rr3->pktlen)))) {
redrat3_read_packet_start(rr3, len);
} else if (rr3->bytes_read != 0) {
redrat3_read_packet_continue(rr3, len);
} else if (rr3->bytes_read == 0) {
dev_err(dev, "error: no packet data read\n");
ret = -ENODATA;
goto out;
}
if (rr3->bytes_read > rr3->pktlen) {
dev_err(dev, "bytes_read (%d) greater than pktlen (%d)\n",
rr3->bytes_read, rr3->pktlen);
ret = -EINVAL;
goto out;
} else if (rr3->bytes_read < rr3->pktlen)
/* we're still accumulating data */
return 0;
/* if we get here, we've got IR data to decode */
if (rr3->pkttype == RR3_MOD_SIGNAL_IN)
redrat3_process_ir_data(rr3);
else
rr3_dbg(dev, "discarding non-signal data packet "
"(type 0x%02x)\n", rr3->pkttype);
out:
rr3->bytes_read = 0;
rr3->pktlen = 0;
rr3->pkttype = 0;
return ret;
}
/* callback function from USB when async USB request has completed */
static void redrat3_handle_async(struct urb *urb, struct pt_regs *regs)
{
struct redrat3_dev *rr3;
if (!urb)
return;
rr3 = urb->context;
if (!rr3) {
pr_err("%s called with invalid context!\n", __func__);
usb_unlink_urb(urb);
return;
}
rr3_ftr(rr3->dev, "Entering %s\n", __func__);
if (!rr3->det_enabled) {
rr3_dbg(rr3->dev, "received a read callback but detector "
"disabled - ignoring\n");
return;
}
switch (urb->status) {
case 0:
redrat3_get_ir_data(rr3, urb->actual_length);
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_warn(rr3->dev, "Error: urb status = %d\n", urb->status);
rr3->bytes_read = 0;
rr3->pktlen = 0;
rr3->pkttype = 0;
break;
}
if (!rr3->transmitting)
redrat3_issue_async(rr3);
else
rr3_dbg(rr3->dev, "IR transmit in progress\n");
}
static void redrat3_write_bulk_callback(struct urb *urb, struct pt_regs *regs)
{
struct redrat3_dev *rr3;
int len;
if (!urb)
return;
rr3 = urb->context;
if (rr3) {
len = urb->actual_length;
rr3_ftr(rr3->dev, "%s: called (status=%d len=%d)\n",
__func__, urb->status, len);
}
}
static u16 mod_freq_to_val(unsigned int mod_freq)
{
int mult = 6000000;
/* Clk used in mod. freq. generation is CLK24/4. */
return (u16)(65536 - (mult / mod_freq));
}
static int redrat3_set_tx_carrier(struct rc_dev *dev, u32 carrier)
{
struct redrat3_dev *rr3 = dev->priv;
rr3->carrier = carrier;
return carrier;
}
static int redrat3_transmit_ir(struct rc_dev *rcdev, int *txbuf, u32 n)
{
struct redrat3_dev *rr3 = rcdev->priv;
struct device *dev = rr3->dev;
struct redrat3_signal_header header;
int i, j, count, ret, ret_len, offset;
int lencheck, cur_sample_len, pipe;
char *buffer = NULL, *sigdata = NULL;
int *sample_lens = NULL;
u32 tmpi;
u16 tmps;
u8 *datap;
u8 curlencheck = 0;
u16 *lengths_ptr;
int sendbuf_len;
rr3_ftr(dev, "Entering %s\n", __func__);
if (rr3->transmitting) {
dev_warn(dev, "%s: transmitter already in use\n", __func__);
return -EAGAIN;
}
count = n / sizeof(int);
if (count > (RR3_DRIVER_MAXLENS * 2))
return -EINVAL;
rr3->transmitting = true;
redrat3_disable_detector(rr3);
if (rr3->det_enabled) {
dev_err(dev, "%s: cannot tx while rx is enabled\n", __func__);
ret = -EIO;
goto out;
}
sample_lens = kzalloc(sizeof(int) * RR3_DRIVER_MAXLENS, GFP_KERNEL);
if (!sample_lens) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < count; i++) {
for (lencheck = 0; lencheck < curlencheck; lencheck++) {
cur_sample_len = redrat3_us_to_len(txbuf[i]);
if (sample_lens[lencheck] == cur_sample_len)
break;
}
if (lencheck == curlencheck) {
cur_sample_len = redrat3_us_to_len(txbuf[i]);
rr3_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n",
i, txbuf[i], curlencheck, cur_sample_len);
if (curlencheck < 255) {
/* now convert the value to a proper
* rr3 value.. */
sample_lens[curlencheck] = cur_sample_len;
curlencheck++;
} else {
dev_err(dev, "signal too long\n");
ret = -EINVAL;
goto out;
}
}
}
sigdata = kzalloc((count + RR3_TX_TRAILER_LEN), GFP_KERNEL);
if (!sigdata) {
ret = -ENOMEM;
goto out;
}
sigdata[count] = RR3_END_OF_SIGNAL;
sigdata[count + 1] = RR3_END_OF_SIGNAL;
for (i = 0; i < count; i++) {
for (j = 0; j < curlencheck; j++) {
if (sample_lens[j] == redrat3_us_to_len(txbuf[i]))
sigdata[i] = j;
}
}
offset = RR3_TX_HEADER_OFFSET;
sendbuf_len = RR3_HEADER_LENGTH + (sizeof(u16) * RR3_DRIVER_MAXLENS)
+ count + RR3_TX_TRAILER_LEN + offset;
buffer = kzalloc(sendbuf_len, GFP_KERNEL);
if (!buffer) {
ret = -ENOMEM;
goto out;
}
/* fill in our packet header */
header.length = sendbuf_len - offset;
header.transfer_type = RR3_MOD_SIGNAL_OUT;
header.pause = redrat3_len_to_us(100);
header.mod_freq_count = mod_freq_to_val(rr3->carrier);
header.no_periods = 0; /* n/a to transmit */
header.max_lengths = RR3_DRIVER_MAXLENS;
header.no_lengths = curlencheck;
header.max_sig_size = RR3_MAX_SIG_SIZE;
header.sig_size = count + RR3_TX_TRAILER_LEN;
/* we currently rely on repeat handling in the IR encoding source */
header.no_repeats = 0;
tmps = cpu_to_be16(header.length);
memcpy(buffer, &tmps, 2);
tmps = cpu_to_be16(header.transfer_type);
memcpy(buffer + 2, &tmps, 2);
tmpi = cpu_to_be32(header.pause);
memcpy(buffer + offset, &tmpi, sizeof(tmpi));
tmps = cpu_to_be16(header.mod_freq_count);
memcpy(buffer + offset + RR3_FREQ_COUNT_OFFSET, &tmps, 2);
buffer[offset + RR3_NUM_LENGTHS_OFFSET] = header.no_lengths;
tmps = cpu_to_be16(header.sig_size);
memcpy(buffer + offset + RR3_NUM_SIGS_OFFSET, &tmps, 2);
buffer[offset + RR3_REPEATS_OFFSET] = header.no_repeats;
lengths_ptr = (u16 *)(buffer + offset + RR3_HEADER_LENGTH);
for (i = 0; i < curlencheck; ++i)
lengths_ptr[i] = cpu_to_be16(sample_lens[i]);
datap = (u8 *)(buffer + offset + RR3_HEADER_LENGTH +
(sizeof(u16) * RR3_DRIVER_MAXLENS));
memcpy(datap, sigdata, (count + RR3_TX_TRAILER_LEN));
if (debug) {
redrat3_dump_signal_header(&header);
redrat3_dump_signal_data(buffer, header.sig_size);
}
pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress);
tmps = usb_bulk_msg(rr3->udev, pipe, buffer,
sendbuf_len, &ret_len, 10 * HZ);
rr3_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, tmps);
/* now tell the hardware to transmit what we sent it */
pipe = usb_rcvctrlpipe(rr3->udev, 0);
ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0, 0, buffer, 2, HZ * 10);
if (ret < 0)
dev_err(dev, "Error: control msg send failed, rc %d\n", ret);
else
ret = n;
out:
kfree(sample_lens);
kfree(buffer);
kfree(sigdata);
rr3->transmitting = false;
redrat3_enable_detector(rr3);
return ret;
}
static struct rc_dev *redrat3_init_rc_dev(struct redrat3_dev *rr3)
{
struct device *dev = rr3->dev;
struct rc_dev *rc;
int ret = -ENODEV;
u16 prod = le16_to_cpu(rr3->udev->descriptor.idProduct);
rc = rc_allocate_device();
if (!rc) {
dev_err(dev, "remote input dev allocation failed\n");
goto out;
}
snprintf(rr3->name, sizeof(rr3->name), "RedRat3%s "
"Infrared Remote Transceiver (%04x:%04x)",
prod == USB_RR3IIUSB_PRODUCT_ID ? "-II" : "",
le16_to_cpu(rr3->udev->descriptor.idVendor), prod);
usb_make_path(rr3->udev, rr3->phys, sizeof(rr3->phys));
rc->input_name = rr3->name;
rc->input_phys = rr3->phys;
usb_to_input_id(rr3->udev, &rc->input_id);
rc->dev.parent = dev;
rc->priv = rr3;
rc->driver_type = RC_DRIVER_IR_RAW;
rc->allowed_protos = RC_TYPE_ALL;
rc->timeout = US_TO_NS(2750);
rc->tx_ir = redrat3_transmit_ir;
rc->s_tx_carrier = redrat3_set_tx_carrier;
rc->driver_name = DRIVER_NAME;
rc->map_name = RC_MAP_HAUPPAUGE;
ret = rc_register_device(rc);
if (ret < 0) {
dev_err(dev, "remote dev registration failed\n");
goto out;
}
return rc;
out:
rc_free_device(rc);
return NULL;
}
static int __devinit redrat3_dev_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct device *dev = &intf->dev;
struct usb_host_interface *uhi;
struct redrat3_dev *rr3;
struct usb_endpoint_descriptor *ep;
struct usb_endpoint_descriptor *ep_in = NULL;
struct usb_endpoint_descriptor *ep_out = NULL;
u8 addr, attrs;
int pipe, i;
int retval = -ENOMEM;
rr3_ftr(dev, "%s called\n", __func__);
uhi = intf->cur_altsetting;
/* find our bulk-in and bulk-out endpoints */
for (i = 0; i < uhi->desc.bNumEndpoints; ++i) {
ep = &uhi->endpoint[i].desc;
addr = ep->bEndpointAddress;
attrs = ep->bmAttributes;
if ((ep_in == NULL) &&
((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) &&
((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_BULK)) {
rr3_dbg(dev, "found bulk-in endpoint at 0x%02x\n",
ep->bEndpointAddress);
/* data comes in on 0x82, 0x81 is for other data... */
if (ep->bEndpointAddress == RR3_BULK_IN_EP_ADDR)
ep_in = ep;
}
if ((ep_out == NULL) &&
((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) &&
((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_BULK)) {
rr3_dbg(dev, "found bulk-out endpoint at 0x%02x\n",
ep->bEndpointAddress);
ep_out = ep;
}
}
if (!ep_in || !ep_out) {
dev_err(dev, "Couldn't find both in and out endpoints\n");
retval = -ENODEV;
goto no_endpoints;
}
/* allocate memory for our device state and initialize it */
rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL);
if (rr3 == NULL) {
dev_err(dev, "Memory allocation failure\n");
goto no_endpoints;
}
rr3->dev = &intf->dev;
/* set up bulk-in endpoint */
rr3->read_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rr3->read_urb) {
dev_err(dev, "Read urb allocation failure\n");
goto error;
}
rr3->ep_in = ep_in;
rr3->bulk_in_buf = usb_alloc_coherent(udev, ep_in->wMaxPacketSize,
GFP_ATOMIC, &rr3->dma_in);
if (!rr3->bulk_in_buf) {
dev_err(dev, "Read buffer allocation failure\n");
goto error;
}
pipe = usb_rcvbulkpipe(udev, ep_in->bEndpointAddress);
usb_fill_bulk_urb(rr3->read_urb, udev, pipe,
rr3->bulk_in_buf, ep_in->wMaxPacketSize,
(usb_complete_t)redrat3_handle_async, rr3);
/* set up bulk-out endpoint*/
rr3->write_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rr3->write_urb) {
dev_err(dev, "Write urb allocation failure\n");
goto error;
}
rr3->ep_out = ep_out;
rr3->bulk_out_buf = usb_alloc_coherent(udev, ep_out->wMaxPacketSize,
GFP_ATOMIC, &rr3->dma_out);
if (!rr3->bulk_out_buf) {
dev_err(dev, "Write buffer allocation failure\n");
goto error;
}
pipe = usb_sndbulkpipe(udev, ep_out->bEndpointAddress);
usb_fill_bulk_urb(rr3->write_urb, udev, pipe,
rr3->bulk_out_buf, ep_out->wMaxPacketSize,
(usb_complete_t)redrat3_write_bulk_callback, rr3);
mutex_init(&rr3->lock);
rr3->udev = udev;
redrat3_reset(rr3);
redrat3_get_firmware_rev(rr3);
/* might be all we need to do? */
retval = redrat3_enable_detector(rr3);
if (retval < 0)
goto error;
/* store current hardware timeout, in us, will use for kfifo resets */
rr3->hw_timeout = redrat3_get_timeout(rr3);
/* default.. will get overridden by any sends with a freq defined */
rr3->carrier = 38000;
rr3->rc = redrat3_init_rc_dev(rr3);
if (!rr3->rc)
goto error;
setup_timer(&rr3->rx_timeout, redrat3_rx_timeout, (unsigned long)rr3);
/* we can register the device now, as it is ready */
usb_set_intfdata(intf, rr3);
rr3_ftr(dev, "Exiting %s\n", __func__);
return 0;
error:
redrat3_delete(rr3, rr3->udev);
no_endpoints:
dev_err(dev, "%s: retval = %x", __func__, retval);
return retval;
}
static void __devexit redrat3_dev_disconnect(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct redrat3_dev *rr3 = usb_get_intfdata(intf);
rr3_ftr(&intf->dev, "Entering %s\n", __func__);
if (!rr3)
return;
redrat3_disable_detector(rr3);
usb_set_intfdata(intf, NULL);
rc_unregister_device(rr3->rc);
del_timer_sync(&rr3->rx_timeout);
redrat3_delete(rr3, udev);
rr3_ftr(&intf->dev, "RedRat3 IR Transceiver now disconnected\n");
}
static int redrat3_dev_suspend(struct usb_interface *intf, pm_message_t message)
{
struct redrat3_dev *rr3 = usb_get_intfdata(intf);
rr3_ftr(rr3->dev, "suspend\n");
usb_kill_urb(rr3->read_urb);
return 0;
}
static int redrat3_dev_resume(struct usb_interface *intf)
{
struct redrat3_dev *rr3 = usb_get_intfdata(intf);
rr3_ftr(rr3->dev, "resume\n");
if (usb_submit_urb(rr3->read_urb, GFP_ATOMIC))
return -EIO;
return 0;
}
static struct usb_driver redrat3_dev_driver = {
.name = DRIVER_NAME,
.probe = redrat3_dev_probe,
.disconnect = redrat3_dev_disconnect,
.suspend = redrat3_dev_suspend,
.resume = redrat3_dev_resume,
.reset_resume = redrat3_dev_resume,
.id_table = redrat3_dev_table
};
static int __init redrat3_dev_init(void)
{
int ret;
ret = usb_register(&redrat3_dev_driver);
if (ret < 0)
pr_err(DRIVER_NAME
": usb register failed, result = %d\n", ret);
return ret;
}
static void __exit redrat3_dev_exit(void)
{
usb_deregister(&redrat3_dev_driver);
}
module_init(redrat3_dev_init);
module_exit(redrat3_dev_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_AUTHOR(DRIVER_AUTHOR2);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(usb, redrat3_dev_table);
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable module debug spew. 0 = no debugging (default) "
"0x1 = standard debug messages, 0x2 = function tracing debug. "
"Flag bits are addative (i.e., 0x3 for both debug types).");