| /* |
| * Cell Broadband Engine OProfile Support |
| * |
| * (C) Copyright IBM Corporation 2006 |
| * |
| * Author: Maynard Johnson <maynardj@us.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| /* The purpose of this file is to handle SPU event task switching |
| * and to record SPU context information into the OProfile |
| * event buffer. |
| * |
| * Additionally, the spu_sync_buffer function is provided as a helper |
| * for recoding actual SPU program counter samples to the event buffer. |
| */ |
| #include <linux/dcookies.h> |
| #include <linux/kref.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/module.h> |
| #include <linux/notifier.h> |
| #include <linux/numa.h> |
| #include <linux/oprofile.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include "pr_util.h" |
| |
| #define RELEASE_ALL 9999 |
| |
| static DEFINE_SPINLOCK(buffer_lock); |
| static DEFINE_SPINLOCK(cache_lock); |
| static int num_spu_nodes; |
| int spu_prof_num_nodes; |
| |
| struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE]; |
| struct delayed_work spu_work; |
| static unsigned max_spu_buff; |
| |
| static void spu_buff_add(unsigned long int value, int spu) |
| { |
| /* spu buff is a circular buffer. Add entries to the |
| * head. Head is the index to store the next value. |
| * The buffer is full when there is one available entry |
| * in the queue, i.e. head and tail can't be equal. |
| * That way we can tell the difference between the |
| * buffer being full versus empty. |
| * |
| * ASSUPTION: the buffer_lock is held when this function |
| * is called to lock the buffer, head and tail. |
| */ |
| int full = 1; |
| |
| if (spu_buff[spu].head >= spu_buff[spu].tail) { |
| if ((spu_buff[spu].head - spu_buff[spu].tail) |
| < (max_spu_buff - 1)) |
| full = 0; |
| |
| } else if (spu_buff[spu].tail > spu_buff[spu].head) { |
| if ((spu_buff[spu].tail - spu_buff[spu].head) |
| > 1) |
| full = 0; |
| } |
| |
| if (!full) { |
| spu_buff[spu].buff[spu_buff[spu].head] = value; |
| spu_buff[spu].head++; |
| |
| if (spu_buff[spu].head >= max_spu_buff) |
| spu_buff[spu].head = 0; |
| } else { |
| /* From the user's perspective make the SPU buffer |
| * size management/overflow look like we are using |
| * per cpu buffers. The user uses the same |
| * per cpu parameter to adjust the SPU buffer size. |
| * Increment the sample_lost_overflow to inform |
| * the user the buffer size needs to be increased. |
| */ |
| oprofile_cpu_buffer_inc_smpl_lost(); |
| } |
| } |
| |
| /* This function copies the per SPU buffers to the |
| * OProfile kernel buffer. |
| */ |
| void sync_spu_buff(void) |
| { |
| int spu; |
| unsigned long flags; |
| int curr_head; |
| |
| for (spu = 0; spu < num_spu_nodes; spu++) { |
| /* In case there was an issue and the buffer didn't |
| * get created skip it. |
| */ |
| if (spu_buff[spu].buff == NULL) |
| continue; |
| |
| /* Hold the lock to make sure the head/tail |
| * doesn't change while spu_buff_add() is |
| * deciding if the buffer is full or not. |
| * Being a little paranoid. |
| */ |
| spin_lock_irqsave(&buffer_lock, flags); |
| curr_head = spu_buff[spu].head; |
| spin_unlock_irqrestore(&buffer_lock, flags); |
| |
| /* Transfer the current contents to the kernel buffer. |
| * data can still be added to the head of the buffer. |
| */ |
| oprofile_put_buff(spu_buff[spu].buff, |
| spu_buff[spu].tail, |
| curr_head, max_spu_buff); |
| |
| spin_lock_irqsave(&buffer_lock, flags); |
| spu_buff[spu].tail = curr_head; |
| spin_unlock_irqrestore(&buffer_lock, flags); |
| } |
| |
| } |
| |
| static void wq_sync_spu_buff(struct work_struct *work) |
| { |
| /* move data from spu buffers to kernel buffer */ |
| sync_spu_buff(); |
| |
| /* only reschedule if profiling is not done */ |
| if (spu_prof_running) |
| schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE); |
| } |
| |
| /* Container for caching information about an active SPU task. */ |
| struct cached_info { |
| struct vma_to_fileoffset_map *map; |
| struct spu *the_spu; /* needed to access pointer to local_store */ |
| struct kref cache_ref; |
| }; |
| |
| static struct cached_info *spu_info[MAX_NUMNODES * 8]; |
| |
| static void destroy_cached_info(struct kref *kref) |
| { |
| struct cached_info *info; |
| |
| info = container_of(kref, struct cached_info, cache_ref); |
| vma_map_free(info->map); |
| kfree(info); |
| module_put(THIS_MODULE); |
| } |
| |
| /* Return the cached_info for the passed SPU number. |
| * ATTENTION: Callers are responsible for obtaining the |
| * cache_lock if needed prior to invoking this function. |
| */ |
| static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num) |
| { |
| struct kref *ref; |
| struct cached_info *ret_info; |
| |
| if (spu_num >= num_spu_nodes) { |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: Invalid index %d into spu info cache\n", |
| __func__, __LINE__, spu_num); |
| ret_info = NULL; |
| goto out; |
| } |
| if (!spu_info[spu_num] && the_spu) { |
| ref = spu_get_profile_private_kref(the_spu->ctx); |
| if (ref) { |
| spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref); |
| kref_get(&spu_info[spu_num]->cache_ref); |
| } |
| } |
| |
| ret_info = spu_info[spu_num]; |
| out: |
| return ret_info; |
| } |
| |
| |
| /* Looks for cached info for the passed spu. If not found, the |
| * cached info is created for the passed spu. |
| * Returns 0 for success; otherwise, -1 for error. |
| */ |
| static int |
| prepare_cached_spu_info(struct spu *spu, unsigned long objectId) |
| { |
| unsigned long flags; |
| struct vma_to_fileoffset_map *new_map; |
| int retval = 0; |
| struct cached_info *info; |
| |
| /* We won't bother getting cache_lock here since |
| * don't do anything with the cached_info that's returned. |
| */ |
| info = get_cached_info(spu, spu->number); |
| |
| if (info) { |
| pr_debug("Found cached SPU info.\n"); |
| goto out; |
| } |
| |
| /* Create cached_info and set spu_info[spu->number] to point to it. |
| * spu->number is a system-wide value, not a per-node value. |
| */ |
| info = kzalloc(sizeof(struct cached_info), GFP_KERNEL); |
| if (!info) { |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: create vma_map failed\n", |
| __func__, __LINE__); |
| retval = -ENOMEM; |
| goto err_alloc; |
| } |
| new_map = create_vma_map(spu, objectId); |
| if (!new_map) { |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: create vma_map failed\n", |
| __func__, __LINE__); |
| retval = -ENOMEM; |
| goto err_alloc; |
| } |
| |
| pr_debug("Created vma_map\n"); |
| info->map = new_map; |
| info->the_spu = spu; |
| kref_init(&info->cache_ref); |
| spin_lock_irqsave(&cache_lock, flags); |
| spu_info[spu->number] = info; |
| /* Increment count before passing off ref to SPUFS. */ |
| kref_get(&info->cache_ref); |
| |
| /* We increment the module refcount here since SPUFS is |
| * responsible for the final destruction of the cached_info, |
| * and it must be able to access the destroy_cached_info() |
| * function defined in the OProfile module. We decrement |
| * the module refcount in destroy_cached_info. |
| */ |
| try_module_get(THIS_MODULE); |
| spu_set_profile_private_kref(spu->ctx, &info->cache_ref, |
| destroy_cached_info); |
| spin_unlock_irqrestore(&cache_lock, flags); |
| goto out; |
| |
| err_alloc: |
| kfree(info); |
| out: |
| return retval; |
| } |
| |
| /* |
| * NOTE: The caller is responsible for locking the |
| * cache_lock prior to calling this function. |
| */ |
| static int release_cached_info(int spu_index) |
| { |
| int index, end; |
| |
| if (spu_index == RELEASE_ALL) { |
| end = num_spu_nodes; |
| index = 0; |
| } else { |
| if (spu_index >= num_spu_nodes) { |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: " |
| "Invalid index %d into spu info cache\n", |
| __func__, __LINE__, spu_index); |
| goto out; |
| } |
| end = spu_index + 1; |
| index = spu_index; |
| } |
| for (; index < end; index++) { |
| if (spu_info[index]) { |
| kref_put(&spu_info[index]->cache_ref, |
| destroy_cached_info); |
| spu_info[index] = NULL; |
| } |
| } |
| |
| out: |
| return 0; |
| } |
| |
| /* The source code for fast_get_dcookie was "borrowed" |
| * from drivers/oprofile/buffer_sync.c. |
| */ |
| |
| /* Optimisation. We can manage without taking the dcookie sem |
| * because we cannot reach this code without at least one |
| * dcookie user still being registered (namely, the reader |
| * of the event buffer). |
| */ |
| static inline unsigned long fast_get_dcookie(struct path *path) |
| { |
| unsigned long cookie; |
| |
| if (path->dentry->d_flags & DCACHE_COOKIE) |
| return (unsigned long)path->dentry; |
| get_dcookie(path, &cookie); |
| return cookie; |
| } |
| |
| /* Look up the dcookie for the task's first VM_EXECUTABLE mapping, |
| * which corresponds loosely to "application name". Also, determine |
| * the offset for the SPU ELF object. If computed offset is |
| * non-zero, it implies an embedded SPU object; otherwise, it's a |
| * separate SPU binary, in which case we retrieve it's dcookie. |
| * For the embedded case, we must determine if SPU ELF is embedded |
| * in the executable application or another file (i.e., shared lib). |
| * If embedded in a shared lib, we must get the dcookie and return |
| * that to the caller. |
| */ |
| static unsigned long |
| get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp, |
| unsigned long *spu_bin_dcookie, |
| unsigned long spu_ref) |
| { |
| unsigned long app_cookie = 0; |
| unsigned int my_offset = 0; |
| struct file *app = NULL; |
| struct vm_area_struct *vma; |
| struct mm_struct *mm = spu->mm; |
| |
| if (!mm) |
| goto out; |
| |
| down_read(&mm->mmap_sem); |
| |
| for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| if (!vma->vm_file) |
| continue; |
| if (!(vma->vm_flags & VM_EXECUTABLE)) |
| continue; |
| app_cookie = fast_get_dcookie(&vma->vm_file->f_path); |
| pr_debug("got dcookie for %s\n", |
| vma->vm_file->f_dentry->d_name.name); |
| app = vma->vm_file; |
| break; |
| } |
| |
| for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref) |
| continue; |
| my_offset = spu_ref - vma->vm_start; |
| if (!vma->vm_file) |
| goto fail_no_image_cookie; |
| |
| pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n", |
| my_offset, spu_ref, |
| vma->vm_file->f_dentry->d_name.name); |
| *offsetp = my_offset; |
| break; |
| } |
| |
| *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path); |
| pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name); |
| |
| up_read(&mm->mmap_sem); |
| |
| out: |
| return app_cookie; |
| |
| fail_no_image_cookie: |
| up_read(&mm->mmap_sem); |
| |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: Cannot find dcookie for SPU binary\n", |
| __func__, __LINE__); |
| goto out; |
| } |
| |
| |
| |
| /* This function finds or creates cached context information for the |
| * passed SPU and records SPU context information into the OProfile |
| * event buffer. |
| */ |
| static int process_context_switch(struct spu *spu, unsigned long objectId) |
| { |
| unsigned long flags; |
| int retval; |
| unsigned int offset = 0; |
| unsigned long spu_cookie = 0, app_dcookie; |
| |
| retval = prepare_cached_spu_info(spu, objectId); |
| if (retval) |
| goto out; |
| |
| /* Get dcookie first because a mutex_lock is taken in that |
| * code path, so interrupts must not be disabled. |
| */ |
| app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId); |
| if (!app_dcookie || !spu_cookie) { |
| retval = -ENOENT; |
| goto out; |
| } |
| |
| /* Record context info in event buffer */ |
| spin_lock_irqsave(&buffer_lock, flags); |
| spu_buff_add(ESCAPE_CODE, spu->number); |
| spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number); |
| spu_buff_add(spu->number, spu->number); |
| spu_buff_add(spu->pid, spu->number); |
| spu_buff_add(spu->tgid, spu->number); |
| spu_buff_add(app_dcookie, spu->number); |
| spu_buff_add(spu_cookie, spu->number); |
| spu_buff_add(offset, spu->number); |
| |
| /* Set flag to indicate SPU PC data can now be written out. If |
| * the SPU program counter data is seen before an SPU context |
| * record is seen, the postprocessing will fail. |
| */ |
| spu_buff[spu->number].ctx_sw_seen = 1; |
| |
| spin_unlock_irqrestore(&buffer_lock, flags); |
| smp_wmb(); /* insure spu event buffer updates are written */ |
| /* don't want entries intermingled... */ |
| out: |
| return retval; |
| } |
| |
| /* |
| * This function is invoked on either a bind_context or unbind_context. |
| * If called for an unbind_context, the val arg is 0; otherwise, |
| * it is the object-id value for the spu context. |
| * The data arg is of type 'struct spu *'. |
| */ |
| static int spu_active_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| int retval; |
| unsigned long flags; |
| struct spu *the_spu = data; |
| |
| pr_debug("SPU event notification arrived\n"); |
| if (!val) { |
| spin_lock_irqsave(&cache_lock, flags); |
| retval = release_cached_info(the_spu->number); |
| spin_unlock_irqrestore(&cache_lock, flags); |
| } else { |
| retval = process_context_switch(the_spu, val); |
| } |
| return retval; |
| } |
| |
| static struct notifier_block spu_active = { |
| .notifier_call = spu_active_notify, |
| }; |
| |
| static int number_of_online_nodes(void) |
| { |
| u32 cpu; u32 tmp; |
| int nodes = 0; |
| for_each_online_cpu(cpu) { |
| tmp = cbe_cpu_to_node(cpu) + 1; |
| if (tmp > nodes) |
| nodes++; |
| } |
| return nodes; |
| } |
| |
| static int oprofile_spu_buff_create(void) |
| { |
| int spu; |
| |
| max_spu_buff = oprofile_get_cpu_buffer_size(); |
| |
| for (spu = 0; spu < num_spu_nodes; spu++) { |
| /* create circular buffers to store the data in. |
| * use locks to manage accessing the buffers |
| */ |
| spu_buff[spu].head = 0; |
| spu_buff[spu].tail = 0; |
| |
| /* |
| * Create a buffer for each SPU. Can't reliably |
| * create a single buffer for all spus due to not |
| * enough contiguous kernel memory. |
| */ |
| |
| spu_buff[spu].buff = kzalloc((max_spu_buff |
| * sizeof(unsigned long)), |
| GFP_KERNEL); |
| |
| if (!spu_buff[spu].buff) { |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: oprofile_spu_buff_create " |
| "failed to allocate spu buffer %d.\n", |
| __func__, __LINE__, spu); |
| |
| /* release the spu buffers that have been allocated */ |
| while (spu >= 0) { |
| kfree(spu_buff[spu].buff); |
| spu_buff[spu].buff = 0; |
| spu--; |
| } |
| return -ENOMEM; |
| } |
| } |
| return 0; |
| } |
| |
| /* The main purpose of this function is to synchronize |
| * OProfile with SPUFS by registering to be notified of |
| * SPU task switches. |
| * |
| * NOTE: When profiling SPUs, we must ensure that only |
| * spu_sync_start is invoked and not the generic sync_start |
| * in drivers/oprofile/oprof.c. A return value of |
| * SKIP_GENERIC_SYNC or SYNC_START_ERROR will |
| * accomplish this. |
| */ |
| int spu_sync_start(void) |
| { |
| int spu; |
| int ret = SKIP_GENERIC_SYNC; |
| int register_ret; |
| unsigned long flags = 0; |
| |
| spu_prof_num_nodes = number_of_online_nodes(); |
| num_spu_nodes = spu_prof_num_nodes * 8; |
| INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff); |
| |
| /* create buffer for storing the SPU data to put in |
| * the kernel buffer. |
| */ |
| ret = oprofile_spu_buff_create(); |
| if (ret) |
| goto out; |
| |
| spin_lock_irqsave(&buffer_lock, flags); |
| for (spu = 0; spu < num_spu_nodes; spu++) { |
| spu_buff_add(ESCAPE_CODE, spu); |
| spu_buff_add(SPU_PROFILING_CODE, spu); |
| spu_buff_add(num_spu_nodes, spu); |
| } |
| spin_unlock_irqrestore(&buffer_lock, flags); |
| |
| for (spu = 0; spu < num_spu_nodes; spu++) { |
| spu_buff[spu].ctx_sw_seen = 0; |
| spu_buff[spu].last_guard_val = 0; |
| } |
| |
| /* Register for SPU events */ |
| register_ret = spu_switch_event_register(&spu_active); |
| if (register_ret) { |
| ret = SYNC_START_ERROR; |
| goto out; |
| } |
| |
| pr_debug("spu_sync_start -- running.\n"); |
| out: |
| return ret; |
| } |
| |
| /* Record SPU program counter samples to the oprofile event buffer. */ |
| void spu_sync_buffer(int spu_num, unsigned int *samples, |
| int num_samples) |
| { |
| unsigned long long file_offset; |
| unsigned long flags; |
| int i; |
| struct vma_to_fileoffset_map *map; |
| struct spu *the_spu; |
| unsigned long long spu_num_ll = spu_num; |
| unsigned long long spu_num_shifted = spu_num_ll << 32; |
| struct cached_info *c_info; |
| |
| /* We need to obtain the cache_lock here because it's |
| * possible that after getting the cached_info, the SPU job |
| * corresponding to this cached_info may end, thus resulting |
| * in the destruction of the cached_info. |
| */ |
| spin_lock_irqsave(&cache_lock, flags); |
| c_info = get_cached_info(NULL, spu_num); |
| if (!c_info) { |
| /* This legitimately happens when the SPU task ends before all |
| * samples are recorded. |
| * No big deal -- so we just drop a few samples. |
| */ |
| pr_debug("SPU_PROF: No cached SPU contex " |
| "for SPU #%d. Dropping samples.\n", spu_num); |
| goto out; |
| } |
| |
| map = c_info->map; |
| the_spu = c_info->the_spu; |
| spin_lock(&buffer_lock); |
| for (i = 0; i < num_samples; i++) { |
| unsigned int sample = *(samples+i); |
| int grd_val = 0; |
| file_offset = 0; |
| if (sample == 0) |
| continue; |
| file_offset = vma_map_lookup( map, sample, the_spu, &grd_val); |
| |
| /* If overlays are used by this SPU application, the guard |
| * value is non-zero, indicating which overlay section is in |
| * use. We need to discard samples taken during the time |
| * period which an overlay occurs (i.e., guard value changes). |
| */ |
| if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) { |
| spu_buff[spu_num].last_guard_val = grd_val; |
| /* Drop the rest of the samples. */ |
| break; |
| } |
| |
| /* We must ensure that the SPU context switch has been written |
| * out before samples for the SPU. Otherwise, the SPU context |
| * information is not available and the postprocessing of the |
| * SPU PC will fail with no available anonymous map information. |
| */ |
| if (spu_buff[spu_num].ctx_sw_seen) |
| spu_buff_add((file_offset | spu_num_shifted), |
| spu_num); |
| } |
| spin_unlock(&buffer_lock); |
| out: |
| spin_unlock_irqrestore(&cache_lock, flags); |
| } |
| |
| |
| int spu_sync_stop(void) |
| { |
| unsigned long flags = 0; |
| int ret; |
| int k; |
| |
| ret = spu_switch_event_unregister(&spu_active); |
| |
| if (ret) |
| printk(KERN_ERR "SPU_PROF: " |
| "%s, line %d: spu_switch_event_unregister " \ |
| "returned %d\n", |
| __func__, __LINE__, ret); |
| |
| /* flush any remaining data in the per SPU buffers */ |
| sync_spu_buff(); |
| |
| spin_lock_irqsave(&cache_lock, flags); |
| ret = release_cached_info(RELEASE_ALL); |
| spin_unlock_irqrestore(&cache_lock, flags); |
| |
| /* remove scheduled work queue item rather then waiting |
| * for every queued entry to execute. Then flush pending |
| * system wide buffer to event buffer. |
| */ |
| cancel_delayed_work(&spu_work); |
| |
| for (k = 0; k < num_spu_nodes; k++) { |
| spu_buff[k].ctx_sw_seen = 0; |
| |
| /* |
| * spu_sys_buff will be null if there was a problem |
| * allocating the buffer. Only delete if it exists. |
| */ |
| kfree(spu_buff[k].buff); |
| spu_buff[k].buff = 0; |
| } |
| pr_debug("spu_sync_stop -- done.\n"); |
| return ret; |
| } |
| |