blob: b8e251a1ee48694063693698d83a25527b3c1f7c [file] [log] [blame]
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/* Common definitions for all Efx net driver code */
#ifndef EFX_NET_DRIVER_H
#define EFX_NET_DRIVER_H
#if defined(EFX_ENABLE_DEBUG) && !defined(DEBUG)
#define DEBUG
#endif
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mdio.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/vmalloc.h>
#include <linux/i2c.h>
#include "enum.h"
#include "bitfield.h"
/**************************************************************************
*
* Build definitions
*
**************************************************************************/
#define EFX_DRIVER_VERSION "3.1"
#ifdef EFX_ENABLE_DEBUG
#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
#else
#define EFX_BUG_ON_PARANOID(x) do {} while (0)
#define EFX_WARN_ON_PARANOID(x) do {} while (0)
#endif
/**************************************************************************
*
* Efx data structures
*
**************************************************************************/
#define EFX_MAX_CHANNELS 32
#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
/* Checksum generation is a per-queue option in hardware, so each
* queue visible to the networking core is backed by two hardware TX
* queues. */
#define EFX_MAX_TX_TC 2
#define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
#define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
#define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
#define EFX_TXQ_TYPES 4
#define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
/**
* struct efx_special_buffer - An Efx special buffer
* @addr: CPU base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
* @index: Buffer index within controller;s buffer table
* @entries: Number of buffer table entries
*
* Special buffers are used for the event queues and the TX and RX
* descriptor queues for each channel. They are *not* used for the
* actual transmit and receive buffers.
*/
struct efx_special_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
int index;
int entries;
};
enum efx_flush_state {
FLUSH_NONE,
FLUSH_PENDING,
FLUSH_FAILED,
FLUSH_DONE,
};
/**
* struct efx_tx_buffer - An Efx TX buffer
* @skb: The associated socket buffer.
* Set only on the final fragment of a packet; %NULL for all other
* fragments. When this fragment completes, then we can free this
* skb.
* @tsoh: The associated TSO header structure, or %NULL if this
* buffer is not a TSO header.
* @dma_addr: DMA address of the fragment.
* @len: Length of this fragment.
* This field is zero when the queue slot is empty.
* @continuation: True if this fragment is not the end of a packet.
* @unmap_single: True if pci_unmap_single should be used.
* @unmap_len: Length of this fragment to unmap
*/
struct efx_tx_buffer {
const struct sk_buff *skb;
struct efx_tso_header *tsoh;
dma_addr_t dma_addr;
unsigned short len;
bool continuation;
bool unmap_single;
unsigned short unmap_len;
};
/**
* struct efx_tx_queue - An Efx TX queue
*
* This is a ring buffer of TX fragments.
* Since the TX completion path always executes on the same
* CPU and the xmit path can operate on different CPUs,
* performance is increased by ensuring that the completion
* path and the xmit path operate on different cache lines.
* This is particularly important if the xmit path is always
* executing on one CPU which is different from the completion
* path. There is also a cache line for members which are
* read but not written on the fast path.
*
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @channel: The associated channel
* @core_txq: The networking core TX queue structure
* @buffer: The software buffer ring
* @txd: The hardware descriptor ring
* @ptr_mask: The size of the ring minus 1.
* @initialised: Has hardware queue been initialised?
* @flushed: Used when handling queue flushing
* @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings.
* @old_write_count: The value of @write_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of @write_count if this
* variable indicates that the queue is empty. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @insert_count: Current insert pointer
* This is the number of buffers that have been added to the
* software ring.
* @write_count: Current write pointer
* This is the number of buffers that have been added to the
* hardware ring.
* @old_read_count: The value of read_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of read_count if this
* variable indicates that the queue is full. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @tso_headers_free: A list of TSO headers allocated for this TX queue
* that are not in use, and so available for new TSO sends. The list
* is protected by the TX queue lock.
* @tso_bursts: Number of times TSO xmit invoked by kernel
* @tso_long_headers: Number of packets with headers too long for standard
* blocks
* @tso_packets: Number of packets via the TSO xmit path
* @pushes: Number of times the TX push feature has been used
* @empty_read_count: If the completion path has seen the queue as empty
* and the transmission path has not yet checked this, the value of
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
*/
struct efx_tx_queue {
/* Members which don't change on the fast path */
struct efx_nic *efx ____cacheline_aligned_in_smp;
unsigned queue;
struct efx_channel *channel;
struct netdev_queue *core_txq;
struct efx_tx_buffer *buffer;
struct efx_special_buffer txd;
unsigned int ptr_mask;
bool initialised;
enum efx_flush_state flushed;
/* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp;
unsigned int old_write_count;
/* Members used only on the xmit path */
unsigned int insert_count ____cacheline_aligned_in_smp;
unsigned int write_count;
unsigned int old_read_count;
struct efx_tso_header *tso_headers_free;
unsigned int tso_bursts;
unsigned int tso_long_headers;
unsigned int tso_packets;
unsigned int pushes;
/* Members shared between paths and sometimes updated */
unsigned int empty_read_count ____cacheline_aligned_in_smp;
#define EFX_EMPTY_COUNT_VALID 0x80000000
};
/**
* struct efx_rx_buffer - An Efx RX data buffer
* @dma_addr: DMA base address of the buffer
* @skb: The associated socket buffer, if any.
* If both this and page are %NULL, the buffer slot is currently free.
* @page: The associated page buffer, if any.
* If both this and skb are %NULL, the buffer slot is currently free.
* @len: Buffer length, in bytes.
* @is_page: Indicates if @page is valid. If false, @skb is valid.
*/
struct efx_rx_buffer {
dma_addr_t dma_addr;
union {
struct sk_buff *skb;
struct page *page;
} u;
unsigned int len;
bool is_page;
};
/**
* struct efx_rx_page_state - Page-based rx buffer state
*
* Inserted at the start of every page allocated for receive buffers.
* Used to facilitate sharing dma mappings between recycled rx buffers
* and those passed up to the kernel.
*
* @refcnt: Number of struct efx_rx_buffer's referencing this page.
* When refcnt falls to zero, the page is unmapped for dma
* @dma_addr: The dma address of this page.
*/
struct efx_rx_page_state {
unsigned refcnt;
dma_addr_t dma_addr;
unsigned int __pad[0] ____cacheline_aligned;
};
/**
* struct efx_rx_queue - An Efx RX queue
* @efx: The associated Efx NIC
* @buffer: The software buffer ring
* @rxd: The hardware descriptor ring
* @ptr_mask: The size of the ring minus 1.
* @added_count: Number of buffers added to the receive queue.
* @notified_count: Number of buffers given to NIC (<= @added_count).
* @removed_count: Number of buffers removed from the receive queue.
* @max_fill: RX descriptor maximum fill level (<= ring size)
* @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
* (<= @max_fill)
* @fast_fill_limit: The level to which a fast fill will fill
* (@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
* @min_fill: RX descriptor minimum non-zero fill level.
* This records the minimum fill level observed when a ring
* refill was triggered.
* @alloc_page_count: RX allocation strategy counter.
* @alloc_skb_count: RX allocation strategy counter.
* @slow_fill: Timer used to defer efx_nic_generate_fill_event().
* @flushed: Use when handling queue flushing
*/
struct efx_rx_queue {
struct efx_nic *efx;
struct efx_rx_buffer *buffer;
struct efx_special_buffer rxd;
unsigned int ptr_mask;
int added_count;
int notified_count;
int removed_count;
unsigned int max_fill;
unsigned int fast_fill_trigger;
unsigned int fast_fill_limit;
unsigned int min_fill;
unsigned int min_overfill;
unsigned int alloc_page_count;
unsigned int alloc_skb_count;
struct timer_list slow_fill;
unsigned int slow_fill_count;
enum efx_flush_state flushed;
};
/**
* struct efx_buffer - An Efx general-purpose buffer
* @addr: host base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
*
* The NIC uses these buffers for its interrupt status registers and
* MAC stats dumps.
*/
struct efx_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
};
enum efx_rx_alloc_method {
RX_ALLOC_METHOD_AUTO = 0,
RX_ALLOC_METHOD_SKB = 1,
RX_ALLOC_METHOD_PAGE = 2,
};
/**
* struct efx_channel - An Efx channel
*
* A channel comprises an event queue, at least one TX queue, at least
* one RX queue, and an associated tasklet for processing the event
* queue.
*
* @efx: Associated Efx NIC
* @channel: Channel instance number
* @enabled: Channel enabled indicator
* @irq: IRQ number (MSI and MSI-X only)
* @irq_moderation: IRQ moderation value (in hardware ticks)
* @napi_dev: Net device used with NAPI
* @napi_str: NAPI control structure
* @work_pending: Is work pending via NAPI?
* @eventq: Event queue buffer
* @eventq_mask: Event queue pointer mask
* @eventq_read_ptr: Event queue read pointer
* @last_eventq_read_ptr: Last event queue read pointer value.
* @irq_count: Number of IRQs since last adaptive moderation decision
* @irq_mod_score: IRQ moderation score
* @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
* and diagnostic counters
* @rx_alloc_push_pages: RX allocation method currently in use for pushing
* descriptors
* @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
* @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
* @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
* @n_rx_mcast_mismatch: Count of unmatched multicast frames
* @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
* @n_rx_overlength: Count of RX_OVERLENGTH errors
* @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
* @rx_queue: RX queue for this channel
* @tx_queue: TX queues for this channel
*/
struct efx_channel {
struct efx_nic *efx;
int channel;
bool enabled;
int irq;
unsigned int irq_moderation;
struct net_device *napi_dev;
struct napi_struct napi_str;
bool work_pending;
struct efx_special_buffer eventq;
unsigned int eventq_mask;
unsigned int eventq_read_ptr;
unsigned int last_eventq_read_ptr;
unsigned int irq_count;
unsigned int irq_mod_score;
#ifdef CONFIG_RFS_ACCEL
unsigned int rfs_filters_added;
#endif
int rx_alloc_level;
int rx_alloc_push_pages;
unsigned n_rx_tobe_disc;
unsigned n_rx_ip_hdr_chksum_err;
unsigned n_rx_tcp_udp_chksum_err;
unsigned n_rx_mcast_mismatch;
unsigned n_rx_frm_trunc;
unsigned n_rx_overlength;
unsigned n_skbuff_leaks;
/* Used to pipeline received packets in order to optimise memory
* access with prefetches.
*/
struct efx_rx_buffer *rx_pkt;
bool rx_pkt_csummed;
struct efx_rx_queue rx_queue;
struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
};
enum efx_led_mode {
EFX_LED_OFF = 0,
EFX_LED_ON = 1,
EFX_LED_DEFAULT = 2
};
#define STRING_TABLE_LOOKUP(val, member) \
((val) < member ## _max) ? member ## _names[val] : "(invalid)"
extern const char *efx_loopback_mode_names[];
extern const unsigned int efx_loopback_mode_max;
#define LOOPBACK_MODE(efx) \
STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
extern const char *efx_reset_type_names[];
extern const unsigned int efx_reset_type_max;
#define RESET_TYPE(type) \
STRING_TABLE_LOOKUP(type, efx_reset_type)
enum efx_int_mode {
/* Be careful if altering to correct macro below */
EFX_INT_MODE_MSIX = 0,
EFX_INT_MODE_MSI = 1,
EFX_INT_MODE_LEGACY = 2,
EFX_INT_MODE_MAX /* Insert any new items before this */
};
#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
enum nic_state {
STATE_INIT = 0,
STATE_RUNNING = 1,
STATE_FINI = 2,
STATE_DISABLED = 3,
STATE_MAX,
};
/*
* Alignment of page-allocated RX buffers
*
* Controls the number of bytes inserted at the start of an RX buffer.
* This is the equivalent of NET_IP_ALIGN [which controls the alignment
* of the skb->head for hardware DMA].
*/
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
#define EFX_PAGE_IP_ALIGN 0
#else
#define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
#endif
/*
* Alignment of the skb->head which wraps a page-allocated RX buffer
*
* The skb allocated to wrap an rx_buffer can have this alignment. Since
* the data is memcpy'd from the rx_buf, it does not need to be equal to
* EFX_PAGE_IP_ALIGN.
*/
#define EFX_PAGE_SKB_ALIGN 2
/* Forward declaration */
struct efx_nic;
/* Pseudo bit-mask flow control field */
#define EFX_FC_RX FLOW_CTRL_RX
#define EFX_FC_TX FLOW_CTRL_TX
#define EFX_FC_AUTO 4
/**
* struct efx_link_state - Current state of the link
* @up: Link is up
* @fd: Link is full-duplex
* @fc: Actual flow control flags
* @speed: Link speed (Mbps)
*/
struct efx_link_state {
bool up;
bool fd;
u8 fc;
unsigned int speed;
};
static inline bool efx_link_state_equal(const struct efx_link_state *left,
const struct efx_link_state *right)
{
return left->up == right->up && left->fd == right->fd &&
left->fc == right->fc && left->speed == right->speed;
}
/**
* struct efx_mac_operations - Efx MAC operations table
* @reconfigure: Reconfigure MAC. Serialised by the mac_lock
* @update_stats: Update statistics
* @check_fault: Check fault state. True if fault present.
*/
struct efx_mac_operations {
int (*reconfigure) (struct efx_nic *efx);
void (*update_stats) (struct efx_nic *efx);
bool (*check_fault)(struct efx_nic *efx);
};
/**
* struct efx_phy_operations - Efx PHY operations table
* @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
* efx->loopback_modes.
* @init: Initialise PHY
* @fini: Shut down PHY
* @reconfigure: Reconfigure PHY (e.g. for new link parameters)
* @poll: Update @link_state and report whether it changed.
* Serialised by the mac_lock.
* @get_settings: Get ethtool settings. Serialised by the mac_lock.
* @set_settings: Set ethtool settings. Serialised by the mac_lock.
* @set_npage_adv: Set abilities advertised in (Extended) Next Page
* (only needed where AN bit is set in mmds)
* @test_alive: Test that PHY is 'alive' (online)
* @test_name: Get the name of a PHY-specific test/result
* @run_tests: Run tests and record results as appropriate (offline).
* Flags are the ethtool tests flags.
*/
struct efx_phy_operations {
int (*probe) (struct efx_nic *efx);
int (*init) (struct efx_nic *efx);
void (*fini) (struct efx_nic *efx);
void (*remove) (struct efx_nic *efx);
int (*reconfigure) (struct efx_nic *efx);
bool (*poll) (struct efx_nic *efx);
void (*get_settings) (struct efx_nic *efx,
struct ethtool_cmd *ecmd);
int (*set_settings) (struct efx_nic *efx,
struct ethtool_cmd *ecmd);
void (*set_npage_adv) (struct efx_nic *efx, u32);
int (*test_alive) (struct efx_nic *efx);
const char *(*test_name) (struct efx_nic *efx, unsigned int index);
int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
};
/**
* @enum efx_phy_mode - PHY operating mode flags
* @PHY_MODE_NORMAL: on and should pass traffic
* @PHY_MODE_TX_DISABLED: on with TX disabled
* @PHY_MODE_LOW_POWER: set to low power through MDIO
* @PHY_MODE_OFF: switched off through external control
* @PHY_MODE_SPECIAL: on but will not pass traffic
*/
enum efx_phy_mode {
PHY_MODE_NORMAL = 0,
PHY_MODE_TX_DISABLED = 1,
PHY_MODE_LOW_POWER = 2,
PHY_MODE_OFF = 4,
PHY_MODE_SPECIAL = 8,
};
static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
{
return !!(mode & ~PHY_MODE_TX_DISABLED);
}
/*
* Efx extended statistics
*
* Not all statistics are provided by all supported MACs. The purpose
* is this structure is to contain the raw statistics provided by each
* MAC.
*/
struct efx_mac_stats {
u64 tx_bytes;
u64 tx_good_bytes;
u64 tx_bad_bytes;
unsigned long tx_packets;
unsigned long tx_bad;
unsigned long tx_pause;
unsigned long tx_control;
unsigned long tx_unicast;
unsigned long tx_multicast;
unsigned long tx_broadcast;
unsigned long tx_lt64;
unsigned long tx_64;
unsigned long tx_65_to_127;
unsigned long tx_128_to_255;
unsigned long tx_256_to_511;
unsigned long tx_512_to_1023;
unsigned long tx_1024_to_15xx;
unsigned long tx_15xx_to_jumbo;
unsigned long tx_gtjumbo;
unsigned long tx_collision;
unsigned long tx_single_collision;
unsigned long tx_multiple_collision;
unsigned long tx_excessive_collision;
unsigned long tx_deferred;
unsigned long tx_late_collision;
unsigned long tx_excessive_deferred;
unsigned long tx_non_tcpudp;
unsigned long tx_mac_src_error;
unsigned long tx_ip_src_error;
u64 rx_bytes;
u64 rx_good_bytes;
u64 rx_bad_bytes;
unsigned long rx_packets;
unsigned long rx_good;
unsigned long rx_bad;
unsigned long rx_pause;
unsigned long rx_control;
unsigned long rx_unicast;
unsigned long rx_multicast;
unsigned long rx_broadcast;
unsigned long rx_lt64;
unsigned long rx_64;
unsigned long rx_65_to_127;
unsigned long rx_128_to_255;
unsigned long rx_256_to_511;
unsigned long rx_512_to_1023;
unsigned long rx_1024_to_15xx;
unsigned long rx_15xx_to_jumbo;
unsigned long rx_gtjumbo;
unsigned long rx_bad_lt64;
unsigned long rx_bad_64_to_15xx;
unsigned long rx_bad_15xx_to_jumbo;
unsigned long rx_bad_gtjumbo;
unsigned long rx_overflow;
unsigned long rx_missed;
unsigned long rx_false_carrier;
unsigned long rx_symbol_error;
unsigned long rx_align_error;
unsigned long rx_length_error;
unsigned long rx_internal_error;
unsigned long rx_good_lt64;
};
/* Number of bits used in a multicast filter hash address */
#define EFX_MCAST_HASH_BITS 8
/* Number of (single-bit) entries in a multicast filter hash */
#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
/* An Efx multicast filter hash */
union efx_multicast_hash {
u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
};
struct efx_filter_state;
/**
* struct efx_nic - an Efx NIC
* @name: Device name (net device name or bus id before net device registered)
* @pci_dev: The PCI device
* @type: Controller type attributes
* @legacy_irq: IRQ number
* @legacy_irq_enabled: Are IRQs enabled on NIC (INT_EN_KER register)?
* @workqueue: Workqueue for port reconfigures and the HW monitor.
* Work items do not hold and must not acquire RTNL.
* @workqueue_name: Name of workqueue
* @reset_work: Scheduled reset workitem
* @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value
* @interrupt_mode: Interrupt mode
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
* @irq_rx_moderation: IRQ moderation time for RX event queues
* @msg_enable: Log message enable flags
* @state: Device state flag. Serialised by the rtnl_lock.
* @reset_pending: Bitmask for pending resets
* @tx_queue: TX DMA queues
* @rx_queue: RX DMA queues
* @channel: Channels
* @channel_name: Names for channels and their IRQs
* @rxq_entries: Size of receive queues requested by user.
* @txq_entries: Size of transmit queues requested by user.
* @next_buffer_table: First available buffer table id
* @n_channels: Number of channels in use
* @n_rx_channels: Number of channels used for RX (= number of RX queues)
* @n_tx_channels: Number of channels used for TX
* @rx_buffer_len: RX buffer length
* @rx_buffer_order: Order (log2) of number of pages for each RX buffer
* @rx_hash_key: Toeplitz hash key for RSS
* @rx_indir_table: Indirection table for RSS
* @int_error_count: Number of internal errors seen recently
* @int_error_expire: Time at which error count will be expired
* @irq_status: Interrupt status buffer
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @fatal_irq_level: IRQ level (bit number) used for serious errors
* @mtd_list: List of MTDs attached to the NIC
* @nic_data: Hardware dependent state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
* efx_monitor() and efx_reconfigure_port()
* @port_enabled: Port enabled indicator.
* Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
* efx_mac_work() with kernel interfaces. Safe to read under any
* one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
* be held to modify it.
* @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock
* @stats_buffer: DMA buffer for statistics
* @mac_op: MAC interface
* @phy_type: PHY type
* @phy_op: PHY interface
* @phy_data: PHY private data (including PHY-specific stats)
* @mdio: PHY MDIO interface
* @mdio_bus: PHY MDIO bus ID (only used by Siena)
* @phy_mode: PHY operating mode. Serialised by @mac_lock.
* @link_advertising: Autonegotiation advertising flags
* @link_state: Current state of the link
* @n_link_state_changes: Number of times the link has changed state
* @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
* @multicast_hash: Multicast hash table
* @wanted_fc: Wanted flow control flags
* @mac_work: Work item for changing MAC promiscuity and multicast hash
* @loopback_mode: Loopback status
* @loopback_modes: Supported loopback mode bitmask
* @loopback_selftest: Offline self-test private state
* @monitor_work: Hardware monitor workitem
* @biu_lock: BIU (bus interface unit) lock
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by efx_nic_test_interrupt()
* to verify that an interrupt has occurred.
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_lock: Statistics update lock. Serialises statistics fetches
*
* This is stored in the private area of the &struct net_device.
*/
struct efx_nic {
/* The following fields should be written very rarely */
char name[IFNAMSIZ];
struct pci_dev *pci_dev;
const struct efx_nic_type *type;
int legacy_irq;
bool legacy_irq_enabled;
struct workqueue_struct *workqueue;
char workqueue_name[16];
struct work_struct reset_work;
resource_size_t membase_phys;
void __iomem *membase;
enum efx_int_mode interrupt_mode;
bool irq_rx_adaptive;
unsigned int irq_rx_moderation;
u32 msg_enable;
enum nic_state state;
unsigned long reset_pending;
struct efx_channel *channel[EFX_MAX_CHANNELS];
char channel_name[EFX_MAX_CHANNELS][IFNAMSIZ + 6];
unsigned rxq_entries;
unsigned txq_entries;
unsigned next_buffer_table;
unsigned n_channels;
unsigned n_rx_channels;
unsigned tx_channel_offset;
unsigned n_tx_channels;
unsigned int rx_buffer_len;
unsigned int rx_buffer_order;
u8 rx_hash_key[40];
u32 rx_indir_table[128];
unsigned int_error_count;
unsigned long int_error_expire;
struct efx_buffer irq_status;
unsigned irq_zero_count;
unsigned fatal_irq_level;
#ifdef CONFIG_SFC_MTD
struct list_head mtd_list;
#endif
void *nic_data;
struct mutex mac_lock;
struct work_struct mac_work;
bool port_enabled;
bool port_initialized;
struct net_device *net_dev;
struct efx_buffer stats_buffer;
const struct efx_mac_operations *mac_op;
unsigned int phy_type;
const struct efx_phy_operations *phy_op;
void *phy_data;
struct mdio_if_info mdio;
unsigned int mdio_bus;
enum efx_phy_mode phy_mode;
u32 link_advertising;
struct efx_link_state link_state;
unsigned int n_link_state_changes;
bool promiscuous;
union efx_multicast_hash multicast_hash;
u8 wanted_fc;
atomic_t rx_reset;
enum efx_loopback_mode loopback_mode;
u64 loopback_modes;
void *loopback_selftest;
struct efx_filter_state *filter_state;
/* The following fields may be written more often */
struct delayed_work monitor_work ____cacheline_aligned_in_smp;
spinlock_t biu_lock;
volatile signed int last_irq_cpu;
unsigned n_rx_nodesc_drop_cnt;
struct efx_mac_stats mac_stats;
spinlock_t stats_lock;
};
static inline int efx_dev_registered(struct efx_nic *efx)
{
return efx->net_dev->reg_state == NETREG_REGISTERED;
}
/* Net device name, for inclusion in log messages if it has been registered.
* Use efx->name not efx->net_dev->name so that races with (un)registration
* are harmless.
*/
static inline const char *efx_dev_name(struct efx_nic *efx)
{
return efx_dev_registered(efx) ? efx->name : "";
}
static inline unsigned int efx_port_num(struct efx_nic *efx)
{
return efx->net_dev->dev_id;
}
/**
* struct efx_nic_type - Efx device type definition
* @probe: Probe the controller
* @remove: Free resources allocated by probe()
* @init: Initialise the controller
* @fini: Shut down the controller
* @monitor: Periodic function for polling link state and hardware monitor
* @map_reset_reason: Map ethtool reset reason to a reset method
* @map_reset_flags: Map ethtool reset flags to a reset method, if possible
* @reset: Reset the controller hardware and possibly the PHY. This will
* be called while the controller is uninitialised.
* @probe_port: Probe the MAC and PHY
* @remove_port: Free resources allocated by probe_port()
* @handle_global_event: Handle a "global" event (may be %NULL)
* @prepare_flush: Prepare the hardware for flushing the DMA queues
* @update_stats: Update statistics not provided by event handling
* @start_stats: Start the regular fetching of statistics
* @stop_stats: Stop the regular fetching of statistics
* @set_id_led: Set state of identifying LED or revert to automatic function
* @push_irq_moderation: Apply interrupt moderation value
* @push_multicast_hash: Apply multicast hash table
* @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
* @get_wol: Get WoL configuration from driver state
* @set_wol: Push WoL configuration to the NIC
* @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
* @test_registers: Test read/write functionality of control registers
* @test_nvram: Test validity of NVRAM contents
* @default_mac_ops: efx_mac_operations to set at startup
* @revision: Hardware architecture revision
* @mem_map_size: Memory BAR mapped size
* @txd_ptr_tbl_base: TX descriptor ring base address
* @rxd_ptr_tbl_base: RX descriptor ring base address
* @buf_tbl_base: Buffer table base address
* @evq_ptr_tbl_base: Event queue pointer table base address
* @evq_rptr_tbl_base: Event queue read-pointer table base address
* @max_dma_mask: Maximum possible DMA mask
* @rx_buffer_hash_size: Size of hash at start of RX buffer
* @rx_buffer_padding: Size of padding at end of RX buffer
* @max_interrupt_mode: Highest capability interrupt mode supported
* from &enum efx_init_mode.
* @phys_addr_channels: Number of channels with physically addressed
* descriptors
* @tx_dc_base: Base address in SRAM of TX queue descriptor caches
* @rx_dc_base: Base address in SRAM of RX queue descriptor caches
* @offload_features: net_device feature flags for protocol offload
* features implemented in hardware
*/
struct efx_nic_type {
int (*probe)(struct efx_nic *efx);
void (*remove)(struct efx_nic *efx);
int (*init)(struct efx_nic *efx);
void (*fini)(struct efx_nic *efx);
void (*monitor)(struct efx_nic *efx);
enum reset_type (*map_reset_reason)(enum reset_type reason);
int (*map_reset_flags)(u32 *flags);
int (*reset)(struct efx_nic *efx, enum reset_type method);
int (*probe_port)(struct efx_nic *efx);
void (*remove_port)(struct efx_nic *efx);
bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
void (*prepare_flush)(struct efx_nic *efx);
void (*update_stats)(struct efx_nic *efx);
void (*start_stats)(struct efx_nic *efx);
void (*stop_stats)(struct efx_nic *efx);
void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
void (*push_irq_moderation)(struct efx_channel *channel);
void (*push_multicast_hash)(struct efx_nic *efx);
int (*reconfigure_port)(struct efx_nic *efx);
void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
int (*set_wol)(struct efx_nic *efx, u32 type);
void (*resume_wol)(struct efx_nic *efx);
int (*test_registers)(struct efx_nic *efx);
int (*test_nvram)(struct efx_nic *efx);
const struct efx_mac_operations *default_mac_ops;
int revision;
unsigned int mem_map_size;
unsigned int txd_ptr_tbl_base;
unsigned int rxd_ptr_tbl_base;
unsigned int buf_tbl_base;
unsigned int evq_ptr_tbl_base;
unsigned int evq_rptr_tbl_base;
u64 max_dma_mask;
unsigned int rx_buffer_hash_size;
unsigned int rx_buffer_padding;
unsigned int max_interrupt_mode;
unsigned int phys_addr_channels;
unsigned int tx_dc_base;
unsigned int rx_dc_base;
u32 offload_features;
};
/**************************************************************************
*
* Prototypes and inline functions
*
*************************************************************************/
static inline struct efx_channel *
efx_get_channel(struct efx_nic *efx, unsigned index)
{
EFX_BUG_ON_PARANOID(index >= efx->n_channels);
return efx->channel[index];
}
/* Iterate over all used channels */
#define efx_for_each_channel(_channel, _efx) \
for (_channel = (_efx)->channel[0]; \
_channel; \
_channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
(_efx)->channel[_channel->channel + 1] : NULL)
static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
{
EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
type >= EFX_TXQ_TYPES);
return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
}
static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
{
return channel->channel - channel->efx->tx_channel_offset <
channel->efx->n_tx_channels;
}
static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
{
EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
type >= EFX_TXQ_TYPES);
return &channel->tx_queue[type];
}
static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
{
return !(tx_queue->efx->net_dev->num_tc < 2 &&
tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
}
/* Iterate over all TX queues belonging to a channel */
#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
if (!efx_channel_has_tx_queues(_channel)) \
; \
else \
for (_tx_queue = (_channel)->tx_queue; \
_tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
efx_tx_queue_used(_tx_queue); \
_tx_queue++)
/* Iterate over all possible TX queues belonging to a channel */
#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
for (_tx_queue = (_channel)->tx_queue; \
_tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
_tx_queue++)
static inline struct efx_rx_queue *
efx_get_rx_queue(struct efx_nic *efx, unsigned index)
{
EFX_BUG_ON_PARANOID(index >= efx->n_rx_channels);
return &efx->channel[index]->rx_queue;
}
static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
{
return channel->channel < channel->efx->n_rx_channels;
}
static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel *channel)
{
EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
return &channel->rx_queue;
}
/* Iterate over all RX queues belonging to a channel */
#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
if (!efx_channel_has_rx_queue(_channel)) \
; \
else \
for (_rx_queue = &(_channel)->rx_queue; \
_rx_queue; \
_rx_queue = NULL)
static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
{
return container_of(rx_queue, struct efx_channel, rx_queue);
}
static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
{
return efx_rx_queue_channel(rx_queue)->channel;
}
/* Returns a pointer to the specified receive buffer in the RX
* descriptor queue.
*/
static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return &rx_queue->buffer[index];
}
/* Set bit in a little-endian bitfield */
static inline void set_bit_le(unsigned nr, unsigned char *addr)
{
addr[nr / 8] |= (1 << (nr % 8));
}
/* Clear bit in a little-endian bitfield */
static inline void clear_bit_le(unsigned nr, unsigned char *addr)
{
addr[nr / 8] &= ~(1 << (nr % 8));
}
/**
* EFX_MAX_FRAME_LEN - calculate maximum frame length
*
* This calculates the maximum frame length that will be used for a
* given MTU. The frame length will be equal to the MTU plus a
* constant amount of header space and padding. This is the quantity
* that the net driver will program into the MAC as the maximum frame
* length.
*
* The 10G MAC requires 8-byte alignment on the frame
* length, so we round up to the nearest 8.
*
* Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
* XGMII cycle). If the frame length reaches the maximum value in the
* same cycle, the XMAC can miss the IPG altogether. We work around
* this by adding a further 16 bytes.
*/
#define EFX_MAX_FRAME_LEN(mtu) \
((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
#endif /* EFX_NET_DRIVER_H */