blob: f0ca8b27a55eea7b96f3984b03aaead457ba3db8 [file] [log] [blame]
/* bnx2x_ethtool.c: Broadcom Everest network driver.
*
* Copyright (c) 2007-2011 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/crc32.h>
#include "bnx2x.h"
#include "bnx2x_cmn.h"
#include "bnx2x_dump.h"
#include "bnx2x_init.h"
#include "bnx2x_sp.h"
/* Note: in the format strings below %s is replaced by the queue-name which is
* either its index or 'fcoe' for the fcoe queue. Make sure the format string
* length does not exceed ETH_GSTRING_LEN - MAX_QUEUE_NAME_LEN + 2
*/
#define MAX_QUEUE_NAME_LEN 4
static const struct {
long offset;
int size;
char string[ETH_GSTRING_LEN];
} bnx2x_q_stats_arr[] = {
/* 1 */ { Q_STATS_OFFSET32(total_bytes_received_hi), 8, "[%s]: rx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_received_hi),
8, "[%s]: rx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_received_hi),
8, "[%s]: rx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
8, "[%s]: rx_bcast_packets" },
{ Q_STATS_OFFSET32(no_buff_discard_hi), 8, "[%s]: rx_discards" },
{ Q_STATS_OFFSET32(rx_err_discard_pkt),
4, "[%s]: rx_phy_ip_err_discards"},
{ Q_STATS_OFFSET32(rx_skb_alloc_failed),
4, "[%s]: rx_skb_alloc_discard" },
{ Q_STATS_OFFSET32(hw_csum_err), 4, "[%s]: rx_csum_offload_errors" },
{ Q_STATS_OFFSET32(total_bytes_transmitted_hi), 8, "[%s]: tx_bytes" },
/* 10 */{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, "[%s]: tx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, "[%s]: tx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, "[%s]: tx_bcast_packets" },
{ Q_STATS_OFFSET32(total_tpa_aggregations_hi),
8, "[%s]: tpa_aggregations" },
{ Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, "[%s]: tpa_aggregated_frames"},
{ Q_STATS_OFFSET32(total_tpa_bytes_hi), 8, "[%s]: tpa_bytes"}
};
#define BNX2X_NUM_Q_STATS ARRAY_SIZE(bnx2x_q_stats_arr)
static const struct {
long offset;
int size;
u32 flags;
#define STATS_FLAGS_PORT 1
#define STATS_FLAGS_FUNC 2
#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
char string[ETH_GSTRING_LEN];
} bnx2x_stats_arr[] = {
/* 1 */ { STATS_OFFSET32(total_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_bytes" },
{ STATS_OFFSET32(error_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
{ STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
8, STATS_FLAGS_PORT, "rx_crc_errors" },
{ STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
8, STATS_FLAGS_PORT, "rx_align_errors" },
{ STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
8, STATS_FLAGS_PORT, "rx_undersize_packets" },
{ STATS_OFFSET32(etherstatsoverrsizepkts_hi),
8, STATS_FLAGS_PORT, "rx_oversize_packets" },
/* 10 */{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
8, STATS_FLAGS_PORT, "rx_fragments" },
{ STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
8, STATS_FLAGS_PORT, "rx_jabbers" },
{ STATS_OFFSET32(no_buff_discard_hi),
8, STATS_FLAGS_BOTH, "rx_discards" },
{ STATS_OFFSET32(mac_filter_discard),
4, STATS_FLAGS_PORT, "rx_filtered_packets" },
{ STATS_OFFSET32(mf_tag_discard),
4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
{ STATS_OFFSET32(brb_drop_hi),
8, STATS_FLAGS_PORT, "rx_brb_discard" },
{ STATS_OFFSET32(brb_truncate_hi),
8, STATS_FLAGS_PORT, "rx_brb_truncate" },
{ STATS_OFFSET32(pause_frames_received_hi),
8, STATS_FLAGS_PORT, "rx_pause_frames" },
{ STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
{ STATS_OFFSET32(nig_timer_max),
4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
/* 20 */{ STATS_OFFSET32(rx_err_discard_pkt),
4, STATS_FLAGS_BOTH, "rx_phy_ip_err_discards"},
{ STATS_OFFSET32(rx_skb_alloc_failed),
4, STATS_FLAGS_BOTH, "rx_skb_alloc_discard" },
{ STATS_OFFSET32(hw_csum_err),
4, STATS_FLAGS_BOTH, "rx_csum_offload_errors" },
{ STATS_OFFSET32(total_bytes_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bytes" },
{ STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
8, STATS_FLAGS_PORT, "tx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
{ STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
8, STATS_FLAGS_PORT, "tx_mac_errors" },
{ STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
8, STATS_FLAGS_PORT, "tx_carrier_errors" },
/* 30 */{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_single_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_multi_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
8, STATS_FLAGS_PORT, "tx_deferred" },
{ STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
8, STATS_FLAGS_PORT, "tx_excess_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
8, STATS_FLAGS_PORT, "tx_late_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
8, STATS_FLAGS_PORT, "tx_total_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
/* 40 */{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
{ STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
{ STATS_OFFSET32(etherstatspktsover1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
{ STATS_OFFSET32(pause_frames_sent_hi),
8, STATS_FLAGS_PORT, "tx_pause_frames" },
{ STATS_OFFSET32(total_tpa_aggregations_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregations" },
{ STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
{ STATS_OFFSET32(total_tpa_bytes_hi),
8, STATS_FLAGS_FUNC, "tpa_bytes"}
};
#define BNX2X_NUM_STATS ARRAY_SIZE(bnx2x_stats_arr)
static int bnx2x_get_port_type(struct bnx2x *bp)
{
int port_type;
u32 phy_idx = bnx2x_get_cur_phy_idx(bp);
switch (bp->link_params.phy[phy_idx].media_type) {
case ETH_PHY_SFP_FIBER:
case ETH_PHY_XFP_FIBER:
case ETH_PHY_KR:
case ETH_PHY_CX4:
port_type = PORT_FIBRE;
break;
case ETH_PHY_DA_TWINAX:
port_type = PORT_DA;
break;
case ETH_PHY_BASE_T:
port_type = PORT_TP;
break;
case ETH_PHY_NOT_PRESENT:
port_type = PORT_NONE;
break;
case ETH_PHY_UNSPECIFIED:
default:
port_type = PORT_OTHER;
break;
}
return port_type;
}
static int bnx2x_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
/* Dual Media boards present all available port types */
cmd->supported = bp->port.supported[cfg_idx] |
(bp->port.supported[cfg_idx ^ 1] &
(SUPPORTED_TP | SUPPORTED_FIBRE));
cmd->advertising = bp->port.advertising[cfg_idx];
if ((bp->state == BNX2X_STATE_OPEN) &&
!(bp->flags & MF_FUNC_DIS) &&
(bp->link_vars.link_up)) {
ethtool_cmd_speed_set(cmd, bp->link_vars.line_speed);
cmd->duplex = bp->link_vars.duplex;
} else {
ethtool_cmd_speed_set(
cmd, bp->link_params.req_line_speed[cfg_idx]);
cmd->duplex = bp->link_params.req_duplex[cfg_idx];
}
if (IS_MF(bp))
ethtool_cmd_speed_set(cmd, bnx2x_get_mf_speed(bp));
cmd->port = bnx2x_get_port_type(bp);
cmd->phy_address = bp->mdio.prtad;
cmd->transceiver = XCVR_INTERNAL;
if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG)
cmd->autoneg = AUTONEG_ENABLE;
else
cmd->autoneg = AUTONEG_DISABLE;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 0;
DP(NETIF_MSG_LINK, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d transceiver %d\n"
" autoneg %d maxtxpkt %d maxrxpkt %d\n",
cmd->cmd, cmd->supported, cmd->advertising,
ethtool_cmd_speed(cmd),
cmd->duplex, cmd->port, cmd->phy_address, cmd->transceiver,
cmd->autoneg, cmd->maxtxpkt, cmd->maxrxpkt);
return 0;
}
static int bnx2x_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
u32 advertising, cfg_idx, old_multi_phy_config, new_multi_phy_config;
u32 speed;
if (IS_MF_SD(bp))
return 0;
DP(NETIF_MSG_LINK, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d transceiver %d\n"
" autoneg %d maxtxpkt %d maxrxpkt %d\n",
cmd->cmd, cmd->supported, cmd->advertising,
ethtool_cmd_speed(cmd),
cmd->duplex, cmd->port, cmd->phy_address, cmd->transceiver,
cmd->autoneg, cmd->maxtxpkt, cmd->maxrxpkt);
speed = ethtool_cmd_speed(cmd);
if (IS_MF_SI(bp)) {
u32 part;
u32 line_speed = bp->link_vars.line_speed;
/* use 10G if no link detected */
if (!line_speed)
line_speed = 10000;
if (bp->common.bc_ver < REQ_BC_VER_4_SET_MF_BW) {
BNX2X_DEV_INFO("To set speed BC %X or higher "
"is required, please upgrade BC\n",
REQ_BC_VER_4_SET_MF_BW);
return -EINVAL;
}
part = (speed * 100) / line_speed;
if (line_speed < speed || !part) {
BNX2X_DEV_INFO("Speed setting should be in a range "
"from 1%% to 100%% "
"of actual line speed\n");
return -EINVAL;
}
if (bp->state != BNX2X_STATE_OPEN)
/* store value for following "load" */
bp->pending_max = part;
else
bnx2x_update_max_mf_config(bp, part);
return 0;
}
cfg_idx = bnx2x_get_link_cfg_idx(bp);
old_multi_phy_config = bp->link_params.multi_phy_config;
switch (cmd->port) {
case PORT_TP:
if (bp->port.supported[cfg_idx] & SUPPORTED_TP)
break; /* no port change */
if (!(bp->port.supported[0] & SUPPORTED_TP ||
bp->port.supported[1] & SUPPORTED_TP)) {
DP(NETIF_MSG_LINK, "Unsupported port type\n");
return -EINVAL;
}
bp->link_params.multi_phy_config &=
~PORT_HW_CFG_PHY_SELECTION_MASK;
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED)
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
else
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
break;
case PORT_FIBRE:
case PORT_DA:
if (bp->port.supported[cfg_idx] & SUPPORTED_FIBRE)
break; /* no port change */
if (!(bp->port.supported[0] & SUPPORTED_FIBRE ||
bp->port.supported[1] & SUPPORTED_FIBRE)) {
DP(NETIF_MSG_LINK, "Unsupported port type\n");
return -EINVAL;
}
bp->link_params.multi_phy_config &=
~PORT_HW_CFG_PHY_SELECTION_MASK;
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED)
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
else
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
break;
default:
DP(NETIF_MSG_LINK, "Unsupported port type\n");
return -EINVAL;
}
/* Save new config in case command complete successuly */
new_multi_phy_config = bp->link_params.multi_phy_config;
/* Get the new cfg_idx */
cfg_idx = bnx2x_get_link_cfg_idx(bp);
/* Restore old config in case command failed */
bp->link_params.multi_phy_config = old_multi_phy_config;
DP(NETIF_MSG_LINK, "cfg_idx = %x\n", cfg_idx);
if (cmd->autoneg == AUTONEG_ENABLE) {
if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) {
DP(NETIF_MSG_LINK, "Autoneg not supported\n");
return -EINVAL;
}
/* advertise the requested speed and duplex if supported */
if (cmd->advertising & ~(bp->port.supported[cfg_idx])) {
DP(NETIF_MSG_LINK, "Advertisement parameters "
"are not supported\n");
return -EINVAL;
}
bp->link_params.req_line_speed[cfg_idx] = SPEED_AUTO_NEG;
bp->link_params.req_duplex[cfg_idx] = cmd->duplex;
bp->port.advertising[cfg_idx] = (ADVERTISED_Autoneg |
cmd->advertising);
if (cmd->advertising) {
bp->link_params.speed_cap_mask[cfg_idx] = 0;
if (cmd->advertising & ADVERTISED_10baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF;
}
if (cmd->advertising & ADVERTISED_10baseT_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL;
if (cmd->advertising & ADVERTISED_100baseT_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL;
if (cmd->advertising & ADVERTISED_100baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF;
}
if (cmd->advertising & ADVERTISED_1000baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G;
}
if (cmd->advertising & (ADVERTISED_1000baseT_Full |
ADVERTISED_1000baseKX_Full))
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G;
if (cmd->advertising & (ADVERTISED_10000baseT_Full |
ADVERTISED_10000baseKX4_Full |
ADVERTISED_10000baseKR_Full))
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G;
}
} else { /* forced speed */
/* advertise the requested speed and duplex if supported */
switch (speed) {
case SPEED_10:
if (cmd->duplex == DUPLEX_FULL) {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_10baseT_Full)) {
DP(NETIF_MSG_LINK,
"10M full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_10baseT_Half)) {
DP(NETIF_MSG_LINK,
"10M half not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_TP);
}
break;
case SPEED_100:
if (cmd->duplex == DUPLEX_FULL) {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_100baseT_Full)) {
DP(NETIF_MSG_LINK,
"100M full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_100baseT_Half)) {
DP(NETIF_MSG_LINK,
"100M half not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_100baseT_Half |
ADVERTISED_TP);
}
break;
case SPEED_1000:
if (cmd->duplex != DUPLEX_FULL) {
DP(NETIF_MSG_LINK, "1G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_1000baseT_Full)) {
DP(NETIF_MSG_LINK, "1G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
break;
case SPEED_2500:
if (cmd->duplex != DUPLEX_FULL) {
DP(NETIF_MSG_LINK,
"2.5G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx]
& SUPPORTED_2500baseX_Full)) {
DP(NETIF_MSG_LINK,
"2.5G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
break;
case SPEED_10000:
if (cmd->duplex != DUPLEX_FULL) {
DP(NETIF_MSG_LINK, "10G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx]
& SUPPORTED_10000baseT_Full)) {
DP(NETIF_MSG_LINK, "10G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
break;
default:
DP(NETIF_MSG_LINK, "Unsupported speed %u\n", speed);
return -EINVAL;
}
bp->link_params.req_line_speed[cfg_idx] = speed;
bp->link_params.req_duplex[cfg_idx] = cmd->duplex;
bp->port.advertising[cfg_idx] = advertising;
}
DP(NETIF_MSG_LINK, "req_line_speed %d\n"
" req_duplex %d advertising 0x%x\n",
bp->link_params.req_line_speed[cfg_idx],
bp->link_params.req_duplex[cfg_idx],
bp->port.advertising[cfg_idx]);
/* Set new config */
bp->link_params.multi_phy_config = new_multi_phy_config;
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_set(bp);
}
return 0;
}
#define IS_E1_ONLINE(info) (((info) & RI_E1_ONLINE) == RI_E1_ONLINE)
#define IS_E1H_ONLINE(info) (((info) & RI_E1H_ONLINE) == RI_E1H_ONLINE)
#define IS_E2_ONLINE(info) (((info) & RI_E2_ONLINE) == RI_E2_ONLINE)
#define IS_E3_ONLINE(info) (((info) & RI_E3_ONLINE) == RI_E3_ONLINE)
#define IS_E3B0_ONLINE(info) (((info) & RI_E3B0_ONLINE) == RI_E3B0_ONLINE)
static inline bool bnx2x_is_reg_online(struct bnx2x *bp,
const struct reg_addr *reg_info)
{
if (CHIP_IS_E1(bp))
return IS_E1_ONLINE(reg_info->info);
else if (CHIP_IS_E1H(bp))
return IS_E1H_ONLINE(reg_info->info);
else if (CHIP_IS_E2(bp))
return IS_E2_ONLINE(reg_info->info);
else if (CHIP_IS_E3A0(bp))
return IS_E3_ONLINE(reg_info->info);
else if (CHIP_IS_E3B0(bp))
return IS_E3B0_ONLINE(reg_info->info);
else
return false;
}
/******* Paged registers info selectors ********/
static inline const u32 *__bnx2x_get_page_addr_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_vals_e2;
else if (CHIP_IS_E3(bp))
return page_vals_e3;
else
return NULL;
}
static inline u32 __bnx2x_get_page_reg_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_MODE_VALUES_E2;
else if (CHIP_IS_E3(bp))
return PAGE_MODE_VALUES_E3;
else
return 0;
}
static inline const u32 *__bnx2x_get_page_write_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_write_regs_e2;
else if (CHIP_IS_E3(bp))
return page_write_regs_e3;
else
return NULL;
}
static inline u32 __bnx2x_get_page_write_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_WRITE_REGS_E2;
else if (CHIP_IS_E3(bp))
return PAGE_WRITE_REGS_E3;
else
return 0;
}
static inline const struct reg_addr *__bnx2x_get_page_read_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_read_regs_e2;
else if (CHIP_IS_E3(bp))
return page_read_regs_e3;
else
return NULL;
}
static inline u32 __bnx2x_get_page_read_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_READ_REGS_E2;
else if (CHIP_IS_E3(bp))
return PAGE_READ_REGS_E3;
else
return 0;
}
static inline int __bnx2x_get_regs_len(struct bnx2x *bp)
{
int num_pages = __bnx2x_get_page_reg_num(bp);
int page_write_num = __bnx2x_get_page_write_num(bp);
const struct reg_addr *page_read_addr = __bnx2x_get_page_read_ar(bp);
int page_read_num = __bnx2x_get_page_read_num(bp);
int regdump_len = 0;
int i, j, k;
for (i = 0; i < REGS_COUNT; i++)
if (bnx2x_is_reg_online(bp, &reg_addrs[i]))
regdump_len += reg_addrs[i].size;
for (i = 0; i < num_pages; i++)
for (j = 0; j < page_write_num; j++)
for (k = 0; k < page_read_num; k++)
if (bnx2x_is_reg_online(bp, &page_read_addr[k]))
regdump_len += page_read_addr[k].size;
return regdump_len;
}
static int bnx2x_get_regs_len(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
int regdump_len = 0;
regdump_len = __bnx2x_get_regs_len(bp);
regdump_len *= 4;
regdump_len += sizeof(struct dump_hdr);
return regdump_len;
}
/**
* bnx2x_read_pages_regs - read "paged" registers
*
* @bp device handle
* @p output buffer
*
* Reads "paged" memories: memories that may only be read by first writing to a
* specific address ("write address") and then reading from a specific address
* ("read address"). There may be more than one write address per "page" and
* more than one read address per write address.
*/
static inline void bnx2x_read_pages_regs(struct bnx2x *bp, u32 *p)
{
u32 i, j, k, n;
/* addresses of the paged registers */
const u32 *page_addr = __bnx2x_get_page_addr_ar(bp);
/* number of paged registers */
int num_pages = __bnx2x_get_page_reg_num(bp);
/* write addresses */
const u32 *write_addr = __bnx2x_get_page_write_ar(bp);
/* number of write addresses */
int write_num = __bnx2x_get_page_write_num(bp);
/* read addresses info */
const struct reg_addr *read_addr = __bnx2x_get_page_read_ar(bp);
/* number of read addresses */
int read_num = __bnx2x_get_page_read_num(bp);
for (i = 0; i < num_pages; i++) {
for (j = 0; j < write_num; j++) {
REG_WR(bp, write_addr[j], page_addr[i]);
for (k = 0; k < read_num; k++)
if (bnx2x_is_reg_online(bp, &read_addr[k]))
for (n = 0; n <
read_addr[k].size; n++)
*p++ = REG_RD(bp,
read_addr[k].addr + n*4);
}
}
}
static inline void __bnx2x_get_regs(struct bnx2x *bp, u32 *p)
{
u32 i, j;
/* Read the regular registers */
for (i = 0; i < REGS_COUNT; i++)
if (bnx2x_is_reg_online(bp, &reg_addrs[i]))
for (j = 0; j < reg_addrs[i].size; j++)
*p++ = REG_RD(bp, reg_addrs[i].addr + j*4);
/* Read "paged" registes */
bnx2x_read_pages_regs(bp, p);
}
static void bnx2x_get_regs(struct net_device *dev,
struct ethtool_regs *regs, void *_p)
{
u32 *p = _p;
struct bnx2x *bp = netdev_priv(dev);
struct dump_hdr dump_hdr = {0};
regs->version = 0;
memset(p, 0, regs->len);
if (!netif_running(bp->dev))
return;
/* Disable parity attentions as long as following dump may
* cause false alarms by reading never written registers. We
* will re-enable parity attentions right after the dump.
*/
bnx2x_disable_blocks_parity(bp);
dump_hdr.hdr_size = (sizeof(struct dump_hdr) / 4) - 1;
dump_hdr.dump_sign = dump_sign_all;
dump_hdr.xstorm_waitp = REG_RD(bp, XSTORM_WAITP_ADDR);
dump_hdr.tstorm_waitp = REG_RD(bp, TSTORM_WAITP_ADDR);
dump_hdr.ustorm_waitp = REG_RD(bp, USTORM_WAITP_ADDR);
dump_hdr.cstorm_waitp = REG_RD(bp, CSTORM_WAITP_ADDR);
if (CHIP_IS_E1(bp))
dump_hdr.info = RI_E1_ONLINE;
else if (CHIP_IS_E1H(bp))
dump_hdr.info = RI_E1H_ONLINE;
else if (!CHIP_IS_E1x(bp))
dump_hdr.info = RI_E2_ONLINE |
(BP_PATH(bp) ? RI_PATH1_DUMP : RI_PATH0_DUMP);
memcpy(p, &dump_hdr, sizeof(struct dump_hdr));
p += dump_hdr.hdr_size + 1;
/* Actually read the registers */
__bnx2x_get_regs(bp, p);
/* Re-enable parity attentions */
bnx2x_clear_blocks_parity(bp);
bnx2x_enable_blocks_parity(bp);
}
static void bnx2x_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct bnx2x *bp = netdev_priv(dev);
u8 phy_fw_ver[PHY_FW_VER_LEN];
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
phy_fw_ver[0] = '\0';
if (bp->port.pmf) {
bnx2x_acquire_phy_lock(bp);
bnx2x_get_ext_phy_fw_version(&bp->link_params,
(bp->state != BNX2X_STATE_CLOSED),
phy_fw_ver, PHY_FW_VER_LEN);
bnx2x_release_phy_lock(bp);
}
strncpy(info->fw_version, bp->fw_ver, 32);
snprintf(info->fw_version + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
"bc %d.%d.%d%s%s",
(bp->common.bc_ver & 0xff0000) >> 16,
(bp->common.bc_ver & 0xff00) >> 8,
(bp->common.bc_ver & 0xff),
((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
strcpy(info->bus_info, pci_name(bp->pdev));
info->n_stats = BNX2X_NUM_STATS;
info->testinfo_len = BNX2X_NUM_TESTS;
info->eedump_len = bp->common.flash_size;
info->regdump_len = bnx2x_get_regs_len(dev);
}
static void bnx2x_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & NO_WOL_FLAG) {
wol->supported = 0;
wol->wolopts = 0;
} else {
wol->supported = WAKE_MAGIC;
if (bp->wol)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
}
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int bnx2x_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2x *bp = netdev_priv(dev);
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if (wol->wolopts & WAKE_MAGIC) {
if (bp->flags & NO_WOL_FLAG)
return -EINVAL;
bp->wol = 1;
} else
bp->wol = 0;
return 0;
}
static u32 bnx2x_get_msglevel(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
return bp->msg_enable;
}
static void bnx2x_set_msglevel(struct net_device *dev, u32 level)
{
struct bnx2x *bp = netdev_priv(dev);
if (capable(CAP_NET_ADMIN)) {
/* dump MCP trace */
if (level & BNX2X_MSG_MCP)
bnx2x_fw_dump_lvl(bp, KERN_INFO);
bp->msg_enable = level;
}
}
static int bnx2x_nway_reset(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (!bp->port.pmf)
return 0;
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_set(bp);
}
return 0;
}
static u32 bnx2x_get_link(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & MF_FUNC_DIS || (bp->state != BNX2X_STATE_OPEN))
return 0;
return bp->link_vars.link_up;
}
static int bnx2x_get_eeprom_len(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
return bp->common.flash_size;
}
static int bnx2x_acquire_nvram_lock(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int count, i;
u32 val = 0;
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* request access to nvram interface */
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB);
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))
break;
udelay(5);
}
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
DP(BNX2X_MSG_NVM, "cannot get access to nvram interface\n");
return -EBUSY;
}
return 0;
}
static int bnx2x_release_nvram_lock(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int count, i;
u32 val = 0;
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* relinquish nvram interface */
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB);
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)))
break;
udelay(5);
}
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
DP(BNX2X_MSG_NVM, "cannot free access to nvram interface\n");
return -EBUSY;
}
return 0;
}
static void bnx2x_enable_nvram_access(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* enable both bits, even on read */
REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val | MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN));
}
static void bnx2x_disable_nvram_access(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* disable both bits, even after read */
REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
}
static int bnx2x_nvram_read_dword(struct bnx2x *bp, u32 offset, __be32 *ret_val,
u32 cmd_flags)
{
int count, i, rc;
u32 val;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
/* need to clear DONE bit separately */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* address of the NVRAM to read from */
REG_WR(bp, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue a read command */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* wait for completion */
*ret_val = 0;
rc = -EBUSY;
for (i = 0; i < count; i++) {
udelay(5);
val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_READ);
/* we read nvram data in cpu order
* but ethtool sees it as an array of bytes
* converting to big-endian will do the work */
*ret_val = cpu_to_be32(val);
rc = 0;
break;
}
}
return rc;
}
static int bnx2x_nvram_read(struct bnx2x *bp, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
__be32 val;
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DP(BNX2X_MSG_NVM,
"Invalid parameter: offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return -EINVAL;
}
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +"
" buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
/* read the first word(s) */
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((buf_size > sizeof(u32)) && (rc == 0)) {
rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
/* advance to the next dword */
offset += sizeof(u32);
ret_buf += sizeof(u32);
buf_size -= sizeof(u32);
cmd_flags = 0;
}
if (rc == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *eebuf)
{
struct bnx2x *bp = netdev_priv(dev);
int rc;
if (!netif_running(dev))
return -EAGAIN;
DP(BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n"
" magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n",
eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset,
eeprom->len, eeprom->len);
/* parameters already validated in ethtool_get_eeprom */
rc = bnx2x_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int bnx2x_nvram_write_dword(struct bnx2x *bp, u32 offset, u32 val,
u32 cmd_flags)
{
int count, i, rc;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR;
/* need to clear DONE bit separately */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* write the data */
REG_WR(bp, MCP_REG_MCPR_NVM_WRITE, val);
/* address of the NVRAM to write to */
REG_WR(bp, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue the write command */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* wait for completion */
rc = -EBUSY;
for (i = 0; i < count; i++) {
udelay(5);
val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
rc = 0;
break;
}
}
return rc;
}
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
static int bnx2x_nvram_write1(struct bnx2x *bp, u32 offset, u8 *data_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
u32 align_offset;
__be32 val;
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +"
" buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
align_offset = (offset & ~0x03);
rc = bnx2x_nvram_read_dword(bp, align_offset, &val, cmd_flags);
if (rc == 0) {
val &= ~(0xff << BYTE_OFFSET(offset));
val |= (*data_buf << BYTE_OFFSET(offset));
/* nvram data is returned as an array of bytes
* convert it back to cpu order */
val = be32_to_cpu(val);
rc = bnx2x_nvram_write_dword(bp, align_offset, val,
cmd_flags);
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_nvram_write(struct bnx2x *bp, u32 offset, u8 *data_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
u32 val;
u32 written_so_far;
if (buf_size == 1) /* ethtool */
return bnx2x_nvram_write1(bp, offset, data_buf, buf_size);
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DP(BNX2X_MSG_NVM,
"Invalid parameter: offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return -EINVAL;
}
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +"
" buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
written_so_far = 0;
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((written_so_far < buf_size) && (rc == 0)) {
if (written_so_far == (buf_size - sizeof(u32)))
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if (((offset + 4) % BNX2X_NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if ((offset % BNX2X_NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
memcpy(&val, data_buf, 4);
rc = bnx2x_nvram_write_dword(bp, offset, val, cmd_flags);
/* advance to the next dword */
offset += sizeof(u32);
data_buf += sizeof(u32);
written_so_far += sizeof(u32);
cmd_flags = 0;
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *eebuf)
{
struct bnx2x *bp = netdev_priv(dev);
int port = BP_PORT(bp);
int rc = 0;
u32 ext_phy_config;
if (!netif_running(dev))
return -EAGAIN;
DP(BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n"
" magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n",
eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset,
eeprom->len, eeprom->len);
/* parameters already validated in ethtool_set_eeprom */
/* PHY eeprom can be accessed only by the PMF */
if ((eeprom->magic >= 0x50485900) && (eeprom->magic <= 0x504859FF) &&
!bp->port.pmf)
return -EINVAL;
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
if (eeprom->magic == 0x50485950) {
/* 'PHYP' (0x50485950): prepare phy for FW upgrade */
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_acquire_phy_lock(bp);
rc |= bnx2x_link_reset(&bp->link_params,
&bp->link_vars, 0);
if (XGXS_EXT_PHY_TYPE(ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101)
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_HIGH, port);
bnx2x_release_phy_lock(bp);
bnx2x_link_report(bp);
} else if (eeprom->magic == 0x50485952) {
/* 'PHYR' (0x50485952): re-init link after FW upgrade */
if (bp->state == BNX2X_STATE_OPEN) {
bnx2x_acquire_phy_lock(bp);
rc |= bnx2x_link_reset(&bp->link_params,
&bp->link_vars, 1);
rc |= bnx2x_phy_init(&bp->link_params,
&bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_calc_fc_adv(bp);
}
} else if (eeprom->magic == 0x53985943) {
/* 'PHYC' (0x53985943): PHY FW upgrade completed */
if (XGXS_EXT_PHY_TYPE(ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) {
/* DSP Remove Download Mode */
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_LOW, port);
bnx2x_acquire_phy_lock(bp);
bnx2x_sfx7101_sp_sw_reset(bp,
&bp->link_params.phy[EXT_PHY1]);
/* wait 0.5 sec to allow it to run */
msleep(500);
bnx2x_ext_phy_hw_reset(bp, port);
msleep(500);
bnx2x_release_phy_lock(bp);
}
} else
rc = bnx2x_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int bnx2x_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal)
{
struct bnx2x *bp = netdev_priv(dev);
memset(coal, 0, sizeof(struct ethtool_coalesce));
coal->rx_coalesce_usecs = bp->rx_ticks;
coal->tx_coalesce_usecs = bp->tx_ticks;
return 0;
}
static int bnx2x_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal)
{
struct bnx2x *bp = netdev_priv(dev);
bp->rx_ticks = (u16)coal->rx_coalesce_usecs;
if (bp->rx_ticks > BNX2X_MAX_COALESCE_TOUT)
bp->rx_ticks = BNX2X_MAX_COALESCE_TOUT;
bp->tx_ticks = (u16)coal->tx_coalesce_usecs;
if (bp->tx_ticks > BNX2X_MAX_COALESCE_TOUT)
bp->tx_ticks = BNX2X_MAX_COALESCE_TOUT;
if (netif_running(dev))
bnx2x_update_coalesce(bp);
return 0;
}
static void bnx2x_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct bnx2x *bp = netdev_priv(dev);
ering->rx_max_pending = MAX_RX_AVAIL;
if (bp->rx_ring_size)
ering->rx_pending = bp->rx_ring_size;
else
ering->rx_pending = MAX_RX_AVAIL;
ering->tx_max_pending = MAX_TX_AVAIL;
ering->tx_pending = bp->tx_ring_size;
}
static int bnx2x_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
pr_err("Handling parity error recovery. Try again later\n");
return -EAGAIN;
}
if ((ering->rx_pending > MAX_RX_AVAIL) ||
(ering->rx_pending < (bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
MIN_RX_SIZE_TPA)) ||
(ering->tx_pending > MAX_TX_AVAIL) ||
(ering->tx_pending <= MAX_SKB_FRAGS + 4))
return -EINVAL;
bp->rx_ring_size = ering->rx_pending;
bp->tx_ring_size = ering->tx_pending;
return bnx2x_reload_if_running(dev);
}
static void bnx2x_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct bnx2x *bp = netdev_priv(dev);
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
epause->autoneg = (bp->link_params.req_flow_ctrl[cfg_idx] ==
BNX2X_FLOW_CTRL_AUTO);
epause->rx_pause = ((bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) ==
BNX2X_FLOW_CTRL_RX);
epause->tx_pause = ((bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) ==
BNX2X_FLOW_CTRL_TX);
DP(NETIF_MSG_LINK, "ethtool_pauseparam: cmd %d\n"
" autoneg %d rx_pause %d tx_pause %d\n",
epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause);
}
static int bnx2x_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct bnx2x *bp = netdev_priv(dev);
u32 cfg_idx = bnx2x_get_link_cfg_idx(bp);
if (IS_MF(bp))
return 0;
DP(NETIF_MSG_LINK, "ethtool_pauseparam: cmd %d\n"
" autoneg %d rx_pause %d tx_pause %d\n",
epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause);
bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO;
if (epause->rx_pause)
bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_RX;
if (epause->tx_pause)
bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_TX;
if (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO)
bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_NONE;
if (epause->autoneg) {
if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) {
DP(NETIF_MSG_LINK, "autoneg not supported\n");
return -EINVAL;
}
if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) {
bp->link_params.req_flow_ctrl[cfg_idx] =
BNX2X_FLOW_CTRL_AUTO;
}
}
DP(NETIF_MSG_LINK,
"req_flow_ctrl 0x%x\n", bp->link_params.req_flow_ctrl[cfg_idx]);
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_set(bp);
}
return 0;
}
static const struct {
char string[ETH_GSTRING_LEN];
} bnx2x_tests_str_arr[BNX2X_NUM_TESTS] = {
{ "register_test (offline)" },
{ "memory_test (offline)" },
{ "loopback_test (offline)" },
{ "nvram_test (online)" },
{ "interrupt_test (online)" },
{ "link_test (online)" },
{ "idle check (online)" }
};
enum {
BNX2X_CHIP_E1_OFST = 0,
BNX2X_CHIP_E1H_OFST,
BNX2X_CHIP_E2_OFST,
BNX2X_CHIP_E3_OFST,
BNX2X_CHIP_E3B0_OFST,
BNX2X_CHIP_MAX_OFST
};
#define BNX2X_CHIP_MASK_E1 (1 << BNX2X_CHIP_E1_OFST)
#define BNX2X_CHIP_MASK_E1H (1 << BNX2X_CHIP_E1H_OFST)
#define BNX2X_CHIP_MASK_E2 (1 << BNX2X_CHIP_E2_OFST)
#define BNX2X_CHIP_MASK_E3 (1 << BNX2X_CHIP_E3_OFST)
#define BNX2X_CHIP_MASK_E3B0 (1 << BNX2X_CHIP_E3B0_OFST)
#define BNX2X_CHIP_MASK_ALL ((1 << BNX2X_CHIP_MAX_OFST) - 1)
#define BNX2X_CHIP_MASK_E1X (BNX2X_CHIP_MASK_E1 | BNX2X_CHIP_MASK_E1H)
static int bnx2x_test_registers(struct bnx2x *bp)
{
int idx, i, rc = -ENODEV;
u32 wr_val = 0, hw;
int port = BP_PORT(bp);
static const struct {
u32 hw;
u32 offset0;
u32 offset1;
u32 mask;
} reg_tbl[] = {
/* 0 */ { BNX2X_CHIP_MASK_ALL,
BRB1_REG_PAUSE_LOW_THRESHOLD_0, 4, 0x000003ff },
{ BNX2X_CHIP_MASK_ALL,
DORQ_REG_DB_ADDR0, 4, 0xffffffff },
{ BNX2X_CHIP_MASK_E1X,
HC_REG_AGG_INT_0, 4, 0x000003ff },
{ BNX2X_CHIP_MASK_ALL,
PBF_REG_MAC_IF0_ENABLE, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2 | BNX2X_CHIP_MASK_E3,
PBF_REG_P0_INIT_CRD, 4, 0x000007ff },
{ BNX2X_CHIP_MASK_E3B0,
PBF_REG_INIT_CRD_Q0, 4, 0x000007ff },
{ BNX2X_CHIP_MASK_ALL,
PRS_REG_CID_PORT_0, 4, 0x00ffffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_CDU0_L2P, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_RQ_CDU0_EFIRST_MEM_ADDR, 8, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_TM0_L2P, 4, 0x000fffff },
/* 10 */ { BNX2X_CHIP_MASK_ALL,
PXP2_REG_RQ_USDM0_EFIRST_MEM_ADDR, 8, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_TSDM0_L2P, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
QM_REG_CONNNUM_0, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
TM_REG_LIN0_MAX_ACTIVE_CID, 4, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
SRC_REG_KEYRSS0_0, 40, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
SRC_REG_KEYRSS0_7, 40, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_WU_DA_SET_TMR_CNT_FLG_CMD00, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_WU_DA_CNT_CMD00, 4, 0x00000003 },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_GLB_DEL_ACK_MAX_CNT_0, 4, 0x000000ff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_T_BIT, 4, 0x00000001 },
/* 20 */ { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_EMAC0_IN_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_BMAC0_IN_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_XCM0_OUT_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_BRB0_OUT_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_XCM_MASK, 4, 0x00000007 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_ACPI_PAT_6_LEN, 68, 0x000000ff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_ACPI_PAT_0_CRC, 68, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_MAC_0_0, 160, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_IP_0_1, 160, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_IPV4_IPV6_0, 160, 0x00000001 },
/* 30 */ { BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_UDP_0, 160, 0x0000ffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_TCP_0, 160, 0x0000ffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_VLAN_ID_0, 160, 0x00000fff },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_XGXS_SERDES0_MODE_SEL, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0, 4, 0x00000001},
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_STATUS_INTERRUPT_PORT0, 4, 0x07ffffff },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_XGXS0_CTRL_EXTREMOTEMDIOST, 24, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_SERDES0_CTRL_PHY_ADDR, 16, 0x0000001f },
{ BNX2X_CHIP_MASK_ALL, 0xffffffff, 0, 0x00000000 }
};
if (!netif_running(bp->dev))
return rc;
if (CHIP_IS_E1(bp))
hw = BNX2X_CHIP_MASK_E1;
else if (CHIP_IS_E1H(bp))
hw = BNX2X_CHIP_MASK_E1H;
else if (CHIP_IS_E2(bp))
hw = BNX2X_CHIP_MASK_E2;
else if (CHIP_IS_E3B0(bp))
hw = BNX2X_CHIP_MASK_E3B0;
else /* e3 A0 */
hw = BNX2X_CHIP_MASK_E3;
/* Repeat the test twice:
First by writing 0x00000000, second by writing 0xffffffff */
for (idx = 0; idx < 2; idx++) {
switch (idx) {
case 0:
wr_val = 0;
break;
case 1:
wr_val = 0xffffffff;
break;
}
for (i = 0; reg_tbl[i].offset0 != 0xffffffff; i++) {
u32 offset, mask, save_val, val;
if (!(hw & reg_tbl[i].hw))
continue;
offset = reg_tbl[i].offset0 + port*reg_tbl[i].offset1;
mask = reg_tbl[i].mask;
save_val = REG_RD(bp, offset);
REG_WR(bp, offset, wr_val & mask);
val = REG_RD(bp, offset);
/* Restore the original register's value */
REG_WR(bp, offset, save_val);
/* verify value is as expected */
if ((val & mask) != (wr_val & mask)) {
DP(NETIF_MSG_HW,
"offset 0x%x: val 0x%x != 0x%x mask 0x%x\n",
offset, val, wr_val, mask);
goto test_reg_exit;
}
}
}
rc = 0;
test_reg_exit:
return rc;
}
static int bnx2x_test_memory(struct bnx2x *bp)
{
int i, j, rc = -ENODEV;
u32 val, index;
static const struct {
u32 offset;
int size;
} mem_tbl[] = {
{ CCM_REG_XX_DESCR_TABLE, CCM_REG_XX_DESCR_TABLE_SIZE },
{ CFC_REG_ACTIVITY_COUNTER, CFC_REG_ACTIVITY_COUNTER_SIZE },
{ CFC_REG_LINK_LIST, CFC_REG_LINK_LIST_SIZE },
{ DMAE_REG_CMD_MEM, DMAE_REG_CMD_MEM_SIZE },
{ TCM_REG_XX_DESCR_TABLE, TCM_REG_XX_DESCR_TABLE_SIZE },
{ UCM_REG_XX_DESCR_TABLE, UCM_REG_XX_DESCR_TABLE_SIZE },
{ XCM_REG_XX_DESCR_TABLE, XCM_REG_XX_DESCR_TABLE_SIZE },
{ 0xffffffff, 0 }
};
static const struct {
char *name;
u32 offset;
u32 hw_mask[BNX2X_CHIP_MAX_OFST];
} prty_tbl[] = {
{ "CCM_PRTY_STS", CCM_REG_CCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "CFC_PRTY_STS", CFC_REG_CFC_PRTY_STS,
{0x2, 0x2, 0, 0} },
{ "DMAE_PRTY_STS", DMAE_REG_DMAE_PRTY_STS,
{0, 0, 0, 0} },
{ "TCM_PRTY_STS", TCM_REG_TCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "UCM_PRTY_STS", UCM_REG_UCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "XCM_PRTY_STS", XCM_REG_XCM_PRTY_STS,
{0x3ffc1, 0, 0, 0} },
{ NULL, 0xffffffff, {0, 0, 0, 0} }
};
if (!netif_running(bp->dev))
return rc;
if (CHIP_IS_E1(bp))
index = BNX2X_CHIP_E1_OFST;
else if (CHIP_IS_E1H(bp))
index = BNX2X_CHIP_E1H_OFST;
else if (CHIP_IS_E2(bp))
index = BNX2X_CHIP_E2_OFST;
else /* e3 */
index = BNX2X_CHIP_E3_OFST;
/* pre-Check the parity status */
for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) {
val = REG_RD(bp, prty_tbl[i].offset);
if (val & ~(prty_tbl[i].hw_mask[index])) {
DP(NETIF_MSG_HW,
"%s is 0x%x\n", prty_tbl[i].name, val);
goto test_mem_exit;
}
}
/* Go through all the memories */
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++)
for (j = 0; j < mem_tbl[i].size; j++)
REG_RD(bp, mem_tbl[i].offset + j*4);
/* Check the parity status */
for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) {
val = REG_RD(bp, prty_tbl[i].offset);
if (val & ~(prty_tbl[i].hw_mask[index])) {
DP(NETIF_MSG_HW,
"%s is 0x%x\n", prty_tbl[i].name, val);
goto test_mem_exit;
}
}
rc = 0;
test_mem_exit:
return rc;
}
static void bnx2x_wait_for_link(struct bnx2x *bp, u8 link_up, u8 is_serdes)
{
int cnt = 1400;
if (link_up) {
while (bnx2x_link_test(bp, is_serdes) && cnt--)
msleep(20);
if (cnt <= 0 && bnx2x_link_test(bp, is_serdes))
DP(NETIF_MSG_LINK, "Timeout waiting for link up\n");
}
}
static int bnx2x_run_loopback(struct bnx2x *bp, int loopback_mode)
{
unsigned int pkt_size, num_pkts, i;
struct sk_buff *skb;
unsigned char *packet;
struct bnx2x_fastpath *fp_rx = &bp->fp[0];
struct bnx2x_fastpath *fp_tx = &bp->fp[0];
struct bnx2x_fp_txdata *txdata = &fp_tx->txdata[0];
u16 tx_start_idx, tx_idx;
u16 rx_start_idx, rx_idx;
u16 pkt_prod, bd_prod, rx_comp_cons;
struct sw_tx_bd *tx_buf;
struct eth_tx_start_bd *tx_start_bd;
struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
dma_addr_t mapping;
union eth_rx_cqe *cqe;
u8 cqe_fp_flags, cqe_fp_type;
struct sw_rx_bd *rx_buf;
u16 len;
int rc = -ENODEV;
/* check the loopback mode */
switch (loopback_mode) {
case BNX2X_PHY_LOOPBACK:
if (bp->link_params.loopback_mode != LOOPBACK_XGXS)
return -EINVAL;
break;
case BNX2X_MAC_LOOPBACK:
bp->link_params.loopback_mode = CHIP_IS_E3(bp) ?
LOOPBACK_XMAC : LOOPBACK_BMAC;
bnx2x_phy_init(&bp->link_params, &bp->link_vars);
break;
default:
return -EINVAL;
}
/* prepare the loopback packet */
pkt_size = (((bp->dev->mtu < ETH_MAX_PACKET_SIZE) ?
bp->dev->mtu : ETH_MAX_PACKET_SIZE) + ETH_HLEN);
skb = netdev_alloc_skb(bp->dev, fp_rx->rx_buf_size);
if (!skb) {
rc = -ENOMEM;
goto test_loopback_exit;
}
packet = skb_put(skb, pkt_size);
memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
memset(packet + ETH_ALEN, 0, ETH_ALEN);
memset(packet + 2*ETH_ALEN, 0x77, (ETH_HLEN - 2*ETH_ALEN));
for (i = ETH_HLEN; i < pkt_size; i++)
packet[i] = (unsigned char) (i & 0xff);
mapping = dma_map_single(&bp->pdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
rc = -ENOMEM;
dev_kfree_skb(skb);
BNX2X_ERR("Unable to map SKB\n");
goto test_loopback_exit;
}
/* send the loopback packet */
num_pkts = 0;
tx_start_idx = le16_to_cpu(*txdata->tx_cons_sb);
rx_start_idx = le16_to_cpu(*fp_rx->rx_cons_sb);
pkt_prod = txdata->tx_pkt_prod++;
tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
tx_buf->first_bd = txdata->tx_bd_prod;
tx_buf->skb = skb;
tx_buf->flags = 0;
bd_prod = TX_BD(txdata->tx_bd_prod);
tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
tx_start_bd->nbd = cpu_to_le16(2); /* start + pbd */
tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
SET_FLAG(tx_start_bd->general_data,
ETH_TX_START_BD_ETH_ADDR_TYPE,
UNICAST_ADDRESS);
SET_FLAG(tx_start_bd->general_data,
ETH_TX_START_BD_HDR_NBDS,
1);
/* turn on parsing and get a BD */
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
wmb();
txdata->tx_db.data.prod += 2;
barrier();
DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
mmiowb();
barrier();
num_pkts++;
txdata->tx_bd_prod += 2; /* start + pbd */
udelay(100);
tx_idx = le16_to_cpu(*txdata->tx_cons_sb);
if (tx_idx != tx_start_idx + num_pkts)
goto test_loopback_exit;
/* Unlike HC IGU won't generate an interrupt for status block
* updates that have been performed while interrupts were
* disabled.
*/
if (bp->common.int_block == INT_BLOCK_IGU) {
/* Disable local BHes to prevent a dead-lock situation between
* sch_direct_xmit() and bnx2x_run_loopback() (calling
* bnx2x_tx_int()), as both are taking netif_tx_lock().
*/
local_bh_disable();
bnx2x_tx_int(bp, txdata);
local_bh_enable();
}
rx_idx = le16_to_cpu(*fp_rx->rx_cons_sb);
if (rx_idx != rx_start_idx + num_pkts)
goto test_loopback_exit;
rx_comp_cons = le16_to_cpu(fp_rx->rx_comp_cons);
cqe = &fp_rx->rx_comp_ring[RCQ_BD(rx_comp_cons)];
cqe_fp_flags = cqe->fast_path_cqe.type_error_flags;
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
if (!CQE_TYPE_FAST(cqe_fp_type) || (cqe_fp_flags & ETH_RX_ERROR_FALGS))
goto test_loopback_rx_exit;
len = le16_to_cpu(cqe->fast_path_cqe.pkt_len);
if (len != pkt_size)
goto test_loopback_rx_exit;
rx_buf = &fp_rx->rx_buf_ring[RX_BD(fp_rx->rx_bd_cons)];
dma_sync_single_for_cpu(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
fp_rx->rx_buf_size, DMA_FROM_DEVICE);
skb = rx_buf->skb;
skb_reserve(skb, cqe->fast_path_cqe.placement_offset);
for (i = ETH_HLEN; i < pkt_size; i++)
if (*(skb->data + i) != (unsigned char) (i & 0xff))
goto test_loopback_rx_exit;
rc = 0;
test_loopback_rx_exit:
fp_rx->rx_bd_cons = NEXT_RX_IDX(fp_rx->rx_bd_cons);
fp_rx->rx_bd_prod = NEXT_RX_IDX(fp_rx->rx_bd_prod);
fp_rx->rx_comp_cons = NEXT_RCQ_IDX(fp_rx->rx_comp_cons);
fp_rx->rx_comp_prod = NEXT_RCQ_IDX(fp_rx->rx_comp_prod);
/* Update producers */
bnx2x_update_rx_prod(bp, fp_rx, fp_rx->rx_bd_prod, fp_rx->rx_comp_prod,
fp_rx->rx_sge_prod);
test_loopback_exit:
bp->link_params.loopback_mode = LOOPBACK_NONE;
return rc;
}
static int bnx2x_test_loopback(struct bnx2x *bp)
{
int rc = 0, res;
if (BP_NOMCP(bp))
return rc;
if (!netif_running(bp->dev))
return BNX2X_LOOPBACK_FAILED;
bnx2x_netif_stop(bp, 1);
bnx2x_acquire_phy_lock(bp);
res = bnx2x_run_loopback(bp, BNX2X_PHY_LOOPBACK);
if (res) {
DP(NETIF_MSG_PROBE, " PHY loopback failed (res %d)\n", res);
rc |= BNX2X_PHY_LOOPBACK_FAILED;
}
res = bnx2x_run_loopback(bp, BNX2X_MAC_LOOPBACK);
if (res) {
DP(NETIF_MSG_PROBE, " MAC loopback failed (res %d)\n", res);
rc |= BNX2X_MAC_LOOPBACK_FAILED;
}
bnx2x_release_phy_lock(bp);
bnx2x_netif_start(bp);
return rc;
}
#define CRC32_RESIDUAL 0xdebb20e3
static int bnx2x_test_nvram(struct bnx2x *bp)
{
static const struct {
int offset;
int size;
} nvram_tbl[] = {
{ 0, 0x14 }, /* bootstrap */
{ 0x14, 0xec }, /* dir */
{ 0x100, 0x350 }, /* manuf_info */
{ 0x450, 0xf0 }, /* feature_info */
{ 0x640, 0x64 }, /* upgrade_key_info */
{ 0x708, 0x70 }, /* manuf_key_info */
{ 0, 0 }
};
__be32 buf[0x350 / 4];
u8 *data = (u8 *)buf;
int i, rc;
u32 magic, crc;
if (BP_NOMCP(bp))
return 0;
rc = bnx2x_nvram_read(bp, 0, data, 4);
if (rc) {
DP(NETIF_MSG_PROBE, "magic value read (rc %d)\n", rc);
goto test_nvram_exit;
}
magic = be32_to_cpu(buf[0]);
if (magic != 0x669955aa) {
DP(NETIF_MSG_PROBE, "magic value (0x%08x)\n", magic);
rc = -ENODEV;
goto test_nvram_exit;
}
for (i = 0; nvram_tbl[i].size; i++) {
rc = bnx2x_nvram_read(bp, nvram_tbl[i].offset, data,
nvram_tbl[i].size);
if (rc) {
DP(NETIF_MSG_PROBE,
"nvram_tbl[%d] read data (rc %d)\n", i, rc);
goto test_nvram_exit;
}
crc = ether_crc_le(nvram_tbl[i].size, data);
if (crc != CRC32_RESIDUAL) {
DP(NETIF_MSG_PROBE,
"nvram_tbl[%d] crc value (0x%08x)\n", i, crc);
rc = -ENODEV;
goto test_nvram_exit;
}
}
test_nvram_exit:
return rc;
}
/* Send an EMPTY ramrod on the first queue */
static int bnx2x_test_intr(struct bnx2x *bp)
{
struct bnx2x_queue_state_params params = {0};
if (!netif_running(bp->dev))
return -ENODEV;
params.q_obj = &bp->fp->q_obj;
params.cmd = BNX2X_Q_CMD_EMPTY;
__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
return bnx2x_queue_state_change(bp, &params);
}
static void bnx2x_self_test(struct net_device *dev,
struct ethtool_test *etest, u64 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
u8 is_serdes;
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
pr_err("Handling parity error recovery. Try again later\n");
etest->flags |= ETH_TEST_FL_FAILED;
return;
}
memset(buf, 0, sizeof(u64) * BNX2X_NUM_TESTS);
if (!netif_running(dev))
return;
/* offline tests are not supported in MF mode */
if (IS_MF(bp))
etest->flags &= ~ETH_TEST_FL_OFFLINE;
is_serdes = (bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0;
if (etest->flags & ETH_TEST_FL_OFFLINE) {
int port = BP_PORT(bp);
u32 val;
u8 link_up;
/* save current value of input enable for TX port IF */
val = REG_RD(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4);
/* disable input for TX port IF */
REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, 0);
link_up = bp->link_vars.link_up;
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
bnx2x_nic_load(bp, LOAD_DIAG);
/* wait until link state is restored */
bnx2x_wait_for_link(bp, 1, is_serdes);
if (bnx2x_test_registers(bp) != 0) {
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_test_memory(bp) != 0) {
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
buf[2] = bnx2x_test_loopback(bp);
if (buf[2] != 0)
etest->flags |= ETH_TEST_FL_FAILED;
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
/* restore input for TX port IF */
REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, val);
bnx2x_nic_load(bp, LOAD_NORMAL);
/* wait until link state is restored */
bnx2x_wait_for_link(bp, link_up, is_serdes);
}
if (bnx2x_test_nvram(bp) != 0) {
buf[3] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_test_intr(bp) != 0) {
buf[4] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_link_test(bp, is_serdes) != 0) {
buf[5] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
#ifdef BNX2X_EXTRA_DEBUG
bnx2x_panic_dump(bp);
#endif
}
#define IS_PORT_STAT(i) \
((bnx2x_stats_arr[i].flags & STATS_FLAGS_BOTH) == STATS_FLAGS_PORT)
#define IS_FUNC_STAT(i) (bnx2x_stats_arr[i].flags & STATS_FLAGS_FUNC)
#define IS_MF_MODE_STAT(bp) \
(IS_MF(bp) && !(bp->msg_enable & BNX2X_MSG_STATS))
/* ethtool statistics are displayed for all regular ethernet queues and the
* fcoe L2 queue if not disabled
*/
static inline int bnx2x_num_stat_queues(struct bnx2x *bp)
{
return BNX2X_NUM_ETH_QUEUES(bp);
}
static int bnx2x_get_sset_count(struct net_device *dev, int stringset)
{
struct bnx2x *bp = netdev_priv(dev);
int i, num_stats;
switch (stringset) {
case ETH_SS_STATS:
if (is_multi(bp)) {
num_stats = bnx2x_num_stat_queues(bp) *
BNX2X_NUM_Q_STATS;
if (!IS_MF_MODE_STAT(bp))
num_stats += BNX2X_NUM_STATS;
} else {
if (IS_MF_MODE_STAT(bp)) {
num_stats = 0;
for (i = 0; i < BNX2X_NUM_STATS; i++)
if (IS_FUNC_STAT(i))
num_stats++;
} else
num_stats = BNX2X_NUM_STATS;
}
return num_stats;
case ETH_SS_TEST:
return BNX2X_NUM_TESTS;
default:
return -EINVAL;
}
}
static void bnx2x_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
int i, j, k;
char queue_name[MAX_QUEUE_NAME_LEN+1];
switch (stringset) {
case ETH_SS_STATS:
if (is_multi(bp)) {
k = 0;
for_each_eth_queue(bp, i) {
memset(queue_name, 0, sizeof(queue_name));
sprintf(queue_name, "%d", i);
for (j = 0; j < BNX2X_NUM_Q_STATS; j++)
snprintf(buf + (k + j)*ETH_GSTRING_LEN,
ETH_GSTRING_LEN,
bnx2x_q_stats_arr[j].string,
queue_name);
k += BNX2X_NUM_Q_STATS;
}
if (IS_MF_MODE_STAT(bp))
break;
for (j = 0; j < BNX2X_NUM_STATS; j++)
strcpy(buf + (k + j)*ETH_GSTRING_LEN,
bnx2x_stats_arr[j].string);
} else {
for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) {
if (IS_MF_MODE_STAT(bp) && IS_PORT_STAT(i))
continue;
strcpy(buf + j*ETH_GSTRING_LEN,
bnx2x_stats_arr[i].string);
j++;
}
}
break;
case ETH_SS_TEST:
memcpy(buf, bnx2x_tests_str_arr, sizeof(bnx2x_tests_str_arr));
break;
}
}
static void bnx2x_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
u32 *hw_stats, *offset;
int i, j, k;
if (is_multi(bp)) {
k = 0;
for_each_eth_queue(bp, i) {
hw_stats = (u32 *)&bp->fp[i].eth_q_stats;
for (j = 0; j < BNX2X_NUM_Q_STATS; j++) {
if (bnx2x_q_stats_arr[j].size == 0) {
/* skip this counter */
buf[k + j] = 0;
continue;
}
offset = (hw_stats +
bnx2x_q_stats_arr[j].offset);
if (bnx2x_q_stats_arr[j].size == 4) {
/* 4-byte counter */
buf[k + j] = (u64) *offset;
continue;
}
/* 8-byte counter */
buf[k + j] = HILO_U64(*offset, *(offset + 1));
}
k += BNX2X_NUM_Q_STATS;
}
if (IS_MF_MODE_STAT(bp))
return;
hw_stats = (u32 *)&bp->eth_stats;
for (j = 0; j < BNX2X_NUM_STATS; j++) {
if (bnx2x_stats_arr[j].size == 0) {
/* skip this counter */
buf[k + j] = 0;
continue;
}
offset = (hw_stats + bnx2x_stats_arr[j].offset);
if (bnx2x_stats_arr[j].size == 4) {
/* 4-byte counter */
buf[k + j] = (u64) *offset;
continue;
}
/* 8-byte counter */
buf[k + j] = HILO_U64(*offset, *(offset + 1));
}
} else {
hw_stats = (u32 *)&bp->eth_stats;
for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) {
if (IS_MF_MODE_STAT(bp) && IS_PORT_STAT(i))
continue;
if (bnx2x_stats_arr[i].size == 0) {
/* skip this counter */
buf[j] = 0;
j++;
continue;
}
offset = (hw_stats + bnx2x_stats_arr[i].offset);
if (bnx2x_stats_arr[i].size == 4) {
/* 4-byte counter */
buf[j] = (u64) *offset;
j++;
continue;
}
/* 8-byte counter */
buf[j] = HILO_U64(*offset, *(offset + 1));
j++;
}
}
}
static int bnx2x_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct bnx2x *bp = netdev_priv(dev);
if (!netif_running(dev))
return -EAGAIN;
if (!bp->port.pmf)
return -EOPNOTSUPP;
switch (state) {
case ETHTOOL_ID_ACTIVE:
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_ON:
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_ON, SPEED_1000);
break;
case ETHTOOL_ID_OFF:
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_FRONT_PANEL_OFF, 0);
break;
case ETHTOOL_ID_INACTIVE:
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_OPER,
bp->link_vars.line_speed);
}
return 0;
}
static int bnx2x_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
u32 *rules __always_unused)
{
struct bnx2x *bp = netdev_priv(dev);
switch (info->cmd) {
case ETHTOOL_GRXRINGS:
info->data = BNX2X_NUM_ETH_QUEUES(bp);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int bnx2x_get_rxfh_indir(struct net_device *dev,
struct ethtool_rxfh_indir *indir)
{
struct bnx2x *bp = netdev_priv(dev);
size_t copy_size =
min_t(size_t, indir->size, T_ETH_INDIRECTION_TABLE_SIZE);
u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0};
size_t i;
if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
return -EOPNOTSUPP;
/* Get the current configuration of the RSS indirection table */
bnx2x_get_rss_ind_table(&bp->rss_conf_obj, ind_table);
/*
* We can't use a memcpy() as an internal storage of an
* indirection table is a u8 array while indir->ring_index
* points to an array of u32.
*
* Indirection table contains the FW Client IDs, so we need to
* align the returned table to the Client ID of the leading RSS
* queue.
*/
for (i = 0; i < copy_size; i++)
indir->ring_index[i] = ind_table[i] - bp->fp->cl_id;
indir->size = T_ETH_INDIRECTION_TABLE_SIZE;
return 0;
}
static int bnx2x_set_rxfh_indir(struct net_device *dev,
const struct ethtool_rxfh_indir *indir)
{
struct bnx2x *bp = netdev_priv(dev);
size_t i;
u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0};
u32 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
return -EOPNOTSUPP;
/* validate the size */
if (indir->size != T_ETH_INDIRECTION_TABLE_SIZE)
return -EINVAL;
for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
/* validate the indices */
if (indir->ring_index[i] >= num_eth_queues)
return -EINVAL;
/*
* The same as in bnx2x_get_rxfh_indir: we can't use a memcpy()
* as an internal storage of an indirection table is a u8 array
* while indir->ring_index points to an array of u32.
*
* Indirection table contains the FW Client IDs, so we need to
* align the received table to the Client ID of the leading RSS
* queue
*/
ind_table[i] = indir->ring_index[i] + bp->fp->cl_id;
}
return bnx2x_config_rss_pf(bp, ind_table, false);
}
static const struct ethtool_ops bnx2x_ethtool_ops = {
.get_settings = bnx2x_get_settings,
.set_settings = bnx2x_set_settings,
.get_drvinfo = bnx2x_get_drvinfo,
.get_regs_len = bnx2x_get_regs_len,
.get_regs = bnx2x_get_regs,
.get_wol = bnx2x_get_wol,
.set_wol = bnx2x_set_wol,
.get_msglevel = bnx2x_get_msglevel,
.set_msglevel = bnx2x_set_msglevel,
.nway_reset = bnx2x_nway_reset,
.get_link = bnx2x_get_link,
.get_eeprom_len = bnx2x_get_eeprom_len,
.get_eeprom = bnx2x_get_eeprom,
.set_eeprom = bnx2x_set_eeprom,
.get_coalesce = bnx2x_get_coalesce,
.set_coalesce = bnx2x_set_coalesce,
.get_ringparam = bnx2x_get_ringparam,
.set_ringparam = bnx2x_set_ringparam,
.get_pauseparam = bnx2x_get_pauseparam,
.set_pauseparam = bnx2x_set_pauseparam,
.self_test = bnx2x_self_test,
.get_sset_count = bnx2x_get_sset_count,
.get_strings = bnx2x_get_strings,
.set_phys_id = bnx2x_set_phys_id,
.get_ethtool_stats = bnx2x_get_ethtool_stats,
.get_rxnfc = bnx2x_get_rxnfc,
.get_rxfh_indir = bnx2x_get_rxfh_indir,
.set_rxfh_indir = bnx2x_set_rxfh_indir,
};
void bnx2x_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &bnx2x_ethtool_ops);
}