blob: 0778edcf7b9a1ecee3ffcfcfd058043c317ce194 [file] [log] [blame]
/*************************************************************************
* myri10ge.c: Myricom Myri-10G Ethernet driver.
*
* Copyright (C) 2005 - 2011 Myricom, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Myricom, Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* If the eeprom on your board is not recent enough, you will need to get a
* newer firmware image at:
* http://www.myri.com/scs/download-Myri10GE.html
*
* Contact Information:
* <help@myri.com>
* Myricom, Inc., 325N Santa Anita Avenue, Arcadia, CA 91006
*************************************************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/tcp.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/inet_lro.h>
#include <linux/dca.h>
#include <linux/ip.h>
#include <linux/inet.h>
#include <linux/in.h>
#include <linux/ethtool.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/crc32.h>
#include <linux/moduleparam.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/prefetch.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/processor.h>
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif
#include "myri10ge_mcp.h"
#include "myri10ge_mcp_gen_header.h"
#define MYRI10GE_VERSION_STR "1.5.3-1.534"
MODULE_DESCRIPTION("Myricom 10G driver (10GbE)");
MODULE_AUTHOR("Maintainer: help@myri.com");
MODULE_VERSION(MYRI10GE_VERSION_STR);
MODULE_LICENSE("Dual BSD/GPL");
#define MYRI10GE_MAX_ETHER_MTU 9014
#define MYRI10GE_ETH_STOPPED 0
#define MYRI10GE_ETH_STOPPING 1
#define MYRI10GE_ETH_STARTING 2
#define MYRI10GE_ETH_RUNNING 3
#define MYRI10GE_ETH_OPEN_FAILED 4
#define MYRI10GE_EEPROM_STRINGS_SIZE 256
#define MYRI10GE_MAX_SEND_DESC_TSO ((65536 / 2048) * 2)
#define MYRI10GE_MAX_LRO_DESCRIPTORS 8
#define MYRI10GE_LRO_MAX_PKTS 64
#define MYRI10GE_NO_CONFIRM_DATA htonl(0xffffffff)
#define MYRI10GE_NO_RESPONSE_RESULT 0xffffffff
#define MYRI10GE_ALLOC_ORDER 0
#define MYRI10GE_ALLOC_SIZE ((1 << MYRI10GE_ALLOC_ORDER) * PAGE_SIZE)
#define MYRI10GE_MAX_FRAGS_PER_FRAME (MYRI10GE_MAX_ETHER_MTU/MYRI10GE_ALLOC_SIZE + 1)
#define MYRI10GE_MAX_SLICES 32
struct myri10ge_rx_buffer_state {
struct page *page;
int page_offset;
DEFINE_DMA_UNMAP_ADDR(bus);
DEFINE_DMA_UNMAP_LEN(len);
};
struct myri10ge_tx_buffer_state {
struct sk_buff *skb;
int last;
DEFINE_DMA_UNMAP_ADDR(bus);
DEFINE_DMA_UNMAP_LEN(len);
};
struct myri10ge_cmd {
u32 data0;
u32 data1;
u32 data2;
};
struct myri10ge_rx_buf {
struct mcp_kreq_ether_recv __iomem *lanai; /* lanai ptr for recv ring */
struct mcp_kreq_ether_recv *shadow; /* host shadow of recv ring */
struct myri10ge_rx_buffer_state *info;
struct page *page;
dma_addr_t bus;
int page_offset;
int cnt;
int fill_cnt;
int alloc_fail;
int mask; /* number of rx slots -1 */
int watchdog_needed;
};
struct myri10ge_tx_buf {
struct mcp_kreq_ether_send __iomem *lanai; /* lanai ptr for sendq */
__be32 __iomem *send_go; /* "go" doorbell ptr */
__be32 __iomem *send_stop; /* "stop" doorbell ptr */
struct mcp_kreq_ether_send *req_list; /* host shadow of sendq */
char *req_bytes;
struct myri10ge_tx_buffer_state *info;
int mask; /* number of transmit slots -1 */
int req ____cacheline_aligned; /* transmit slots submitted */
int pkt_start; /* packets started */
int stop_queue;
int linearized;
int done ____cacheline_aligned; /* transmit slots completed */
int pkt_done; /* packets completed */
int wake_queue;
int queue_active;
};
struct myri10ge_rx_done {
struct mcp_slot *entry;
dma_addr_t bus;
int cnt;
int idx;
struct net_lro_mgr lro_mgr;
struct net_lro_desc lro_desc[MYRI10GE_MAX_LRO_DESCRIPTORS];
};
struct myri10ge_slice_netstats {
unsigned long rx_packets;
unsigned long tx_packets;
unsigned long rx_bytes;
unsigned long tx_bytes;
unsigned long rx_dropped;
unsigned long tx_dropped;
};
struct myri10ge_slice_state {
struct myri10ge_tx_buf tx; /* transmit ring */
struct myri10ge_rx_buf rx_small;
struct myri10ge_rx_buf rx_big;
struct myri10ge_rx_done rx_done;
struct net_device *dev;
struct napi_struct napi;
struct myri10ge_priv *mgp;
struct myri10ge_slice_netstats stats;
__be32 __iomem *irq_claim;
struct mcp_irq_data *fw_stats;
dma_addr_t fw_stats_bus;
int watchdog_tx_done;
int watchdog_tx_req;
int watchdog_rx_done;
int stuck;
#ifdef CONFIG_MYRI10GE_DCA
int cached_dca_tag;
int cpu;
__be32 __iomem *dca_tag;
#endif
char irq_desc[32];
};
struct myri10ge_priv {
struct myri10ge_slice_state *ss;
int tx_boundary; /* boundary transmits cannot cross */
int num_slices;
int running; /* running? */
int small_bytes;
int big_bytes;
int max_intr_slots;
struct net_device *dev;
u8 __iomem *sram;
int sram_size;
unsigned long board_span;
unsigned long iomem_base;
__be32 __iomem *irq_deassert;
char *mac_addr_string;
struct mcp_cmd_response *cmd;
dma_addr_t cmd_bus;
struct pci_dev *pdev;
int msi_enabled;
int msix_enabled;
struct msix_entry *msix_vectors;
#ifdef CONFIG_MYRI10GE_DCA
int dca_enabled;
int relaxed_order;
#endif
u32 link_state;
unsigned int rdma_tags_available;
int intr_coal_delay;
__be32 __iomem *intr_coal_delay_ptr;
int mtrr;
int wc_enabled;
int down_cnt;
wait_queue_head_t down_wq;
struct work_struct watchdog_work;
struct timer_list watchdog_timer;
int watchdog_resets;
int watchdog_pause;
int pause;
bool fw_name_allocated;
char *fw_name;
char eeprom_strings[MYRI10GE_EEPROM_STRINGS_SIZE];
char *product_code_string;
char fw_version[128];
int fw_ver_major;
int fw_ver_minor;
int fw_ver_tiny;
int adopted_rx_filter_bug;
u8 mac_addr[6]; /* eeprom mac address */
unsigned long serial_number;
int vendor_specific_offset;
int fw_multicast_support;
u32 features;
u32 max_tso6;
u32 read_dma;
u32 write_dma;
u32 read_write_dma;
u32 link_changes;
u32 msg_enable;
unsigned int board_number;
int rebooted;
};
static char *myri10ge_fw_unaligned = "myri10ge_ethp_z8e.dat";
static char *myri10ge_fw_aligned = "myri10ge_eth_z8e.dat";
static char *myri10ge_fw_rss_unaligned = "myri10ge_rss_ethp_z8e.dat";
static char *myri10ge_fw_rss_aligned = "myri10ge_rss_eth_z8e.dat";
MODULE_FIRMWARE("myri10ge_ethp_z8e.dat");
MODULE_FIRMWARE("myri10ge_eth_z8e.dat");
MODULE_FIRMWARE("myri10ge_rss_ethp_z8e.dat");
MODULE_FIRMWARE("myri10ge_rss_eth_z8e.dat");
/* Careful: must be accessed under kparam_block_sysfs_write */
static char *myri10ge_fw_name = NULL;
module_param(myri10ge_fw_name, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_fw_name, "Firmware image name");
#define MYRI10GE_MAX_BOARDS 8
static char *myri10ge_fw_names[MYRI10GE_MAX_BOARDS] =
{[0 ... (MYRI10GE_MAX_BOARDS - 1)] = NULL };
module_param_array_named(myri10ge_fw_names, myri10ge_fw_names, charp, NULL,
0444);
MODULE_PARM_DESC(myri10ge_fw_name, "Firmware image names per board");
static int myri10ge_ecrc_enable = 1;
module_param(myri10ge_ecrc_enable, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_ecrc_enable, "Enable Extended CRC on PCI-E");
static int myri10ge_small_bytes = -1; /* -1 == auto */
module_param(myri10ge_small_bytes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_small_bytes, "Threshold of small packets");
static int myri10ge_msi = 1; /* enable msi by default */
module_param(myri10ge_msi, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_msi, "Enable Message Signalled Interrupts");
static int myri10ge_intr_coal_delay = 75;
module_param(myri10ge_intr_coal_delay, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_intr_coal_delay, "Interrupt coalescing delay");
static int myri10ge_flow_control = 1;
module_param(myri10ge_flow_control, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_flow_control, "Pause parameter");
static int myri10ge_deassert_wait = 1;
module_param(myri10ge_deassert_wait, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_deassert_wait,
"Wait when deasserting legacy interrupts");
static int myri10ge_force_firmware = 0;
module_param(myri10ge_force_firmware, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_force_firmware,
"Force firmware to assume aligned completions");
static int myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
module_param(myri10ge_initial_mtu, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_initial_mtu, "Initial MTU");
static int myri10ge_napi_weight = 64;
module_param(myri10ge_napi_weight, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_napi_weight, "Set NAPI weight");
static int myri10ge_watchdog_timeout = 1;
module_param(myri10ge_watchdog_timeout, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_watchdog_timeout, "Set watchdog timeout");
static int myri10ge_max_irq_loops = 1048576;
module_param(myri10ge_max_irq_loops, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_max_irq_loops,
"Set stuck legacy IRQ detection threshold");
#define MYRI10GE_MSG_DEFAULT NETIF_MSG_LINK
static int myri10ge_debug = -1; /* defaults above */
module_param(myri10ge_debug, int, 0);
MODULE_PARM_DESC(myri10ge_debug, "Debug level (0=none,...,16=all)");
static int myri10ge_lro_max_pkts = MYRI10GE_LRO_MAX_PKTS;
module_param(myri10ge_lro_max_pkts, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_lro_max_pkts,
"Number of LRO packets to be aggregated");
static int myri10ge_fill_thresh = 256;
module_param(myri10ge_fill_thresh, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_fill_thresh, "Number of empty rx slots allowed");
static int myri10ge_reset_recover = 1;
static int myri10ge_max_slices = 1;
module_param(myri10ge_max_slices, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_max_slices, "Max tx/rx queues");
static int myri10ge_rss_hash = MXGEFW_RSS_HASH_TYPE_SRC_DST_PORT;
module_param(myri10ge_rss_hash, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_rss_hash, "Type of RSS hashing to do");
static int myri10ge_dca = 1;
module_param(myri10ge_dca, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_dca, "Enable DCA if possible");
#define MYRI10GE_FW_OFFSET 1024*1024
#define MYRI10GE_HIGHPART_TO_U32(X) \
(sizeof (X) == 8) ? ((u32)((u64)(X) >> 32)) : (0)
#define MYRI10GE_LOWPART_TO_U32(X) ((u32)(X))
#define myri10ge_pio_copy(to,from,size) __iowrite64_copy(to,from,size/8)
static void myri10ge_set_multicast_list(struct net_device *dev);
static netdev_tx_t myri10ge_sw_tso(struct sk_buff *skb,
struct net_device *dev);
static inline void put_be32(__be32 val, __be32 __iomem * p)
{
__raw_writel((__force __u32) val, (__force void __iomem *)p);
}
static struct rtnl_link_stats64 *myri10ge_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *stats);
static void set_fw_name(struct myri10ge_priv *mgp, char *name, bool allocated)
{
if (mgp->fw_name_allocated)
kfree(mgp->fw_name);
mgp->fw_name = name;
mgp->fw_name_allocated = allocated;
}
static int
myri10ge_send_cmd(struct myri10ge_priv *mgp, u32 cmd,
struct myri10ge_cmd *data, int atomic)
{
struct mcp_cmd *buf;
char buf_bytes[sizeof(*buf) + 8];
struct mcp_cmd_response *response = mgp->cmd;
char __iomem *cmd_addr = mgp->sram + MXGEFW_ETH_CMD;
u32 dma_low, dma_high, result, value;
int sleep_total = 0;
/* ensure buf is aligned to 8 bytes */
buf = (struct mcp_cmd *)ALIGN((unsigned long)buf_bytes, 8);
buf->data0 = htonl(data->data0);
buf->data1 = htonl(data->data1);
buf->data2 = htonl(data->data2);
buf->cmd = htonl(cmd);
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf->response_addr.low = htonl(dma_low);
buf->response_addr.high = htonl(dma_high);
response->result = htonl(MYRI10GE_NO_RESPONSE_RESULT);
mb();
myri10ge_pio_copy(cmd_addr, buf, sizeof(*buf));
/* wait up to 15ms. Longest command is the DMA benchmark,
* which is capped at 5ms, but runs from a timeout handler
* that runs every 7.8ms. So a 15ms timeout leaves us with
* a 2.2ms margin
*/
if (atomic) {
/* if atomic is set, do not sleep,
* and try to get the completion quickly
* (1ms will be enough for those commands) */
for (sleep_total = 0;
sleep_total < 1000 &&
response->result == htonl(MYRI10GE_NO_RESPONSE_RESULT);
sleep_total += 10) {
udelay(10);
mb();
}
} else {
/* use msleep for most command */
for (sleep_total = 0;
sleep_total < 15 &&
response->result == htonl(MYRI10GE_NO_RESPONSE_RESULT);
sleep_total++)
msleep(1);
}
result = ntohl(response->result);
value = ntohl(response->data);
if (result != MYRI10GE_NO_RESPONSE_RESULT) {
if (result == 0) {
data->data0 = value;
return 0;
} else if (result == MXGEFW_CMD_UNKNOWN) {
return -ENOSYS;
} else if (result == MXGEFW_CMD_ERROR_UNALIGNED) {
return -E2BIG;
} else if (result == MXGEFW_CMD_ERROR_RANGE &&
cmd == MXGEFW_CMD_ENABLE_RSS_QUEUES &&
(data->
data1 & MXGEFW_SLICE_ENABLE_MULTIPLE_TX_QUEUES) !=
0) {
return -ERANGE;
} else {
dev_err(&mgp->pdev->dev,
"command %d failed, result = %d\n",
cmd, result);
return -ENXIO;
}
}
dev_err(&mgp->pdev->dev, "command %d timed out, result = %d\n",
cmd, result);
return -EAGAIN;
}
/*
* The eeprom strings on the lanaiX have the format
* SN=x\0
* MAC=x:x:x:x:x:x\0
* PT:ddd mmm xx xx:xx:xx xx\0
* PV:ddd mmm xx xx:xx:xx xx\0
*/
static int myri10ge_read_mac_addr(struct myri10ge_priv *mgp)
{
char *ptr, *limit;
int i;
ptr = mgp->eeprom_strings;
limit = mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE;
while (*ptr != '\0' && ptr < limit) {
if (memcmp(ptr, "MAC=", 4) == 0) {
ptr += 4;
mgp->mac_addr_string = ptr;
for (i = 0; i < 6; i++) {
if ((ptr + 2) > limit)
goto abort;
mgp->mac_addr[i] =
simple_strtoul(ptr, &ptr, 16);
ptr += 1;
}
}
if (memcmp(ptr, "PC=", 3) == 0) {
ptr += 3;
mgp->product_code_string = ptr;
}
if (memcmp((const void *)ptr, "SN=", 3) == 0) {
ptr += 3;
mgp->serial_number = simple_strtoul(ptr, &ptr, 10);
}
while (ptr < limit && *ptr++) ;
}
return 0;
abort:
dev_err(&mgp->pdev->dev, "failed to parse eeprom_strings\n");
return -ENXIO;
}
/*
* Enable or disable periodic RDMAs from the host to make certain
* chipsets resend dropped PCIe messages
*/
static void myri10ge_dummy_rdma(struct myri10ge_priv *mgp, int enable)
{
char __iomem *submit;
__be32 buf[16] __attribute__ ((__aligned__(8)));
u32 dma_low, dma_high;
int i;
/* clear confirmation addr */
mgp->cmd->data = 0;
mb();
/* send a rdma command to the PCIe engine, and wait for the
* response in the confirmation address. The firmware should
* write a -1 there to indicate it is alive and well
*/
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf[0] = htonl(dma_high); /* confirm addr MSW */
buf[1] = htonl(dma_low); /* confirm addr LSW */
buf[2] = MYRI10GE_NO_CONFIRM_DATA; /* confirm data */
buf[3] = htonl(dma_high); /* dummy addr MSW */
buf[4] = htonl(dma_low); /* dummy addr LSW */
buf[5] = htonl(enable); /* enable? */
submit = mgp->sram + MXGEFW_BOOT_DUMMY_RDMA;
myri10ge_pio_copy(submit, &buf, sizeof(buf));
for (i = 0; mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20; i++)
msleep(1);
if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA)
dev_err(&mgp->pdev->dev, "dummy rdma %s failed\n",
(enable ? "enable" : "disable"));
}
static int
myri10ge_validate_firmware(struct myri10ge_priv *mgp,
struct mcp_gen_header *hdr)
{
struct device *dev = &mgp->pdev->dev;
/* check firmware type */
if (ntohl(hdr->mcp_type) != MCP_TYPE_ETH) {
dev_err(dev, "Bad firmware type: 0x%x\n", ntohl(hdr->mcp_type));
return -EINVAL;
}
/* save firmware version for ethtool */
strncpy(mgp->fw_version, hdr->version, sizeof(mgp->fw_version));
sscanf(mgp->fw_version, "%d.%d.%d", &mgp->fw_ver_major,
&mgp->fw_ver_minor, &mgp->fw_ver_tiny);
if (!(mgp->fw_ver_major == MXGEFW_VERSION_MAJOR &&
mgp->fw_ver_minor == MXGEFW_VERSION_MINOR)) {
dev_err(dev, "Found firmware version %s\n", mgp->fw_version);
dev_err(dev, "Driver needs %d.%d\n", MXGEFW_VERSION_MAJOR,
MXGEFW_VERSION_MINOR);
return -EINVAL;
}
return 0;
}
static int myri10ge_load_hotplug_firmware(struct myri10ge_priv *mgp, u32 * size)
{
unsigned crc, reread_crc;
const struct firmware *fw;
struct device *dev = &mgp->pdev->dev;
unsigned char *fw_readback;
struct mcp_gen_header *hdr;
size_t hdr_offset;
int status;
unsigned i;
if ((status = request_firmware(&fw, mgp->fw_name, dev)) < 0) {
dev_err(dev, "Unable to load %s firmware image via hotplug\n",
mgp->fw_name);
status = -EINVAL;
goto abort_with_nothing;
}
/* check size */
if (fw->size >= mgp->sram_size - MYRI10GE_FW_OFFSET ||
fw->size < MCP_HEADER_PTR_OFFSET + 4) {
dev_err(dev, "Firmware size invalid:%d\n", (int)fw->size);
status = -EINVAL;
goto abort_with_fw;
}
/* check id */
hdr_offset = ntohl(*(__be32 *) (fw->data + MCP_HEADER_PTR_OFFSET));
if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > fw->size) {
dev_err(dev, "Bad firmware file\n");
status = -EINVAL;
goto abort_with_fw;
}
hdr = (void *)(fw->data + hdr_offset);
status = myri10ge_validate_firmware(mgp, hdr);
if (status != 0)
goto abort_with_fw;
crc = crc32(~0, fw->data, fw->size);
for (i = 0; i < fw->size; i += 256) {
myri10ge_pio_copy(mgp->sram + MYRI10GE_FW_OFFSET + i,
fw->data + i,
min(256U, (unsigned)(fw->size - i)));
mb();
readb(mgp->sram);
}
fw_readback = vmalloc(fw->size);
if (!fw_readback) {
status = -ENOMEM;
goto abort_with_fw;
}
/* corruption checking is good for parity recovery and buggy chipset */
memcpy_fromio(fw_readback, mgp->sram + MYRI10GE_FW_OFFSET, fw->size);
reread_crc = crc32(~0, fw_readback, fw->size);
vfree(fw_readback);
if (crc != reread_crc) {
dev_err(dev, "CRC failed(fw-len=%u), got 0x%x (expect 0x%x)\n",
(unsigned)fw->size, reread_crc, crc);
status = -EIO;
goto abort_with_fw;
}
*size = (u32) fw->size;
abort_with_fw:
release_firmware(fw);
abort_with_nothing:
return status;
}
static int myri10ge_adopt_running_firmware(struct myri10ge_priv *mgp)
{
struct mcp_gen_header *hdr;
struct device *dev = &mgp->pdev->dev;
const size_t bytes = sizeof(struct mcp_gen_header);
size_t hdr_offset;
int status;
/* find running firmware header */
hdr_offset = swab32(readl(mgp->sram + MCP_HEADER_PTR_OFFSET));
if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > mgp->sram_size) {
dev_err(dev, "Running firmware has bad header offset (%d)\n",
(int)hdr_offset);
return -EIO;
}
/* copy header of running firmware from SRAM to host memory to
* validate firmware */
hdr = kmalloc(bytes, GFP_KERNEL);
if (hdr == NULL) {
dev_err(dev, "could not malloc firmware hdr\n");
return -ENOMEM;
}
memcpy_fromio(hdr, mgp->sram + hdr_offset, bytes);
status = myri10ge_validate_firmware(mgp, hdr);
kfree(hdr);
/* check to see if adopted firmware has bug where adopting
* it will cause broadcasts to be filtered unless the NIC
* is kept in ALLMULTI mode */
if (mgp->fw_ver_major == 1 && mgp->fw_ver_minor == 4 &&
mgp->fw_ver_tiny >= 4 && mgp->fw_ver_tiny <= 11) {
mgp->adopted_rx_filter_bug = 1;
dev_warn(dev, "Adopting fw %d.%d.%d: "
"working around rx filter bug\n",
mgp->fw_ver_major, mgp->fw_ver_minor,
mgp->fw_ver_tiny);
}
return status;
}
static int myri10ge_get_firmware_capabilities(struct myri10ge_priv *mgp)
{
struct myri10ge_cmd cmd;
int status;
/* probe for IPv6 TSO support */
mgp->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_MAX_TSO6_HDR_SIZE,
&cmd, 0);
if (status == 0) {
mgp->max_tso6 = cmd.data0;
mgp->features |= NETIF_F_TSO6;
}
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev,
"failed MXGEFW_CMD_GET_RX_RING_SIZE\n");
return -ENXIO;
}
mgp->max_intr_slots = 2 * (cmd.data0 / sizeof(struct mcp_dma_addr));
return 0;
}
static int myri10ge_load_firmware(struct myri10ge_priv *mgp, int adopt)
{
char __iomem *submit;
__be32 buf[16] __attribute__ ((__aligned__(8)));
u32 dma_low, dma_high, size;
int status, i;
size = 0;
status = myri10ge_load_hotplug_firmware(mgp, &size);
if (status) {
if (!adopt)
return status;
dev_warn(&mgp->pdev->dev, "hotplug firmware loading failed\n");
/* Do not attempt to adopt firmware if there
* was a bad crc */
if (status == -EIO)
return status;
status = myri10ge_adopt_running_firmware(mgp);
if (status != 0) {
dev_err(&mgp->pdev->dev,
"failed to adopt running firmware\n");
return status;
}
dev_info(&mgp->pdev->dev,
"Successfully adopted running firmware\n");
if (mgp->tx_boundary == 4096) {
dev_warn(&mgp->pdev->dev,
"Using firmware currently running on NIC"
". For optimal\n");
dev_warn(&mgp->pdev->dev,
"performance consider loading optimized "
"firmware\n");
dev_warn(&mgp->pdev->dev, "via hotplug\n");
}
set_fw_name(mgp, "adopted", false);
mgp->tx_boundary = 2048;
myri10ge_dummy_rdma(mgp, 1);
status = myri10ge_get_firmware_capabilities(mgp);
return status;
}
/* clear confirmation addr */
mgp->cmd->data = 0;
mb();
/* send a reload command to the bootstrap MCP, and wait for the
* response in the confirmation address. The firmware should
* write a -1 there to indicate it is alive and well
*/
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf[0] = htonl(dma_high); /* confirm addr MSW */
buf[1] = htonl(dma_low); /* confirm addr LSW */
buf[2] = MYRI10GE_NO_CONFIRM_DATA; /* confirm data */
/* FIX: All newest firmware should un-protect the bottom of
* the sram before handoff. However, the very first interfaces
* do not. Therefore the handoff copy must skip the first 8 bytes
*/
buf[3] = htonl(MYRI10GE_FW_OFFSET + 8); /* where the code starts */
buf[4] = htonl(size - 8); /* length of code */
buf[5] = htonl(8); /* where to copy to */
buf[6] = htonl(0); /* where to jump to */
submit = mgp->sram + MXGEFW_BOOT_HANDOFF;
myri10ge_pio_copy(submit, &buf, sizeof(buf));
mb();
msleep(1);
mb();
i = 0;
while (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 9) {
msleep(1 << i);
i++;
}
if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA) {
dev_err(&mgp->pdev->dev, "handoff failed\n");
return -ENXIO;
}
myri10ge_dummy_rdma(mgp, 1);
status = myri10ge_get_firmware_capabilities(mgp);
return status;
}
static int myri10ge_update_mac_address(struct myri10ge_priv *mgp, u8 * addr)
{
struct myri10ge_cmd cmd;
int status;
cmd.data0 = ((addr[0] << 24) | (addr[1] << 16)
| (addr[2] << 8) | addr[3]);
cmd.data1 = ((addr[4] << 8) | (addr[5]));
status = myri10ge_send_cmd(mgp, MXGEFW_SET_MAC_ADDRESS, &cmd, 0);
return status;
}
static int myri10ge_change_pause(struct myri10ge_priv *mgp, int pause)
{
struct myri10ge_cmd cmd;
int status, ctl;
ctl = pause ? MXGEFW_ENABLE_FLOW_CONTROL : MXGEFW_DISABLE_FLOW_CONTROL;
status = myri10ge_send_cmd(mgp, ctl, &cmd, 0);
if (status) {
netdev_err(mgp->dev, "Failed to set flow control mode\n");
return status;
}
mgp->pause = pause;
return 0;
}
static void
myri10ge_change_promisc(struct myri10ge_priv *mgp, int promisc, int atomic)
{
struct myri10ge_cmd cmd;
int status, ctl;
ctl = promisc ? MXGEFW_ENABLE_PROMISC : MXGEFW_DISABLE_PROMISC;
status = myri10ge_send_cmd(mgp, ctl, &cmd, atomic);
if (status)
netdev_err(mgp->dev, "Failed to set promisc mode\n");
}
static int myri10ge_dma_test(struct myri10ge_priv *mgp, int test_type)
{
struct myri10ge_cmd cmd;
int status;
u32 len;
struct page *dmatest_page;
dma_addr_t dmatest_bus;
char *test = " ";
dmatest_page = alloc_page(GFP_KERNEL);
if (!dmatest_page)
return -ENOMEM;
dmatest_bus = pci_map_page(mgp->pdev, dmatest_page, 0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
/* Run a small DMA test.
* The magic multipliers to the length tell the firmware
* to do DMA read, write, or read+write tests. The
* results are returned in cmd.data0. The upper 16
* bits or the return is the number of transfers completed.
* The lower 16 bits is the time in 0.5us ticks that the
* transfers took to complete.
*/
len = mgp->tx_boundary;
cmd.data0 = MYRI10GE_LOWPART_TO_U32(dmatest_bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(dmatest_bus);
cmd.data2 = len * 0x10000;
status = myri10ge_send_cmd(mgp, test_type, &cmd, 0);
if (status != 0) {
test = "read";
goto abort;
}
mgp->read_dma = ((cmd.data0 >> 16) * len * 2) / (cmd.data0 & 0xffff);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(dmatest_bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(dmatest_bus);
cmd.data2 = len * 0x1;
status = myri10ge_send_cmd(mgp, test_type, &cmd, 0);
if (status != 0) {
test = "write";
goto abort;
}
mgp->write_dma = ((cmd.data0 >> 16) * len * 2) / (cmd.data0 & 0xffff);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(dmatest_bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(dmatest_bus);
cmd.data2 = len * 0x10001;
status = myri10ge_send_cmd(mgp, test_type, &cmd, 0);
if (status != 0) {
test = "read/write";
goto abort;
}
mgp->read_write_dma = ((cmd.data0 >> 16) * len * 2 * 2) /
(cmd.data0 & 0xffff);
abort:
pci_unmap_page(mgp->pdev, dmatest_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
put_page(dmatest_page);
if (status != 0 && test_type != MXGEFW_CMD_UNALIGNED_TEST)
dev_warn(&mgp->pdev->dev, "DMA %s benchmark failed: %d\n",
test, status);
return status;
}
static int myri10ge_reset(struct myri10ge_priv *mgp)
{
struct myri10ge_cmd cmd;
struct myri10ge_slice_state *ss;
int i, status;
size_t bytes;
#ifdef CONFIG_MYRI10GE_DCA
unsigned long dca_tag_off;
#endif
/* try to send a reset command to the card to see if it
* is alive */
memset(&cmd, 0, sizeof(cmd));
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_RESET, &cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed reset\n");
return -ENXIO;
}
(void)myri10ge_dma_test(mgp, MXGEFW_DMA_TEST);
/*
* Use non-ndis mcp_slot (eg, 4 bytes total,
* no toeplitz hash value returned. Older firmware will
* not understand this command, but will use the correct
* sized mcp_slot, so we ignore error returns
*/
cmd.data0 = MXGEFW_RSS_MCP_SLOT_TYPE_MIN;
(void)myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_RSS_MCP_SLOT_TYPE, &cmd, 0);
/* Now exchange information about interrupts */
bytes = mgp->max_intr_slots * sizeof(*mgp->ss[0].rx_done.entry);
cmd.data0 = (u32) bytes;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd, 0);
/*
* Even though we already know how many slices are supported
* via myri10ge_probe_slices() MXGEFW_CMD_GET_MAX_RSS_QUEUES
* has magic side effects, and must be called after a reset.
* It must be called prior to calling any RSS related cmds,
* including assigning an interrupt queue for anything but
* slice 0. It must also be called *after*
* MXGEFW_CMD_SET_INTRQ_SIZE, since the intrq size is used by
* the firmware to compute offsets.
*/
if (mgp->num_slices > 1) {
/* ask the maximum number of slices it supports */
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_MAX_RSS_QUEUES,
&cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev,
"failed to get number of slices\n");
}
/*
* MXGEFW_CMD_ENABLE_RSS_QUEUES must be called prior
* to setting up the interrupt queue DMA
*/
cmd.data0 = mgp->num_slices;
cmd.data1 = MXGEFW_SLICE_INTR_MODE_ONE_PER_SLICE;
if (mgp->dev->real_num_tx_queues > 1)
cmd.data1 |= MXGEFW_SLICE_ENABLE_MULTIPLE_TX_QUEUES;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ENABLE_RSS_QUEUES,
&cmd, 0);
/* Firmware older than 1.4.32 only supports multiple
* RX queues, so if we get an error, first retry using a
* single TX queue before giving up */
if (status != 0 && mgp->dev->real_num_tx_queues > 1) {
netif_set_real_num_tx_queues(mgp->dev, 1);
cmd.data0 = mgp->num_slices;
cmd.data1 = MXGEFW_SLICE_INTR_MODE_ONE_PER_SLICE;
status = myri10ge_send_cmd(mgp,
MXGEFW_CMD_ENABLE_RSS_QUEUES,
&cmd, 0);
}
if (status != 0) {
dev_err(&mgp->pdev->dev,
"failed to set number of slices\n");
return status;
}
}
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
cmd.data0 = MYRI10GE_LOWPART_TO_U32(ss->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(ss->rx_done.bus);
cmd.data2 = i;
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_DMA,
&cmd, 0);
}
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_IRQ_ACK_OFFSET, &cmd, 0);
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
ss->irq_claim =
(__iomem __be32 *) (mgp->sram + cmd.data0 + 8 * i);
}
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET,
&cmd, 0);
mgp->irq_deassert = (__iomem __be32 *) (mgp->sram + cmd.data0);
status |= myri10ge_send_cmd
(mgp, MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, &cmd, 0);
mgp->intr_coal_delay_ptr = (__iomem __be32 *) (mgp->sram + cmd.data0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed set interrupt parameters\n");
return status;
}
put_be32(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
#ifdef CONFIG_MYRI10GE_DCA
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_DCA_OFFSET, &cmd, 0);
dca_tag_off = cmd.data0;
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
if (status == 0) {
ss->dca_tag = (__iomem __be32 *)
(mgp->sram + dca_tag_off + 4 * i);
} else {
ss->dca_tag = NULL;
}
}
#endif /* CONFIG_MYRI10GE_DCA */
/* reset mcp/driver shared state back to 0 */
mgp->link_changes = 0;
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
memset(ss->rx_done.entry, 0, bytes);
ss->tx.req = 0;
ss->tx.done = 0;
ss->tx.pkt_start = 0;
ss->tx.pkt_done = 0;
ss->rx_big.cnt = 0;
ss->rx_small.cnt = 0;
ss->rx_done.idx = 0;
ss->rx_done.cnt = 0;
ss->tx.wake_queue = 0;
ss->tx.stop_queue = 0;
}
status = myri10ge_update_mac_address(mgp, mgp->dev->dev_addr);
myri10ge_change_pause(mgp, mgp->pause);
myri10ge_set_multicast_list(mgp->dev);
return status;
}
#ifdef CONFIG_MYRI10GE_DCA
static int myri10ge_toggle_relaxed(struct pci_dev *pdev, int on)
{
int ret, cap, err;
u16 ctl;
cap = pci_pcie_cap(pdev);
if (!cap)
return 0;
err = pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl);
if (err)
return 0;
ret = (ctl & PCI_EXP_DEVCTL_RELAX_EN) >> 4;
if (ret != on) {
ctl &= ~PCI_EXP_DEVCTL_RELAX_EN;
ctl |= (on << 4);
pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl);
}
return ret;
}
static void
myri10ge_write_dca(struct myri10ge_slice_state *ss, int cpu, int tag)
{
ss->cached_dca_tag = tag;
put_be32(htonl(tag), ss->dca_tag);
}
static inline void myri10ge_update_dca(struct myri10ge_slice_state *ss)
{
int cpu = get_cpu();
int tag;
if (cpu != ss->cpu) {
tag = dca3_get_tag(&ss->mgp->pdev->dev, cpu);
if (ss->cached_dca_tag != tag)
myri10ge_write_dca(ss, cpu, tag);
ss->cpu = cpu;
}
put_cpu();
}
static void myri10ge_setup_dca(struct myri10ge_priv *mgp)
{
int err, i;
struct pci_dev *pdev = mgp->pdev;
if (mgp->ss[0].dca_tag == NULL || mgp->dca_enabled)
return;
if (!myri10ge_dca) {
dev_err(&pdev->dev, "dca disabled by administrator\n");
return;
}
err = dca_add_requester(&pdev->dev);
if (err) {
if (err != -ENODEV)
dev_err(&pdev->dev,
"dca_add_requester() failed, err=%d\n", err);
return;
}
mgp->relaxed_order = myri10ge_toggle_relaxed(pdev, 0);
mgp->dca_enabled = 1;
for (i = 0; i < mgp->num_slices; i++) {
mgp->ss[i].cpu = -1;
mgp->ss[i].cached_dca_tag = -1;
myri10ge_update_dca(&mgp->ss[i]);
}
}
static void myri10ge_teardown_dca(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
if (!mgp->dca_enabled)
return;
mgp->dca_enabled = 0;
if (mgp->relaxed_order)
myri10ge_toggle_relaxed(pdev, 1);
dca_remove_requester(&pdev->dev);
}
static int myri10ge_notify_dca_device(struct device *dev, void *data)
{
struct myri10ge_priv *mgp;
unsigned long event;
mgp = dev_get_drvdata(dev);
event = *(unsigned long *)data;
if (event == DCA_PROVIDER_ADD)
myri10ge_setup_dca(mgp);
else if (event == DCA_PROVIDER_REMOVE)
myri10ge_teardown_dca(mgp);
return 0;
}
#endif /* CONFIG_MYRI10GE_DCA */
static inline void
myri10ge_submit_8rx(struct mcp_kreq_ether_recv __iomem * dst,
struct mcp_kreq_ether_recv *src)
{
__be32 low;
low = src->addr_low;
src->addr_low = htonl(DMA_BIT_MASK(32));
myri10ge_pio_copy(dst, src, 4 * sizeof(*src));
mb();
myri10ge_pio_copy(dst + 4, src + 4, 4 * sizeof(*src));
mb();
src->addr_low = low;
put_be32(low, &dst->addr_low);
mb();
}
static inline void myri10ge_vlan_ip_csum(struct sk_buff *skb, __wsum hw_csum)
{
struct vlan_hdr *vh = (struct vlan_hdr *)(skb->data);
if ((skb->protocol == htons(ETH_P_8021Q)) &&
(vh->h_vlan_encapsulated_proto == htons(ETH_P_IP) ||
vh->h_vlan_encapsulated_proto == htons(ETH_P_IPV6))) {
skb->csum = hw_csum;
skb->ip_summed = CHECKSUM_COMPLETE;
}
}
static inline void
myri10ge_rx_skb_build(struct sk_buff *skb, u8 * va,
struct skb_frag_struct *rx_frags, int len, int hlen)
{
struct skb_frag_struct *skb_frags;
skb->len = skb->data_len = len;
/* attach the page(s) */
skb_frags = skb_shinfo(skb)->frags;
while (len > 0) {
memcpy(skb_frags, rx_frags, sizeof(*skb_frags));
len -= skb_frag_size(rx_frags);
skb_frags++;
rx_frags++;
skb_shinfo(skb)->nr_frags++;
}
/* pskb_may_pull is not available in irq context, but
* skb_pull() (for ether_pad and eth_type_trans()) requires
* the beginning of the packet in skb_headlen(), move it
* manually */
skb_copy_to_linear_data(skb, va, hlen);
skb_shinfo(skb)->frags[0].page_offset += hlen;
skb_frag_size_sub(&skb_shinfo(skb)->frags[0], hlen);
skb->data_len -= hlen;
skb->tail += hlen;
skb_pull(skb, MXGEFW_PAD);
}
static void
myri10ge_alloc_rx_pages(struct myri10ge_priv *mgp, struct myri10ge_rx_buf *rx,
int bytes, int watchdog)
{
struct page *page;
int idx;
#if MYRI10GE_ALLOC_SIZE > 4096
int end_offset;
#endif
if (unlikely(rx->watchdog_needed && !watchdog))
return;
/* try to refill entire ring */
while (rx->fill_cnt != (rx->cnt + rx->mask + 1)) {
idx = rx->fill_cnt & rx->mask;
if (rx->page_offset + bytes <= MYRI10GE_ALLOC_SIZE) {
/* we can use part of previous page */
get_page(rx->page);
} else {
/* we need a new page */
page =
alloc_pages(GFP_ATOMIC | __GFP_COMP,
MYRI10GE_ALLOC_ORDER);
if (unlikely(page == NULL)) {
if (rx->fill_cnt - rx->cnt < 16)
rx->watchdog_needed = 1;
return;
}
rx->page = page;
rx->page_offset = 0;
rx->bus = pci_map_page(mgp->pdev, page, 0,
MYRI10GE_ALLOC_SIZE,
PCI_DMA_FROMDEVICE);
}
rx->info[idx].page = rx->page;
rx->info[idx].page_offset = rx->page_offset;
/* note that this is the address of the start of the
* page */
dma_unmap_addr_set(&rx->info[idx], bus, rx->bus);
rx->shadow[idx].addr_low =
htonl(MYRI10GE_LOWPART_TO_U32(rx->bus) + rx->page_offset);
rx->shadow[idx].addr_high =
htonl(MYRI10GE_HIGHPART_TO_U32(rx->bus));
/* start next packet on a cacheline boundary */
rx->page_offset += SKB_DATA_ALIGN(bytes);
#if MYRI10GE_ALLOC_SIZE > 4096
/* don't cross a 4KB boundary */
end_offset = rx->page_offset + bytes - 1;
if ((unsigned)(rx->page_offset ^ end_offset) > 4095)
rx->page_offset = end_offset & ~4095;
#endif
rx->fill_cnt++;
/* copy 8 descriptors to the firmware at a time */
if ((idx & 7) == 7) {
myri10ge_submit_8rx(&rx->lanai[idx - 7],
&rx->shadow[idx - 7]);
}
}
}
static inline void
myri10ge_unmap_rx_page(struct pci_dev *pdev,
struct myri10ge_rx_buffer_state *info, int bytes)
{
/* unmap the recvd page if we're the only or last user of it */
if (bytes >= MYRI10GE_ALLOC_SIZE / 2 ||
(info->page_offset + 2 * bytes) > MYRI10GE_ALLOC_SIZE) {
pci_unmap_page(pdev, (dma_unmap_addr(info, bus)
& ~(MYRI10GE_ALLOC_SIZE - 1)),
MYRI10GE_ALLOC_SIZE, PCI_DMA_FROMDEVICE);
}
}
#define MYRI10GE_HLEN 64 /* The number of bytes to copy from a
* page into an skb */
static inline int
myri10ge_rx_done(struct myri10ge_slice_state *ss, int len, __wsum csum,
bool lro_enabled)
{
struct myri10ge_priv *mgp = ss->mgp;
struct sk_buff *skb;
struct skb_frag_struct rx_frags[MYRI10GE_MAX_FRAGS_PER_FRAME];
struct myri10ge_rx_buf *rx;
int i, idx, hlen, remainder, bytes;
struct pci_dev *pdev = mgp->pdev;
struct net_device *dev = mgp->dev;
u8 *va;
if (len <= mgp->small_bytes) {
rx = &ss->rx_small;
bytes = mgp->small_bytes;
} else {
rx = &ss->rx_big;
bytes = mgp->big_bytes;
}
len += MXGEFW_PAD;
idx = rx->cnt & rx->mask;
va = page_address(rx->info[idx].page) + rx->info[idx].page_offset;
prefetch(va);
/* Fill skb_frag_struct(s) with data from our receive */
for (i = 0, remainder = len; remainder > 0; i++) {
myri10ge_unmap_rx_page(pdev, &rx->info[idx], bytes);
__skb_frag_set_page(&rx_frags[i], rx->info[idx].page);
rx_frags[i].page_offset = rx->info[idx].page_offset;
if (remainder < MYRI10GE_ALLOC_SIZE)
skb_frag_size_set(&rx_frags[i], remainder);
else
skb_frag_size_set(&rx_frags[i], MYRI10GE_ALLOC_SIZE);
rx->cnt++;
idx = rx->cnt & rx->mask;
remainder -= MYRI10GE_ALLOC_SIZE;
}
if (lro_enabled) {
rx_frags[0].page_offset += MXGEFW_PAD;
skb_frag_size_sub(&rx_frags[0], MXGEFW_PAD);
len -= MXGEFW_PAD;
lro_receive_frags(&ss->rx_done.lro_mgr, rx_frags,
/* opaque, will come back in get_frag_header */
len, len,
(void *)(__force unsigned long)csum, csum);
return 1;
}
hlen = MYRI10GE_HLEN > len ? len : MYRI10GE_HLEN;
/* allocate an skb to attach the page(s) to. This is done
* after trying LRO, so as to avoid skb allocation overheads */
skb = netdev_alloc_skb(dev, MYRI10GE_HLEN + 16);
if (unlikely(skb == NULL)) {
ss->stats.rx_dropped++;
do {
i--;
__skb_frag_unref(&rx_frags[i]);
} while (i != 0);
return 0;
}
/* Attach the pages to the skb, and trim off any padding */
myri10ge_rx_skb_build(skb, va, rx_frags, len, hlen);
if (skb_frag_size(&skb_shinfo(skb)->frags[0]) <= 0) {
skb_frag_unref(skb, 0);
skb_shinfo(skb)->nr_frags = 0;
} else {
skb->truesize += bytes * skb_shinfo(skb)->nr_frags;
}
skb->protocol = eth_type_trans(skb, dev);
skb_record_rx_queue(skb, ss - &mgp->ss[0]);
if (dev->features & NETIF_F_RXCSUM) {
if ((skb->protocol == htons(ETH_P_IP)) ||
(skb->protocol == htons(ETH_P_IPV6))) {
skb->csum = csum;
skb->ip_summed = CHECKSUM_COMPLETE;
} else
myri10ge_vlan_ip_csum(skb, csum);
}
netif_receive_skb(skb);
return 1;
}
static inline void
myri10ge_tx_done(struct myri10ge_slice_state *ss, int mcp_index)
{
struct pci_dev *pdev = ss->mgp->pdev;
struct myri10ge_tx_buf *tx = &ss->tx;
struct netdev_queue *dev_queue;
struct sk_buff *skb;
int idx, len;
while (tx->pkt_done != mcp_index) {
idx = tx->done & tx->mask;
skb = tx->info[idx].skb;
/* Mark as free */
tx->info[idx].skb = NULL;
if (tx->info[idx].last) {
tx->pkt_done++;
tx->info[idx].last = 0;
}
tx->done++;
len = dma_unmap_len(&tx->info[idx], len);
dma_unmap_len_set(&tx->info[idx], len, 0);
if (skb) {
ss->stats.tx_bytes += skb->len;
ss->stats.tx_packets++;
dev_kfree_skb_irq(skb);
if (len)
pci_unmap_single(pdev,
dma_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
} else {
if (len)
pci_unmap_page(pdev,
dma_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
}
}
dev_queue = netdev_get_tx_queue(ss->dev, ss - ss->mgp->ss);
/*
* Make a minimal effort to prevent the NIC from polling an
* idle tx queue. If we can't get the lock we leave the queue
* active. In this case, either a thread was about to start
* using the queue anyway, or we lost a race and the NIC will
* waste some of its resources polling an inactive queue for a
* while.
*/
if ((ss->mgp->dev->real_num_tx_queues > 1) &&
__netif_tx_trylock(dev_queue)) {
if (tx->req == tx->done) {
tx->queue_active = 0;
put_be32(htonl(1), tx->send_stop);
mb();
mmiowb();
}
__netif_tx_unlock(dev_queue);
}
/* start the queue if we've stopped it */
if (netif_tx_queue_stopped(dev_queue) &&
tx->req - tx->done < (tx->mask >> 1) &&
ss->mgp->running == MYRI10GE_ETH_RUNNING) {
tx->wake_queue++;
netif_tx_wake_queue(dev_queue);
}
}
static inline int
myri10ge_clean_rx_done(struct myri10ge_slice_state *ss, int budget)
{
struct myri10ge_rx_done *rx_done = &ss->rx_done;
struct myri10ge_priv *mgp = ss->mgp;
unsigned long rx_bytes = 0;
unsigned long rx_packets = 0;
unsigned long rx_ok;
int idx = rx_done->idx;
int cnt = rx_done->cnt;
int work_done = 0;
u16 length;
__wsum checksum;
/*
* Prevent compiler from generating more than one ->features memory
* access to avoid theoretical race condition with functions that
* change NETIF_F_LRO flag at runtime.
*/
bool lro_enabled = ACCESS_ONCE(mgp->dev->features) & NETIF_F_LRO;
while (rx_done->entry[idx].length != 0 && work_done < budget) {
length = ntohs(rx_done->entry[idx].length);
rx_done->entry[idx].length = 0;
checksum = csum_unfold(rx_done->entry[idx].checksum);
rx_ok = myri10ge_rx_done(ss, length, checksum, lro_enabled);
rx_packets += rx_ok;
rx_bytes += rx_ok * (unsigned long)length;
cnt++;
idx = cnt & (mgp->max_intr_slots - 1);
work_done++;
}
rx_done->idx = idx;
rx_done->cnt = cnt;
ss->stats.rx_packets += rx_packets;
ss->stats.rx_bytes += rx_bytes;
if (lro_enabled)
lro_flush_all(&rx_done->lro_mgr);
/* restock receive rings if needed */
if (ss->rx_small.fill_cnt - ss->rx_small.cnt < myri10ge_fill_thresh)
myri10ge_alloc_rx_pages(mgp, &ss->rx_small,
mgp->small_bytes + MXGEFW_PAD, 0);
if (ss->rx_big.fill_cnt - ss->rx_big.cnt < myri10ge_fill_thresh)
myri10ge_alloc_rx_pages(mgp, &ss->rx_big, mgp->big_bytes, 0);
return work_done;
}
static inline void myri10ge_check_statblock(struct myri10ge_priv *mgp)
{
struct mcp_irq_data *stats = mgp->ss[0].fw_stats;
if (unlikely(stats->stats_updated)) {
unsigned link_up = ntohl(stats->link_up);
if (mgp->link_state != link_up) {
mgp->link_state = link_up;
if (mgp->link_state == MXGEFW_LINK_UP) {
netif_info(mgp, link, mgp->dev, "link up\n");
netif_carrier_on(mgp->dev);
mgp->link_changes++;
} else {
netif_info(mgp, link, mgp->dev, "link %s\n",
(link_up == MXGEFW_LINK_MYRINET ?
"mismatch (Myrinet detected)" :
"down"));
netif_carrier_off(mgp->dev);
mgp->link_changes++;
}
}
if (mgp->rdma_tags_available !=
ntohl(stats->rdma_tags_available)) {
mgp->rdma_tags_available =
ntohl(stats->rdma_tags_available);
netdev_warn(mgp->dev, "RDMA timed out! %d tags left\n",
mgp->rdma_tags_available);
}
mgp->down_cnt += stats->link_down;
if (stats->link_down)
wake_up(&mgp->down_wq);
}
}
static int myri10ge_poll(struct napi_struct *napi, int budget)
{
struct myri10ge_slice_state *ss =
container_of(napi, struct myri10ge_slice_state, napi);
int work_done;
#ifdef CONFIG_MYRI10GE_DCA
if (ss->mgp->dca_enabled)
myri10ge_update_dca(ss);
#endif
/* process as many rx events as NAPI will allow */
work_done = myri10ge_clean_rx_done(ss, budget);
if (work_done < budget) {
napi_complete(napi);
put_be32(htonl(3), ss->irq_claim);
}
return work_done;
}
static irqreturn_t myri10ge_intr(int irq, void *arg)
{
struct myri10ge_slice_state *ss = arg;
struct myri10ge_priv *mgp = ss->mgp;
struct mcp_irq_data *stats = ss->fw_stats;
struct myri10ge_tx_buf *tx = &ss->tx;
u32 send_done_count;
int i;
/* an interrupt on a non-zero receive-only slice is implicitly
* valid since MSI-X irqs are not shared */
if ((mgp->dev->real_num_tx_queues == 1) && (ss != mgp->ss)) {
napi_schedule(&ss->napi);
return IRQ_HANDLED;
}
/* make sure it is our IRQ, and that the DMA has finished */
if (unlikely(!stats->valid))
return IRQ_NONE;
/* low bit indicates receives are present, so schedule
* napi poll handler */
if (stats->valid & 1)
napi_schedule(&ss->napi);
if (!mgp->msi_enabled && !mgp->msix_enabled) {
put_be32(0, mgp->irq_deassert);
if (!myri10ge_deassert_wait)
stats->valid = 0;
mb();
} else
stats->valid = 0;
/* Wait for IRQ line to go low, if using INTx */
i = 0;
while (1) {
i++;
/* check for transmit completes and receives */
send_done_count = ntohl(stats->send_done_count);
if (send_done_count != tx->pkt_done)
myri10ge_tx_done(ss, (int)send_done_count);
if (unlikely(i > myri10ge_max_irq_loops)) {
netdev_warn(mgp->dev, "irq stuck?\n");
stats->valid = 0;
schedule_work(&mgp->watchdog_work);
}
if (likely(stats->valid == 0))
break;
cpu_relax();
barrier();
}
/* Only slice 0 updates stats */
if (ss == mgp->ss)
myri10ge_check_statblock(mgp);
put_be32(htonl(3), ss->irq_claim + 1);
return IRQ_HANDLED;
}
static int
myri10ge_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
char *ptr;
int i;
cmd->autoneg = AUTONEG_DISABLE;
ethtool_cmd_speed_set(cmd, SPEED_10000);
cmd->duplex = DUPLEX_FULL;
/*
* parse the product code to deterimine the interface type
* (CX4, XFP, Quad Ribbon Fiber) by looking at the character
* after the 3rd dash in the driver's cached copy of the
* EEPROM's product code string.
*/
ptr = mgp->product_code_string;
if (ptr == NULL) {
netdev_err(netdev, "Missing product code\n");
return 0;
}
for (i = 0; i < 3; i++, ptr++) {
ptr = strchr(ptr, '-');
if (ptr == NULL) {
netdev_err(netdev, "Invalid product code %s\n",
mgp->product_code_string);
return 0;
}
}
if (*ptr == '2')
ptr++;
if (*ptr == 'R' || *ptr == 'Q' || *ptr == 'S') {
/* We've found either an XFP, quad ribbon fiber, or SFP+ */
cmd->port = PORT_FIBRE;
cmd->supported |= SUPPORTED_FIBRE;
cmd->advertising |= ADVERTISED_FIBRE;
} else {
cmd->port = PORT_OTHER;
}
if (*ptr == 'R' || *ptr == 'S')
cmd->transceiver = XCVR_EXTERNAL;
else
cmd->transceiver = XCVR_INTERNAL;
return 0;
}
static void
myri10ge_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
strlcpy(info->driver, "myri10ge", sizeof(info->driver));
strlcpy(info->version, MYRI10GE_VERSION_STR, sizeof(info->version));
strlcpy(info->fw_version, mgp->fw_version, sizeof(info->fw_version));
strlcpy(info->bus_info, pci_name(mgp->pdev), sizeof(info->bus_info));
}
static int
myri10ge_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
coal->rx_coalesce_usecs = mgp->intr_coal_delay;
return 0;
}
static int
myri10ge_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
mgp->intr_coal_delay = coal->rx_coalesce_usecs;
put_be32(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
return 0;
}
static void
myri10ge_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
pause->autoneg = 0;
pause->rx_pause = mgp->pause;
pause->tx_pause = mgp->pause;
}
static int
myri10ge_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (pause->tx_pause != mgp->pause)
return myri10ge_change_pause(mgp, pause->tx_pause);
if (pause->rx_pause != mgp->pause)
return myri10ge_change_pause(mgp, pause->rx_pause);
if (pause->autoneg != 0)
return -EINVAL;
return 0;
}
static void
myri10ge_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
ring->rx_mini_max_pending = mgp->ss[0].rx_small.mask + 1;
ring->rx_max_pending = mgp->ss[0].rx_big.mask + 1;
ring->rx_jumbo_max_pending = 0;
ring->tx_max_pending = mgp->ss[0].tx.mask + 1;
ring->rx_mini_pending = ring->rx_mini_max_pending;
ring->rx_pending = ring->rx_max_pending;
ring->rx_jumbo_pending = ring->rx_jumbo_max_pending;
ring->tx_pending = ring->tx_max_pending;
}
static const char myri10ge_gstrings_main_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
"rx_length_errors", "rx_over_errors", "rx_crc_errors",
"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
"tx_heartbeat_errors", "tx_window_errors",
/* device-specific stats */
"tx_boundary", "WC", "irq", "MSI", "MSIX",
"read_dma_bw_MBs", "write_dma_bw_MBs", "read_write_dma_bw_MBs",
"serial_number", "watchdog_resets",
#ifdef CONFIG_MYRI10GE_DCA
"dca_capable_firmware", "dca_device_present",
#endif
"link_changes", "link_up", "dropped_link_overflow",
"dropped_link_error_or_filtered",
"dropped_pause", "dropped_bad_phy", "dropped_bad_crc32",
"dropped_unicast_filtered", "dropped_multicast_filtered",
"dropped_runt", "dropped_overrun", "dropped_no_small_buffer",
"dropped_no_big_buffer"
};
static const char myri10ge_gstrings_slice_stats[][ETH_GSTRING_LEN] = {
"----------- slice ---------",
"tx_pkt_start", "tx_pkt_done", "tx_req", "tx_done",
"rx_small_cnt", "rx_big_cnt",
"wake_queue", "stop_queue", "tx_linearized",
"LRO aggregated", "LRO flushed", "LRO avg aggr", "LRO no_desc",
};
#define MYRI10GE_NET_STATS_LEN 21
#define MYRI10GE_MAIN_STATS_LEN ARRAY_SIZE(myri10ge_gstrings_main_stats)
#define MYRI10GE_SLICE_STATS_LEN ARRAY_SIZE(myri10ge_gstrings_slice_stats)
static void
myri10ge_get_strings(struct net_device *netdev, u32 stringset, u8 * data)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
int i;
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *myri10ge_gstrings_main_stats,
sizeof(myri10ge_gstrings_main_stats));
data += sizeof(myri10ge_gstrings_main_stats);
for (i = 0; i < mgp->num_slices; i++) {
memcpy(data, *myri10ge_gstrings_slice_stats,
sizeof(myri10ge_gstrings_slice_stats));
data += sizeof(myri10ge_gstrings_slice_stats);
}
break;
}
}
static int myri10ge_get_sset_count(struct net_device *netdev, int sset)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
switch (sset) {
case ETH_SS_STATS:
return MYRI10GE_MAIN_STATS_LEN +
mgp->num_slices * MYRI10GE_SLICE_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void
myri10ge_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 * data)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
struct myri10ge_slice_state *ss;
struct rtnl_link_stats64 link_stats;
int slice;
int i;
/* force stats update */
memset(&link_stats, 0, sizeof(link_stats));
(void)myri10ge_get_stats(netdev, &link_stats);
for (i = 0; i < MYRI10GE_NET_STATS_LEN; i++)
data[i] = ((u64 *)&link_stats)[i];
data[i++] = (unsigned int)mgp->tx_boundary;
data[i++] = (unsigned int)mgp->wc_enabled;
data[i++] = (unsigned int)mgp->pdev->irq;
data[i++] = (unsigned int)mgp->msi_enabled;
data[i++] = (unsigned int)mgp->msix_enabled;
data[i++] = (unsigned int)mgp->read_dma;
data[i++] = (unsigned int)mgp->write_dma;
data[i++] = (unsigned int)mgp->read_write_dma;
data[i++] = (unsigned int)mgp->serial_number;
data[i++] = (unsigned int)mgp->watchdog_resets;
#ifdef CONFIG_MYRI10GE_DCA
data[i++] = (unsigned int)(mgp->ss[0].dca_tag != NULL);
data[i++] = (unsigned int)(mgp->dca_enabled);
#endif
data[i++] = (unsigned int)mgp->link_changes;
/* firmware stats are useful only in the first slice */
ss = &mgp->ss[0];
data[i++] = (unsigned int)ntohl(ss->fw_stats->link_up);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_link_overflow);
data[i++] =
(unsigned int)ntohl(ss->fw_stats->dropped_link_error_or_filtered);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_pause);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_bad_phy);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_bad_crc32);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_unicast_filtered);
data[i++] =
(unsigned int)ntohl(ss->fw_stats->dropped_multicast_filtered);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_runt);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_overrun);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_no_small_buffer);
data[i++] = (unsigned int)ntohl(ss->fw_stats->dropped_no_big_buffer);
for (slice = 0; slice < mgp->num_slices; slice++) {
ss = &mgp->ss[slice];
data[i++] = slice;
data[i++] = (unsigned int)ss->tx.pkt_start;
data[i++] = (unsigned int)ss->tx.pkt_done;
data[i++] = (unsigned int)ss->tx.req;
data[i++] = (unsigned int)ss->tx.done;
data[i++] = (unsigned int)ss->rx_small.cnt;
data[i++] = (unsigned int)ss->rx_big.cnt;
data[i++] = (unsigned int)ss->tx.wake_queue;
data[i++] = (unsigned int)ss->tx.stop_queue;
data[i++] = (unsigned int)ss->tx.linearized;
data[i++] = ss->rx_done.lro_mgr.stats.aggregated;
data[i++] = ss->rx_done.lro_mgr.stats.flushed;
if (ss->rx_done.lro_mgr.stats.flushed)
data[i++] = ss->rx_done.lro_mgr.stats.aggregated /
ss->rx_done.lro_mgr.stats.flushed;
else
data[i++] = 0;
data[i++] = ss->rx_done.lro_mgr.stats.no_desc;
}
}
static void myri10ge_set_msglevel(struct net_device *netdev, u32 value)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
mgp->msg_enable = value;
}
static u32 myri10ge_get_msglevel(struct net_device *netdev)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
return mgp->msg_enable;
}
/*
* Use a low-level command to change the LED behavior. Rather than
* blinking (which is the normal case), when identify is used, the
* yellow LED turns solid.
*/
static int myri10ge_led(struct myri10ge_priv *mgp, int on)
{
struct mcp_gen_header *hdr;
struct device *dev = &mgp->pdev->dev;
size_t hdr_off, pattern_off, hdr_len;
u32 pattern = 0xfffffffe;
/* find running firmware header */
hdr_off = swab32(readl(mgp->sram + MCP_HEADER_PTR_OFFSET));
if ((hdr_off & 3) || hdr_off + sizeof(*hdr) > mgp->sram_size) {
dev_err(dev, "Running firmware has bad header offset (%d)\n",
(int)hdr_off);
return -EIO;
}
hdr_len = swab32(readl(mgp->sram + hdr_off +
offsetof(struct mcp_gen_header, header_length)));
pattern_off = hdr_off + offsetof(struct mcp_gen_header, led_pattern);
if (pattern_off >= (hdr_len + hdr_off)) {
dev_info(dev, "Firmware does not support LED identification\n");
return -EINVAL;
}
if (!on)
pattern = swab32(readl(mgp->sram + pattern_off + 4));
writel(htonl(pattern), mgp->sram + pattern_off);
return 0;
}
static int
myri10ge_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
int rc;
switch (state) {
case ETHTOOL_ID_ACTIVE:
rc = myri10ge_led(mgp, 1);
break;
case ETHTOOL_ID_INACTIVE:
rc = myri10ge_led(mgp, 0);
break;
default:
rc = -EINVAL;
}
return rc;
}
static const struct ethtool_ops myri10ge_ethtool_ops = {
.get_settings = myri10ge_get_settings,
.get_drvinfo = myri10ge_get_drvinfo,
.get_coalesce = myri10ge_get_coalesce,
.set_coalesce = myri10ge_set_coalesce,
.get_pauseparam = myri10ge_get_pauseparam,
.set_pauseparam = myri10ge_set_pauseparam,
.get_ringparam = myri10ge_get_ringparam,
.get_link = ethtool_op_get_link,
.get_strings = myri10ge_get_strings,
.get_sset_count = myri10ge_get_sset_count,
.get_ethtool_stats = myri10ge_get_ethtool_stats,
.set_msglevel = myri10ge_set_msglevel,
.get_msglevel = myri10ge_get_msglevel,
.set_phys_id = myri10ge_phys_id,
};
static int myri10ge_allocate_rings(struct myri10ge_slice_state *ss)
{
struct myri10ge_priv *mgp = ss->mgp;
struct myri10ge_cmd cmd;
struct net_device *dev = mgp->dev;
int tx_ring_size, rx_ring_size;
int tx_ring_entries, rx_ring_entries;
int i, slice, status;
size_t bytes;
/* get ring sizes */
slice = ss - mgp->ss;
cmd.data0 = slice;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_RING_SIZE, &cmd, 0);
tx_ring_size = cmd.data0;
cmd.data0 = slice;
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd, 0);
if (status != 0)
return status;
rx_ring_size = cmd.data0;
tx_ring_entries = tx_ring_size / sizeof(struct mcp_kreq_ether_send);
rx_ring_entries = rx_ring_size / sizeof(struct mcp_dma_addr);
ss->tx.mask = tx_ring_entries - 1;
ss->rx_small.mask = ss->rx_big.mask = rx_ring_entries - 1;
status = -ENOMEM;
/* allocate the host shadow rings */
bytes = 8 + (MYRI10GE_MAX_SEND_DESC_TSO + 4)
* sizeof(*ss->tx.req_list);
ss->tx.req_bytes = kzalloc(bytes, GFP_KERNEL);
if (ss->tx.req_bytes == NULL)
goto abort_with_nothing;
/* ensure req_list entries are aligned to 8 bytes */
ss->tx.req_list = (struct mcp_kreq_ether_send *)
ALIGN((unsigned long)ss->tx.req_bytes, 8);
ss->tx.queue_active = 0;
bytes = rx_ring_entries * sizeof(*ss->rx_small.shadow);
ss->rx_small.shadow = kzalloc(bytes, GFP_KERNEL);
if (ss->rx_small.shadow == NULL)
goto abort_with_tx_req_bytes;
bytes = rx_ring_entries * sizeof(*ss->rx_big.shadow);
ss->rx_big.shadow = kzalloc(bytes, GFP_KERNEL);
if (ss->rx_big.shadow == NULL)
goto abort_with_rx_small_shadow;
/* allocate the host info rings */
bytes = tx_ring_entries * sizeof(*ss->tx.info);
ss->tx.info = kzalloc(bytes, GFP_KERNEL);
if (ss->tx.info == NULL)
goto abort_with_rx_big_shadow;
bytes = rx_ring_entries * sizeof(*ss->rx_small.info);
ss->rx_small.info = kzalloc(bytes, GFP_KERNEL);
if (ss->rx_small.info == NULL)
goto abort_with_tx_info;
bytes = rx_ring_entries * sizeof(*ss->rx_big.info);
ss->rx_big.info = kzalloc(bytes, GFP_KERNEL);
if (ss->rx_big.info == NULL)
goto abort_with_rx_small_info;
/* Fill the receive rings */
ss->rx_big.cnt = 0;
ss->rx_small.cnt = 0;
ss->rx_big.fill_cnt = 0;
ss->rx_small.fill_cnt = 0;
ss->rx_small.page_offset = MYRI10GE_ALLOC_SIZE;
ss->rx_big.page_offset = MYRI10GE_ALLOC_SIZE;
ss->rx_small.watchdog_needed = 0;
ss->rx_big.watchdog_needed = 0;
if (mgp->small_bytes == 0) {
ss->rx_small.fill_cnt = ss->rx_small.mask + 1;
} else {
myri10ge_alloc_rx_pages(mgp, &ss->rx_small,
mgp->small_bytes + MXGEFW_PAD, 0);
}
if (ss->rx_small.fill_cnt < ss->rx_small.mask + 1) {
netdev_err(dev, "slice-%d: alloced only %d small bufs\n",
slice, ss->rx_small.fill_cnt);
goto abort_with_rx_small_ring;
}
myri10ge_alloc_rx_pages(mgp, &ss->rx_big, mgp->big_bytes, 0);
if (ss->rx_big.fill_cnt < ss->rx_big.mask + 1) {
netdev_err(dev, "slice-%d: alloced only %d big bufs\n",
slice, ss->rx_big.fill_cnt);
goto abort_with_rx_big_ring;
}
return 0;
abort_with_rx_big_ring:
for (i = ss->rx_big.cnt; i < ss->rx_big.fill_cnt; i++) {
int idx = i & ss->rx_big.mask;
myri10ge_unmap_rx_page(mgp->pdev, &ss->rx_big.info[idx],
mgp->big_bytes);
put_page(ss->rx_big.info[idx].page);
}
abort_with_rx_small_ring:
if (mgp->small_bytes == 0)
ss->rx_small.fill_cnt = ss->rx_small.cnt;
for (i = ss->rx_small.cnt; i < ss->rx_small.fill_cnt; i++) {
int idx = i & ss->rx_small.mask;
myri10ge_unmap_rx_page(mgp->pdev, &ss->rx_small.info[idx],
mgp->small_bytes + MXGEFW_PAD);
put_page(ss->rx_small.info[idx].page);
}
kfree(ss->rx_big.info);
abort_with_rx_small_info:
kfree(ss->rx_small.info);
abort_with_tx_info:
kfree(ss->tx.info);
abort_with_rx_big_shadow:
kfree(ss->rx_big.shadow);
abort_with_rx_small_shadow:
kfree(ss->rx_small.shadow);
abort_with_tx_req_bytes:
kfree(ss->tx.req_bytes);
ss->tx.req_bytes = NULL;
ss->tx.req_list = NULL;
abort_with_nothing:
return status;
}
static void myri10ge_free_rings(struct myri10ge_slice_state *ss)
{
struct myri10ge_priv *mgp = ss->mgp;
struct sk_buff *skb;
struct myri10ge_tx_buf *tx;
int i, len, idx;
/* If not allocated, skip it */
if (ss->tx.req_list == NULL)
return;
for (i = ss->rx_big.cnt; i < ss->rx_big.fill_cnt; i++) {
idx = i & ss->rx_big.mask;
if (i == ss->rx_big.fill_cnt - 1)
ss->rx_big.info[idx].page_offset = MYRI10GE_ALLOC_SIZE;
myri10ge_unmap_rx_page(mgp->pdev, &ss->rx_big.info[idx],
mgp->big_bytes);
put_page(ss->rx_big.info[idx].page);
}
if (mgp->small_bytes == 0)
ss->rx_small.fill_cnt = ss->rx_small.cnt;
for (i = ss->rx_small.cnt; i < ss->rx_small.fill_cnt; i++) {
idx = i & ss->rx_small.mask;
if (i == ss->rx_small.fill_cnt - 1)
ss->rx_small.info[idx].page_offset =
MYRI10GE_ALLOC_SIZE;
myri10ge_unmap_rx_page(mgp->pdev, &ss->rx_small.info[idx],
mgp->small_bytes + MXGEFW_PAD);
put_page(ss->rx_small.info[idx].page);
}
tx = &ss->tx;
while (tx->done != tx->req) {
idx = tx->done & tx->mask;
skb = tx->info[idx].skb;
/* Mark as free */
tx->info[idx].skb = NULL;
tx->done++;
len = dma_unmap_len(&tx->info[idx], len);
dma_unmap_len_set(&tx->info[idx], len, 0);
if (skb) {
ss->stats.tx_dropped++;
dev_kfree_skb_any(skb);
if (len)
pci_unmap_single(mgp->pdev,
dma_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
} else {
if (len)
pci_unmap_page(mgp->pdev,
dma_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
}
}
kfree(ss->rx_big.info);
kfree(ss->rx_small.info);
kfree(ss->tx.info);
kfree(ss->rx_big.shadow);
kfree(ss->rx_small.shadow);
kfree(ss->tx.req_bytes);
ss->tx.req_bytes = NULL;
ss->tx.req_list = NULL;
}
static int myri10ge_request_irq(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
struct myri10ge_slice_state *ss;
struct net_device *netdev = mgp->dev;
int i;
int status;
mgp->msi_enabled = 0;
mgp->msix_enabled = 0;
status = 0;
if (myri10ge_msi) {
if (mgp->num_slices > 1) {
status =
pci_enable_msix(pdev, mgp->msix_vectors,
mgp->num_slices);
if (status == 0) {
mgp->msix_enabled = 1;
} else {
dev_err(&pdev->dev,
"Error %d setting up MSI-X\n", status);
return status;
}
}
if (mgp->msix_enabled == 0) {
status = pci_enable_msi(pdev);
if (status != 0) {
dev_err(&pdev->dev,
"Error %d setting up MSI; falling back to xPIC\n",
status);
} else {
mgp->msi_enabled = 1;
}
}
}
if (mgp->msix_enabled) {
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
snprintf(ss->irq_desc, sizeof(ss->irq_desc),
"%s:slice-%d", netdev->name, i);
status = request_irq(mgp->msix_vectors[i].vector,
myri10ge_intr, 0, ss->irq_desc,
ss);
if (status != 0) {
dev_err(&pdev->dev,
"slice %d failed to allocate IRQ\n", i);
i--;
while (i >= 0) {
free_irq(mgp->msix_vectors[i].vector,
&mgp->ss[i]);
i--;
}
pci_disable_msix(pdev);
return status;
}
}
} else {
status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED,
mgp->dev->name, &mgp->ss[0]);
if (status != 0) {
dev_err(&pdev->dev, "failed to allocate IRQ\n");
if (mgp->msi_enabled)
pci_disable_msi(pdev);
}
}
return status;
}
static void myri10ge_free_irq(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int i;
if (mgp->msix_enabled) {
for (i = 0; i < mgp->num_slices; i++)
free_irq(mgp->msix_vectors[i].vector, &mgp->ss[i]);
} else {
free_irq(pdev->irq, &mgp->ss[0]);
}
if (mgp->msi_enabled)
pci_disable_msi(pdev);
if (mgp->msix_enabled)
pci_disable_msix(pdev);
}
static int
myri10ge_get_frag_header(struct skb_frag_struct *frag, void **mac_hdr,
void **ip_hdr, void **tcpudp_hdr,
u64 * hdr_flags, void *priv)
{
struct ethhdr *eh;
struct vlan_ethhdr *veh;
struct iphdr *iph;
u8 *va = skb_frag_address(frag);
unsigned long ll_hlen;
/* passed opaque through lro_receive_frags() */
__wsum csum = (__force __wsum) (unsigned long)priv;
/* find the mac header, aborting if not IPv4 */
eh = (struct ethhdr *)va;
*mac_hdr = eh;
ll_hlen = ETH_HLEN;
if (eh->h_proto != htons(ETH_P_IP)) {
if (eh->h_proto == htons(ETH_P_8021Q)) {
veh = (struct vlan_ethhdr *)va;
if (veh->h_vlan_encapsulated_proto != htons(ETH_P_IP))
return -1;
ll_hlen += VLAN_HLEN;
/*
* HW checksum starts ETH_HLEN bytes into
* frame, so we must subtract off the VLAN
* header's checksum before csum can be used
*/
csum = csum_sub(csum, csum_partial(va + ETH_HLEN,
VLAN_HLEN, 0));
} else {
return -1;
}
}
*hdr_flags = LRO_IPV4;
iph = (struct iphdr *)(va + ll_hlen);
*ip_hdr = iph;
if (iph->protocol != IPPROTO_TCP)
return -1;
if (ip_is_fragment(iph))
return -1;
*hdr_flags |= LRO_TCP;
*tcpudp_hdr = (u8 *) (*ip_hdr) + (iph->ihl << 2);
/* verify the IP checksum */
if (unlikely(ip_fast_csum((u8 *) iph, iph->ihl)))
return -1;
/* verify the checksum */
if (unlikely(csum_tcpudp_magic(iph->saddr, iph->daddr,
ntohs(iph->tot_len) - (iph->ihl << 2),
IPPROTO_TCP, csum)))
return -1;
return 0;
}
static int myri10ge_get_txrx(struct myri10ge_priv *mgp, int slice)
{
struct myri10ge_cmd cmd;
struct myri10ge_slice_state *ss;
int status;
ss = &mgp->ss[slice];
status = 0;
if (slice == 0 || (mgp->dev->real_num_tx_queues > 1)) {
cmd.data0 = slice;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_OFFSET,
&cmd, 0);
ss->tx.lanai = (struct mcp_kreq_ether_send __iomem *)
(mgp->sram + cmd.data0);
}
cmd.data0 = slice;
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SMALL_RX_OFFSET,
&cmd, 0);
ss->rx_small.lanai = (struct mcp_kreq_ether_recv __iomem *)
(mgp->sram + cmd.data0);
cmd.data0 = slice;
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_BIG_RX_OFFSET, &cmd, 0);
ss->rx_big.lanai = (struct mcp_kreq_ether_recv __iomem *)
(mgp->sram + cmd.data0);
ss->tx.send_go = (__iomem __be32 *)
(mgp->sram + MXGEFW_ETH_SEND_GO + 64 * slice);
ss->tx.send_stop = (__iomem __be32 *)
(mgp->sram + MXGEFW_ETH_SEND_STOP + 64 * slice);
return status;
}
static int myri10ge_set_stats(struct myri10ge_priv *mgp, int slice)
{
struct myri10ge_cmd cmd;
struct myri10ge_slice_state *ss;
int status;
ss = &mgp->ss[slice];
cmd.data0 = MYRI10GE_LOWPART_TO_U32(ss->fw_stats_bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(ss->fw_stats_bus);
cmd.data2 = sizeof(struct mcp_irq_data) | (slice << 16);
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_STATS_DMA_V2, &cmd, 0);
if (status == -ENOSYS) {
dma_addr_t bus = ss->fw_stats_bus;
if (slice != 0)
return -EINVAL;
bus += offsetof(struct mcp_irq_data, send_done_count);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(bus);
status = myri10ge_send_cmd(mgp,
MXGEFW_CMD_SET_STATS_DMA_OBSOLETE,
&cmd, 0);
/* Firmware cannot support multicast without STATS_DMA_V2 */
mgp->fw_multicast_support = 0;
} else {
mgp->fw_multicast_support = 1;
}
return 0;
}
static int myri10ge_open(struct net_device *dev)
{
struct myri10ge_slice_state *ss;
struct myri10ge_priv *mgp = netdev_priv(dev);
struct myri10ge_cmd cmd;
int i, status, big_pow2, slice;
u8 *itable;
struct net_lro_mgr *lro_mgr;
if (mgp->running != MYRI10GE_ETH_STOPPED)
return -EBUSY;
mgp->running = MYRI10GE_ETH_STARTING;
status = myri10ge_reset(mgp);
if (status != 0) {
netdev_err(dev, "failed reset\n");
goto abort_with_nothing;
}
if (mgp->num_slices > 1) {
cmd.data0 = mgp->num_slices;
cmd.data1 = MXGEFW_SLICE_INTR_MODE_ONE_PER_SLICE;
if (mgp->dev->real_num_tx_queues > 1)
cmd.data1 |= MXGEFW_SLICE_ENABLE_MULTIPLE_TX_QUEUES;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ENABLE_RSS_QUEUES,
&cmd, 0);
if (status != 0) {
netdev_err(dev, "failed to set number of slices\n");
goto abort_with_nothing;
}
/* setup the indirection table */
cmd.data0 = mgp->num_slices;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_RSS_TABLE_SIZE,
&cmd, 0);
status |= myri10ge_send_cmd(mgp,
MXGEFW_CMD_GET_RSS_TABLE_OFFSET,
&cmd, 0);
if (status != 0) {
netdev_err(dev, "failed to setup rss tables\n");
goto abort_with_nothing;
}
/* just enable an identity mapping */
itable = mgp->sram + cmd.data0;
for (i = 0; i < mgp->num_slices; i++)
__raw_writeb(i, &itable[i]);
cmd.data0 = 1;
cmd.data1 = myri10ge_rss_hash;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_RSS_ENABLE,
&cmd, 0);
if (status != 0) {
netdev_err(dev, "failed to enable slices\n");
goto abort_with_nothing;
}
}
status = myri10ge_request_irq(mgp);
if (status != 0)
goto abort_with_nothing;
/* decide what small buffer size to use. For good TCP rx
* performance, it is important to not receive 1514 byte
* frames into jumbo buffers, as it confuses the socket buffer
* accounting code, leading to drops and erratic performance.
*/
if (dev->mtu <= ETH_DATA_LEN)
/* enough for a TCP header */
mgp->small_bytes = (128 > SMP_CACHE_BYTES)
? (128 - MXGEFW_PAD)
: (SMP_CACHE_BYTES - MXGEFW_PAD);
else
/* enough for a vlan encapsulated ETH_DATA_LEN frame */
mgp->small_bytes = VLAN_ETH_FRAME_LEN;
/* Override the small buffer size? */
if (myri10ge_small_bytes >= 0)
mgp->small_bytes = myri10ge_small_bytes;
/* Firmware needs the big buff size as a power of 2. Lie and
* tell him the buffer is larger, because we only use 1
* buffer/pkt, and the mtu will prevent overruns.
*/
big_pow2 = dev->mtu + ETH_HLEN + VLAN_HLEN + MXGEFW_PAD;
if (big_pow2 < MYRI10GE_ALLOC_SIZE / 2) {
while (!is_power_of_2(big_pow2))
big_pow2++;
mgp->big_bytes = dev->mtu + ETH_HLEN + VLAN_HLEN + MXGEFW_PAD;
} else {
big_pow2 = MYRI10GE_ALLOC_SIZE;
mgp->big_bytes = big_pow2;
}
/* setup the per-slice data structures */
for (slice = 0; slice < mgp->num_slices; slice++) {
ss = &mgp->ss[slice];
status = myri10ge_get_txrx(mgp, slice);
if (status != 0) {
netdev_err(dev, "failed to get ring sizes or locations\n");
goto abort_with_rings;
}
status = myri10ge_allocate_rings(ss);
if (status != 0)
goto abort_with_rings;
/* only firmware which supports multiple TX queues
* supports setting up the tx stats on non-zero
* slices */
if (slice == 0 || mgp->dev->real_num_tx_queues > 1)
status = myri10ge_set_stats(mgp, slice);
if (status) {
netdev_err(dev, "Couldn't set stats DMA\n");
goto abort_with_rings;
}
lro_mgr = &ss->rx_done.lro_mgr;
lro_mgr->dev = dev;
lro_mgr->features = LRO_F_NAPI;
lro_mgr->ip_summed = CHECKSUM_COMPLETE;
lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
lro_mgr->max_desc = MYRI10GE_MAX_LRO_DESCRIPTORS;
lro_mgr->lro_arr = ss->rx_done.lro_desc;
lro_mgr->get_frag_header = myri10ge_get_frag_header;
lro_mgr->max_aggr = myri10ge_lro_max_pkts;
lro_mgr->frag_align_pad = 2;
if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
lro_mgr->max_aggr = MAX_SKB_FRAGS;
/* must happen prior to any irq */
napi_enable(&(ss)->napi);
}
/* now give firmware buffers sizes, and MTU */
cmd.data0 = dev->mtu + ETH_HLEN + VLAN_HLEN;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_MTU, &cmd, 0);
cmd.data0 = mgp->small_bytes;
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, &cmd, 0);
cmd.data0 = big_pow2;
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_BIG_BUFFER_SIZE, &cmd, 0);
if (status) {
netdev_err(dev, "Couldn't set buffer sizes\n");
goto abort_with_rings;
}
/*
* Set Linux style TSO mode; this is needed only on newer
* firmware versions. Older versions default to Linux
* style TSO
*/
cmd.data0 = 0;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_TSO_MODE, &cmd, 0);
if (status && status != -ENOSYS) {
netdev_err(dev, "Couldn't set TSO mode\n");
goto abort_with_rings;
}
mgp->link_state = ~0U;
mgp->rdma_tags_available = 15;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_UP, &cmd, 0);
if (status) {
netdev_err(dev, "Couldn't bring up link\n");
goto abort_with_rings;
}
mgp->running = MYRI10GE_ETH_RUNNING;
mgp->watchdog_timer.expires = jiffies + myri10ge_watchdog_timeout * HZ;
add_timer(&mgp->watchdog_timer);
netif_tx_wake_all_queues(dev);
return 0;
abort_with_rings:
while (slice) {
slice--;
napi_disable(&mgp->ss[slice].napi);
}
for (i = 0; i < mgp->num_slices; i++)
myri10ge_free_rings(&mgp->ss[i]);
myri10ge_free_irq(mgp);
abort_with_nothing:
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENOMEM;
}
static int myri10ge_close(struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
struct myri10ge_cmd cmd;
int status, old_down_cnt;
int i;
if (mgp->running != MYRI10GE_ETH_RUNNING)
return 0;
if (mgp->ss[0].tx.req_bytes == NULL)
return 0;
del_timer_sync(&mgp->watchdog_timer);
mgp->running = MYRI10GE_ETH_STOPPING;
for (i = 0; i < mgp->num_slices; i++) {
napi_disable(&mgp->ss[i].napi);
}
netif_carrier_off(dev);
netif_tx_stop_all_queues(dev);
if (mgp->rebooted == 0) {
old_down_cnt = mgp->down_cnt;
mb();
status =
myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_DOWN, &cmd, 0);
if (status)
netdev_err(dev, "Couldn't bring down link\n");
wait_event_timeout(mgp->down_wq, old_down_cnt != mgp->down_cnt,
HZ);
if (old_down_cnt == mgp->down_cnt)
netdev_err(dev, "never got down irq\n");
}
netif_tx_disable(dev);
myri10ge_free_irq(mgp);
for (i = 0; i < mgp->num_slices; i++)
myri10ge_free_rings(&mgp->ss[i]);
mgp->running = MYRI10GE_ETH_STOPPED;
return 0;
}
/* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
* backwards one at a time and handle ring wraps */
static inline void
myri10ge_submit_req_backwards(struct myri10ge_tx_buf *tx,
struct mcp_kreq_ether_send *src, int cnt)
{
int idx, starting_slot;
starting_slot = tx->req;
while (cnt > 1) {
cnt--;
idx = (starting_slot + cnt) & tx->mask;
myri10ge_pio_copy(&tx->lanai[idx], &src[cnt], sizeof(*src));
mb();
}
}
/*
* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
* at most 32 bytes at a time, so as to avoid involving the software
* pio handler in the nic. We re-write the first segment's flags
* to mark them valid only after writing the entire chain.
*/
static inline void
myri10ge_submit_req(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src,
int cnt)
{
int idx, i;
struct mcp_kreq_ether_send __iomem *dstp, *dst;
struct mcp_kreq_ether_send *srcp;
u8 last_flags;
idx = tx->req & tx->mask;
last_flags = src->flags;
src->flags = 0;
mb();
dst = dstp = &tx->lanai[idx];
srcp = src;
if ((idx + cnt) < tx->mask) {
for (i = 0; i < (cnt - 1); i += 2) {
myri10ge_pio_copy(dstp, srcp, 2 * sizeof(*src));
mb(); /* force write every 32 bytes */
srcp += 2;
dstp += 2;
}
} else {
/* submit all but the first request, and ensure
* that it is submitted below */
myri10ge_submit_req_backwards(tx, src, cnt);
i = 0;
}
if (i < cnt) {
/* submit the first request */
myri10ge_pio_copy(dstp, srcp, sizeof(*src));
mb(); /* barrier before setting valid flag */
}
/* re-write the last 32-bits with the valid flags */
src->flags = last_flags;
put_be32(*((__be32 *) src + 3), (__be32 __iomem *) dst + 3);
tx->req += cnt;
mb();
}
/*
* Transmit a packet. We need to split the packet so that a single
* segment does not cross myri10ge->tx_boundary, so this makes segment
* counting tricky. So rather than try to count segments up front, we
* just give up if there are too few segments to hold a reasonably
* fragmented packet currently available. If we run
* out of segments while preparing a packet for DMA, we just linearize
* it and try again.
*/
static netdev_tx_t myri10ge_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
struct myri10ge_slice_state *ss;
struct mcp_kreq_ether_send *req;
struct myri10ge_tx_buf *tx;
struct skb_frag_struct *frag;
struct netdev_queue *netdev_queue;
dma_addr_t bus;
u32 low;
__be32 high_swapped;
unsigned int len;
int idx, last_idx, avail, frag_cnt, frag_idx, count, mss, max_segments;
u16 pseudo_hdr_offset, cksum_offset, queue;
int cum_len, seglen, boundary, rdma_count;
u8 flags, odd_flag;
queue = skb_get_queue_mapping(skb);
ss = &mgp->ss[queue];
netdev_queue = netdev_get_tx_queue(mgp->dev, queue);
tx = &ss->tx;
again:
req = tx->req_list;
avail = tx->mask - 1 - (tx->req - tx->done);
mss = 0;
max_segments = MXGEFW_MAX_SEND_DESC;
if (skb_is_gso(skb)) {
mss = skb_shinfo(skb)->gso_size;
max_segments = MYRI10GE_MAX_SEND_DESC_TSO;
}
if ((unlikely(avail < max_segments))) {
/* we are out of transmit resources */
tx->stop_queue++;
netif_tx_stop_queue(netdev_queue);
return NETDEV_TX_BUSY;
}
/* Setup checksum offloading, if needed */
cksum_offset = 0;
pseudo_hdr_offset = 0;
odd_flag = 0;
flags = (MXGEFW_FLAGS_NO_TSO | MXGEFW_FLAGS_FIRST);
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
cksum_offset = skb_checksum_start_offset(skb);
pseudo_hdr_offset = cksum_offset + skb->csum_offset;
/* If the headers are excessively large, then we must
* fall back to a software checksum */
if (unlikely(!mss && (cksum_offset > 255 ||
pseudo_hdr_offset > 127))) {
if (skb_checksum_help(skb))
goto drop;
cksum_offset = 0;
pseudo_hdr_offset = 0;
} else {
odd_flag = MXGEFW_FLAGS_ALIGN_ODD;
flags |= MXGEFW_FLAGS_CKSUM;
}
}
cum_len = 0;
if (mss) { /* TSO */
/* this removes any CKSUM flag from before */
flags = (MXGEFW_FLAGS_TSO_HDR | MXGEFW_FLAGS_FIRST);
/* negative cum_len signifies to the
* send loop that we are still in the
* header portion of the TSO packet.
* TSO header can be at most 1KB long */
cum_len = -(skb_transport_offset(skb) + tcp_hdrlen(skb));
/* for IPv6 TSO, the checksum offset stores the
* TCP header length, to save the firmware from
* the need to parse the headers */
if (skb_is_gso_v6(skb)) {
cksum_offset = tcp_hdrlen(skb);
/* Can only handle headers <= max_tso6 long */
if (unlikely(-cum_len > mgp->max_tso6))
return myri10ge_sw_tso(skb, dev);
}
/* for TSO, pseudo_hdr_offset holds mss.
* The firmware figures out where to put
* the checksum by parsing the header. */
pseudo_hdr_offset = mss;
} else
/* Mark small packets, and pad out tiny packets */
if (skb->len <= MXGEFW_SEND_SMALL_SIZE) {
flags |= MXGEFW_FLAGS_SMALL;
/* pad frames to at least ETH_ZLEN bytes */
if (unlikely(skb->len < ETH_ZLEN)) {
if (skb_padto(skb, ETH_ZLEN)) {
/* The packet is gone, so we must
* return 0 */
ss->stats.tx_dropped += 1;
return NETDEV_TX_OK;
}
/* adjust the len to account for the zero pad
* so that the nic can know how long it is */
skb->len = ETH_ZLEN;
}
}
/* map the skb for DMA */
len = skb_headlen(skb);
idx = tx->req & tx->mask;
tx->info[idx].skb = skb;
bus = pci_map_single(mgp->pdev, skb->data, len, PCI_DMA_TODEVICE);
dma_unmap_addr_set(&tx->info[idx], bus, bus);
dma_unmap_len_set(&tx->info[idx], len, len);
frag_cnt = skb_shinfo(skb)->nr_frags;
frag_idx = 0;
count = 0;
rdma_count = 0;
/* "rdma_count" is the number of RDMAs belonging to the
* current packet BEFORE the current send request. For
* non-TSO packets, this is equal to "count".
* For TSO packets, rdma_count needs to be reset
* to 0 after a segment cut.
*
* The rdma_count field of the send request is
* the number of RDMAs of the packet starting at
* that request. For TSO send requests with one ore more cuts
* in the middle, this is the number of RDMAs starting
* after the last cut in the request. All previous
* segments before the last cut implicitly have 1 RDMA.
*
* Since the number of RDMAs is not known beforehand,
* it must be filled-in retroactively - after each
* segmentation cut or at the end of the entire packet.
*/
while (1) {
/* Break the SKB or Fragment up into pieces which
* do not cross mgp->tx_boundary */
low = MYRI10GE_LOWPART_TO_U32(bus);
high_swapped = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
while (len) {
u8 flags_next;
int cum_len_next;
if (unlikely(count == max_segments))
goto abort_linearize;
boundary =
(low + mgp->tx_boundary) & ~(mgp->tx_boundary - 1);
seglen = boundary - low;
if (seglen > len)
seglen = len;
flags_next = flags & ~MXGEFW_FLAGS_FIRST;
cum_len_next = cum_len + seglen;
if (mss) { /* TSO */
(req - rdma_count)->rdma_count = rdma_count + 1;
if (likely(cum_len >= 0)) { /* payload */
int next_is_first, chop;
chop = (cum_len_next > mss);
cum_len_next = cum_len_next % mss;
next_is_first = (cum_len_next == 0);
flags |= chop * MXGEFW_FLAGS_TSO_CHOP;
flags_next |= next_is_first *
MXGEFW_FLAGS_FIRST;
rdma_count |= -(chop | next_is_first);
rdma_count += chop & !next_is_first;
} else if (likely(cum_len_next >= 0)) { /* header ends */
int small;
rdma_count = -1;
cum_len_next = 0;
seglen = -cum_len;
small = (mss <= MXGEFW_SEND_SMALL_SIZE);
flags_next = MXGEFW_FLAGS_TSO_PLD |
MXGEFW_FLAGS_FIRST |
(small * MXGEFW_FLAGS_SMALL);
}
}
req->addr_high = high_swapped;
req->addr_low = htonl(low);
req->pseudo_hdr_offset = htons(pseudo_hdr_offset);
req->pad = 0; /* complete solid 16-byte block; does this matter? */
req->rdma_count = 1;
req->length = htons(seglen);
req->cksum_offset = cksum_offset;
req->flags = flags | ((cum_len & 1) * odd_flag);
low += seglen;
len -= seglen;
cum_len = cum_len_next;
flags = flags_next;
req++;
count++;
rdma_count++;
if (cksum_offset != 0 && !(mss && skb_is_gso_v6(skb))) {
if (unlikely(cksum_offset > seglen))
cksum_offset -= seglen;
else
cksum_offset = 0;
}
}
if (frag_idx == frag_cnt)
break;
/* map next fragment for DMA */
idx = (count + tx->req) & tx->mask;
frag = &skb_shinfo(skb)->frags[frag_idx];
frag_idx++;
len = skb_frag_size(frag);
bus = skb_frag_dma_map(&mgp->pdev->dev, frag, 0, len,
DMA_TO_DEVICE);
dma_unmap_addr_set(&tx->info[idx], bus, bus);
dma_unmap_len_set(&tx->info[idx], len, len);
}
(req - rdma_count)->rdma_count = rdma_count;
if (mss)
do {
req--;
req->flags |= MXGEFW_FLAGS_TSO_LAST;
} while (!(req->flags & (MXGEFW_FLAGS_TSO_CHOP |
MXGEFW_FLAGS_FIRST)));
idx = ((count - 1) + tx->req) & tx->mask;
tx->info[idx].last = 1;
myri10ge_submit_req(tx, tx->req_list, count);
/* if using multiple tx queues, make sure NIC polls the
* current slice */
if ((mgp->dev->real_num_tx_queues > 1) && tx->queue_active == 0) {
tx->queue_active = 1;
put_be32(htonl(1), tx->send_go);
mb();
mmiowb();
}
tx->pkt_start++;
if ((avail - count) < MXGEFW_MAX_SEND_DESC) {
tx->stop_queue++;
netif_tx_stop_queue(netdev_queue);
}
return NETDEV_TX_OK;
abort_linearize:
/* Free any DMA resources we've alloced and clear out the skb
* slot so as to not trip up assertions, and to avoid a
* double-free if linearizing fails */
last_idx = (idx + 1) & tx->mask;
idx = tx->req & tx->mask;
tx->info[idx].skb = NULL;
do {
len = dma_unmap_len(&tx->info[idx], len);
if (len) {
if (tx->info[idx].skb != NULL)
pci_unmap_single(mgp->pdev,
dma_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(mgp->pdev,
dma_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
dma_unmap_len_set(&tx->info[idx], len, 0);
tx->info[idx].skb = NULL;
}
idx = (idx + 1) & tx->mask;
} while (idx != last_idx);
if (skb_is_gso(skb)) {
netdev_err(mgp->dev, "TSO but wanted to linearize?!?!?\n");
goto drop;
}
if (skb_linearize(skb))
goto drop;
tx->linearized++;
goto again;
drop:
dev_kfree_skb_any(skb);
ss->stats.tx_dropped += 1;
return NETDEV_TX_OK;
}
static netdev_tx_t myri10ge_sw_tso(struct sk_buff *skb,
struct net_device *dev)
{
struct sk_buff *segs, *curr;
struct myri10ge_priv *mgp = netdev_priv(dev);
struct myri10ge_slice_state *ss;
netdev_tx_t status;
segs = skb_gso_segment(skb, dev->features & ~NETIF_F_TSO6);
if (IS_ERR(segs))
goto drop;
while (segs) {
curr = segs;
segs = segs->next;
curr->next = NULL;
status = myri10ge_xmit(curr, dev);
if (status != 0) {
dev_kfree_skb_any(curr);
if (segs != NULL) {
curr = segs;
segs = segs->next;
curr->next = NULL;
dev_kfree_skb_any(segs);
}
goto drop;
}
}
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
drop:
ss = &mgp->ss[skb_get_queue_mapping(skb)];
dev_kfree_skb_any(skb);
ss->stats.tx_dropped += 1;
return NETDEV_TX_OK;
}
static struct rtnl_link_stats64 *myri10ge_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
const struct myri10ge_priv *mgp = netdev_priv(dev);
const struct myri10ge_slice_netstats *slice_stats;
int i;
for (i = 0; i < mgp->num_slices; i++) {
slice_stats = &mgp->ss[i].stats;
stats->rx_packets += slice_stats->rx_packets;
stats->tx_packets += slice_stats->tx_packets;
stats->rx_bytes += slice_stats->rx_bytes;
stats->tx_bytes += slice_stats->tx_bytes;
stats->rx_dropped += slice_stats->rx_dropped;
stats->tx_dropped += slice_stats->tx_dropped;
}
return stats;
}
static void myri10ge_set_multicast_list(struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
struct myri10ge_cmd cmd;
struct netdev_hw_addr *ha;
__be32 data[2] = { 0, 0 };
int err;
/* can be called from atomic contexts,
* pass 1 to force atomicity in myri10ge_send_cmd() */
myri10ge_change_promisc(mgp, dev->flags & IFF_PROMISC, 1);
/* This firmware is known to not support multicast */
if (!mgp->fw_multicast_support)
return;
/* Disable multicast filtering */
err = myri10ge_send_cmd(mgp, MXGEFW_ENABLE_ALLMULTI, &cmd, 1);
if (err != 0) {
netdev_err(dev, "Failed MXGEFW_ENABLE_ALLMULTI, error status: %d\n",
err);
goto abort;
}
if ((dev->flags & IFF_ALLMULTI) || mgp->adopted_rx_filter_bug) {
/* request to disable multicast filtering, so quit here */
return;
}
/* Flush the filters */
err = myri10ge_send_cmd(mgp, MXGEFW_LEAVE_ALL_MULTICAST_GROUPS,
&cmd, 1);
if (err != 0) {
netdev_err(dev, "Failed MXGEFW_LEAVE_ALL_MULTICAST_GROUPS, error status: %d\n",
err);
goto abort;
}
/* Walk the multicast list, and add each address */
netdev_for_each_mc_addr(ha, dev) {
memcpy(data, &ha->addr, 6);
cmd.data0 = ntohl(data[0]);
cmd.data1 = ntohl(data[1]);
err = myri10ge_send_cmd(mgp, MXGEFW_JOIN_MULTICAST_GROUP,
&cmd, 1);
if (err != 0) {
netdev_err(dev, "Failed MXGEFW_JOIN_MULTICAST_GROUP, error status:%d %pM\n",
err, ha->addr);
goto abort;
}
}
/* Enable multicast filtering */
err = myri10ge_send_cmd(mgp, MXGEFW_DISABLE_ALLMULTI, &cmd, 1);
if (err != 0) {
netdev_err(dev, "Failed MXGEFW_DISABLE_ALLMULTI, error status: %d\n",
err);
goto abort;
}
return;
abort:
return;
}
static int myri10ge_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
struct myri10ge_priv *mgp = netdev_priv(dev);
int status;
if (!is_valid_ether_addr(sa->sa_data))
return -EADDRNOTAVAIL;
status = myri10ge_update_mac_address(mgp, sa->sa_data);
if (status != 0) {
netdev_err(dev, "changing mac address failed with %d\n",
status);
return status;
}
/* change the dev structure */
memcpy(dev->dev_addr, sa->sa_data, 6);
return 0;
}
static u32 myri10ge_fix_features(struct net_device *dev, u32 features)
{
if (!(features & NETIF_F_RXCSUM))
features &= ~NETIF_F_LRO;
return features;
}
static int myri10ge_change_mtu(struct net_device *dev, int new_mtu)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
int error = 0;
if ((new_mtu < 68) || (ETH_HLEN + new_mtu > MYRI10GE_MAX_ETHER_MTU)) {
netdev_err(dev, "new mtu (%d) is not valid\n", new_mtu);
return -EINVAL;
}
netdev_info(dev, "changing mtu from %d to %d\n", dev->mtu, new_mtu);
if (mgp->running) {
/* if we change the mtu on an active device, we must
* reset the device so the firmware sees the change */
myri10ge_close(dev);
dev->mtu = new_mtu;
myri10ge_open(dev);
} else
dev->mtu = new_mtu;
return error;
}
/*
* Enable ECRC to align PCI-E Completion packets on an 8-byte boundary.
* Only do it if the bridge is a root port since we don't want to disturb
* any other device, except if forced with myri10ge_ecrc_enable > 1.
*/
static void myri10ge_enable_ecrc(struct myri10ge_priv *mgp)
{
struct pci_dev *bridge = mgp->pdev->bus->self;
struct device *dev = &mgp->pdev->dev;
int cap;
unsigned err_cap;
u16 val;
u8 ext_type;
int ret;
if (!myri10ge_ecrc_enable || !bridge)
return;
/* check that the bridge is a root port */
cap = pci_pcie_cap(bridge);
pci_read_config_word(bridge, cap + PCI_CAP_FLAGS, &val);
ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
if (ext_type != PCI_EXP_TYPE_ROOT_PORT) {
if (myri10ge_ecrc_enable > 1) {
struct pci_dev *prev_bridge, *old_bridge = bridge;
/* Walk the hierarchy up to the root port
* where ECRC has to be enabled */
do {
prev_bridge = bridge;
bridge = bridge->bus->self;
if (!bridge || prev_bridge == bridge) {
dev_err(dev,
"Failed to find root port"
" to force ECRC\n");
return;
}
cap = pci_pcie_cap(bridge);
pci_read_config_word(bridge,
cap + PCI_CAP_FLAGS, &val);
ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
} while (ext_type != PCI_EXP_TYPE_ROOT_PORT);
dev_info(dev,
"Forcing ECRC on non-root port %s"
" (enabling on root port %s)\n",
pci_name(old_bridge), pci_name(bridge));
} else {
dev_err(dev,
"Not enabling ECRC on non-root port %s\n",
pci_name(bridge));
return;
}
}
cap = pci_find_ext_capability(bridge, PCI_EXT_CAP_ID_ERR);
if (!cap)
return;
ret = pci_read_config_dword(bridge, cap + PCI_ERR_CAP, &err_cap);
if (ret) {
dev_err(dev, "failed reading ext-conf-space of %s\n",
pci_name(bridge));
dev_err(dev, "\t pci=nommconf in use? "
"or buggy/incomplete/absent ACPI MCFG attr?\n");
return;
}
if (!(err_cap & PCI_ERR_CAP_ECRC_GENC))
return;
err_cap |= PCI_ERR_CAP_ECRC_GENE;
pci_write_config_dword(bridge, cap + PCI_ERR_CAP, err_cap);
dev_info(dev, "Enabled ECRC on upstream bridge %s\n", pci_name(bridge));
}
/*
* The Lanai Z8E PCI-E interface achieves higher Read-DMA throughput
* when the PCI-E Completion packets are aligned on an 8-byte
* boundary. Some PCI-E chip sets always align Completion packets; on
* the ones that do not, the alignment can be enforced by enabling
* ECRC generation (if supported).
*
* When PCI-E Completion packets are not aligned, it is actually more
* efficient to limit Read-DMA transactions to 2KB, rather than 4KB.
*
* If the driver can neither enable ECRC nor verify that it has
* already been enabled, then it must use a firmware image which works
* around unaligned completion packets (myri10ge_rss_ethp_z8e.dat), and it
* should also ensure that it never gives the device a Read-DMA which is
* larger than 2KB by setting the tx_boundary to 2KB. If ECRC is
* enabled, then the driver should use the aligned (myri10ge_rss_eth_z8e.dat)
* firmware image, and set tx_boundary to 4KB.
*/
static void myri10ge_firmware_probe(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
struct device *dev = &pdev->dev;
int status;
mgp->tx_boundary = 4096;
/*
* Verify the max read request size was set to 4KB
* before trying the test with 4KB.
*/
status = pcie_get_readrq(pdev);
if (status < 0) {
dev_err(dev, "Couldn't read max read req size: %d\n", status);
goto abort;
}
if (status != 4096) {
dev_warn(dev, "Max Read Request size != 4096 (%d)\n", status);
mgp->tx_boundary = 2048;
}
/*
* load the optimized firmware (which assumes aligned PCIe
* completions) in order to see if it works on this host.
*/
set_fw_name(mgp, myri10ge_fw_aligned, false);
status = myri10ge_load_firmware(mgp, 1);
if (status != 0) {
goto abort;
}
/*
* Enable ECRC if possible
*/
myri10ge_enable_ecrc(mgp);
/*
* Run a DMA test which watches for unaligned completions and
* aborts on the first one seen.
*/
status = myri10ge_dma_test(mgp, MXGEFW_CMD_UNALIGNED_TEST);
if (status == 0)
return; /* keep the aligned firmware */
if (status != -E2BIG)
dev_warn(dev, "DMA test failed: %d\n", status);
if (status == -ENOSYS)
dev_warn(dev, "Falling back to ethp! "
"Please install up to date fw\n");
abort:
/* fall back to using the unaligned firmware */
mgp->tx_boundary = 2048;
set_fw_name(mgp, myri10ge_fw_unaligned, false);
}
static void myri10ge_select_firmware(struct myri10ge_priv *mgp)
{
int overridden = 0;
if (myri10ge_force_firmware == 0) {
int link_width, exp_cap;
u16 lnk;
exp_cap = pci_pcie_cap(mgp->pdev);
pci_read_config_word(mgp->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
link_width = (lnk >> 4) & 0x3f;
/* Check to see if Link is less than 8 or if the
* upstream bridge is known to provide aligned
* completions */
if (link_width < 8) {
dev_info(&mgp->pdev->dev, "PCIE x%d Link\n",
link_width);
mgp->tx_boundary = 4096;
set_fw_name(mgp, myri10ge_fw_aligned, false);
} else {
myri10ge_firmware_probe(mgp);
}
} else {
if (myri10ge_force_firmware == 1) {
dev_info(&mgp->pdev->dev,
"Assuming aligned completions (forced)\n");
mgp->tx_boundary = 4096;
set_fw_name(mgp, myri10ge_fw_aligned, false);
} else {
dev_info(&mgp->pdev->dev,
"Assuming unaligned completions (forced)\n");
mgp->tx_boundary = 2048;
set_fw_name(mgp, myri10ge_fw_unaligned, false);
}
}
kparam_block_sysfs_write(myri10ge_fw_name);
if (myri10ge_fw_name != NULL) {
char *fw_name = kstrdup(myri10ge_fw_name, GFP_KERNEL);
if (fw_name) {
overridden = 1;
set_fw_name(mgp, fw_name, true);
}
}
kparam_unblock_sysfs_write(myri10ge_fw_name);
if (mgp->board_number < MYRI10GE_MAX_BOARDS &&
myri10ge_fw_names[mgp->board_number] != NULL &&
strlen(myri10ge_fw_names[mgp->board_number])) {
set_fw_name(mgp, myri10ge_fw_names[mgp->board_number], false);
overridden = 1;
}
if (overridden)
dev_info(&mgp->pdev->dev, "overriding firmware to %s\n",
mgp->fw_name);
}
static void myri10ge_mask_surprise_down(struct pci_dev *pdev)
{
struct pci_dev *bridge = pdev->bus->self;
int cap;
u32 mask;
if (bridge == NULL)
return;
cap = pci_find_ext_capability(bridge, PCI_EXT_CAP_ID_ERR);
if (cap) {
/* a sram parity error can cause a surprise link
* down; since we expect and can recover from sram
* parity errors, mask surprise link down events */
pci_read_config_dword(bridge, cap + PCI_ERR_UNCOR_MASK, &mask);
mask |= 0x20;
pci_write_config_dword(bridge, cap + PCI_ERR_UNCOR_MASK, mask);
}
}
#ifdef CONFIG_PM
static int myri10ge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return -EINVAL;
netdev = mgp->dev;
netif_device_detach(netdev);
if (netif_running(netdev)) {
netdev_info(netdev, "closing\n");
rtnl_lock();
myri10ge_close(netdev);
rtnl_unlock();
}
myri10ge_dummy_rdma(mgp, 0);
pci_save_state(pdev);
pci_disable_device(pdev);
return pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
static int myri10ge_resume(struct pci_dev *pdev)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
int status;
u16 vendor;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return -EINVAL;
netdev = mgp->dev;
pci_set_power_state(pdev, 0); /* zeros conf space as a side effect */
msleep(5); /* give card time to respond */
pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
if (vendor == 0xffff) {
netdev_err(mgp->dev, "device disappeared!\n");
return -EIO;
}
pci_restore_state(pdev);
status = pci_enable_device(pdev);
if (status) {
dev_err(&pdev->dev, "failed to enable device\n");
return status;
}
pci_set_master(pdev);
myri10ge_reset(mgp);
myri10ge_dummy_rdma(mgp, 1);
/* Save configuration space to be restored if the
* nic resets due to a parity error */
pci_save_state(pdev);
if (netif_running(netdev)) {
rtnl_lock();
status = myri10ge_open(netdev);
rtnl_unlock();
if (status != 0)
goto abort_with_enabled;
}
netif_device_attach(netdev);
return 0;
abort_with_enabled:
pci_disable_device(pdev);
return -EIO;
}
#endif /* CONFIG_PM */
static u32 myri10ge_read_reboot(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int vs = mgp->vendor_specific_offset;
u32 reboot;
/*enter read32 mode */
pci_write_config_byte(pdev, vs + 0x10, 0x3);
/*read REBOOT_STATUS (0xfffffff0) */
pci_write_config_dword(pdev, vs + 0x18, 0xfffffff0);
pci_read_config_dword(pdev, vs + 0x14, &reboot);
return reboot;
}
static void
myri10ge_check_slice(struct myri10ge_slice_state *ss, int *reset_needed,
int *busy_slice_cnt, u32 rx_pause_cnt)
{
struct myri10ge_priv *mgp = ss->mgp;
int slice = ss - mgp->ss;
if (ss->tx.req != ss->tx.done &&
ss->tx.done == ss->watchdog_tx_done &&
ss->watchdog_tx_req != ss->watchdog_tx_done) {
/* nic seems like it might be stuck.. */
if (rx_pause_cnt != mgp->watchdog_pause) {
if (net_ratelimit())
netdev_warn(mgp->dev, "slice %d: TX paused, "
"check link partner\n", slice);
} else {
netdev_warn(mgp->dev,
"slice %d: TX stuck %d %d %d %d %d %d\n",
slice, ss->tx.queue_active, ss->tx.req,
ss->tx.done, ss->tx.pkt_start,
ss->tx.pkt_done,
(int)ntohl(mgp->ss[slice].fw_stats->
send_done_count));
*reset_needed = 1;
ss->stuck = 1;
}
}
if (ss->watchdog_tx_done != ss->tx.done ||
ss->watchdog_rx_done != ss->rx_done.cnt) {
*busy_slice_cnt += 1;
}
ss->watchdog_tx_done = ss->tx.done;
ss->watchdog_tx_req = ss->tx.req;
ss->watchdog_rx_done = ss->rx_done.cnt;
}
/*
* This watchdog is used to check whether the board has suffered
* from a parity error and needs to be recovered.
*/
static void myri10ge_watchdog(struct work_struct *work)
{
struct myri10ge_priv *mgp =
container_of(work, struct myri10ge_priv, watchdog_work);
struct myri10ge_slice_state *ss;
u32 reboot, rx_pause_cnt;
int status, rebooted;
int i;
int reset_needed = 0;
int busy_slice_cnt = 0;
u16 cmd, vendor;
mgp->watchdog_resets++;
pci_read_config_word(mgp->pdev, PCI_COMMAND, &cmd);
rebooted = 0;
if ((cmd & PCI_COMMAND_MASTER) == 0) {
/* Bus master DMA disabled? Check to see
* if the card rebooted due to a parity error
* For now, just report it */
reboot = myri10ge_read_reboot(mgp);
netdev_err(mgp->dev, "NIC rebooted (0x%x),%s resetting\n",
reboot, myri10ge_reset_recover ? "" : " not");
if (myri10ge_reset_recover == 0)
return;
rtnl_lock();
mgp->rebooted = 1;
rebooted = 1;
myri10ge_close(mgp->dev);
myri10ge_reset_recover--;
mgp->rebooted = 0;
/*
* A rebooted nic will come back with config space as
* it was after power was applied to PCIe bus.
* Attempt to restore config space which was saved
* when the driver was loaded, or the last time the
* nic was resumed from power saving mode.
*/
pci_restore_state(mgp->pdev);
/* save state again for accounting reasons */
pci_save_state(mgp->pdev);
} else {
/* if we get back -1's from our slot, perhaps somebody
* powered off our card. Don't try to reset it in
* this case */
if (cmd == 0xffff) {
pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
if (vendor == 0xffff) {
netdev_err(mgp->dev, "device disappeared!\n");
return;
}
}
/* Perhaps it is a software error. See if stuck slice
* has recovered, reset if not */
rx_pause_cnt = ntohl(mgp->ss[0].fw_stats->dropped_pause);
for (i = 0; i < mgp->num_slices; i++) {
ss = mgp->ss;
if (ss->stuck) {
myri10ge_check_slice(ss, &reset_needed,
&busy_slice_cnt,
rx_pause_cnt);
ss->stuck = 0;
}
}
if (!reset_needed) {
netdev_dbg(mgp->dev, "not resetting\n");
return;
}
netdev_err(mgp->dev, "device timeout, resetting\n");
}
if (!rebooted) {
rtnl_lock();
myri10ge_close(mgp->dev);
}
status = myri10ge_load_firmware(mgp, 1);
if (status != 0)
netdev_err(mgp->dev, "failed to load firmware\n");
else
myri10ge_open(mgp->dev);
rtnl_unlock();
}
/*
* We use our own timer routine rather than relying upon
* netdev->tx_timeout because we have a very large hardware transmit
* queue. Due to the large queue, the netdev->tx_timeout function
* cannot detect a NIC with a parity error in a timely fashion if the
* NIC is lightly loaded.
*/
static void myri10ge_watchdog_timer(unsigned long arg)
{
struct myri10ge_priv *mgp;
struct myri10ge_slice_state *ss;
int i, reset_needed, busy_slice_cnt;
u32 rx_pause_cnt;
u16 cmd;
mgp = (struct myri10ge_priv *)arg;
rx_pause_cnt = ntohl(mgp->ss[0].fw_stats->dropped_pause);
busy_slice_cnt = 0;
for (i = 0, reset_needed = 0;
i < mgp->num_slices && reset_needed == 0; ++i) {
ss = &mgp->ss[i];
if (ss->rx_small.watchdog_needed) {
myri10ge_alloc_rx_pages(mgp, &ss->rx_small,
mgp->small_bytes + MXGEFW_PAD,
1);
if (ss->rx_small.fill_cnt - ss->rx_small.cnt >=
myri10ge_fill_thresh)
ss->rx_small.watchdog_needed = 0;
}
if (ss->rx_big.watchdog_needed) {
myri10ge_alloc_rx_pages(mgp, &ss->rx_big,
mgp->big_bytes, 1);
if (ss->rx_big.fill_cnt - ss->rx_big.cnt >=
myri10ge_fill_thresh)
ss->rx_big.watchdog_needed = 0;
}
myri10ge_check_slice(ss, &reset_needed, &busy_slice_cnt,
rx_pause_cnt);
}
/* if we've sent or received no traffic, poll the NIC to
* ensure it is still there. Otherwise, we risk not noticing
* an error in a timely fashion */
if (busy_slice_cnt == 0) {
pci_read_config_word(mgp->pdev, PCI_COMMAND, &cmd);
if ((cmd & PCI_COMMAND_MASTER) == 0) {
reset_needed = 1;
}
}
mgp->watchdog_pause = rx_pause_cnt;
if (reset_needed) {
schedule_work(&mgp->watchdog_work);
} else {
/* rearm timer */
mod_timer(&mgp->watchdog_timer,
jiffies + myri10ge_watchdog_timeout * HZ);
}
}
static void myri10ge_free_slices(struct myri10ge_priv *mgp)
{
struct myri10ge_slice_state *ss;
struct pci_dev *pdev = mgp->pdev;
size_t bytes;
int i;
if (mgp->ss == NULL)
return;
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
if (ss->rx_done.entry != NULL) {
bytes = mgp->max_intr_slots *
sizeof(*ss->rx_done.entry);
dma_free_coherent(&pdev->dev, bytes,
ss->rx_done.entry, ss->rx_done.bus);
ss->rx_done.entry = NULL;
}
if (ss->fw_stats != NULL) {
bytes = sizeof(*ss->fw_stats);
dma_free_coherent(&pdev->dev, bytes,
ss->fw_stats, ss->fw_stats_bus);
ss->fw_stats = NULL;
}
netif_napi_del(&ss->napi);
}
kfree(mgp->ss);
mgp->ss = NULL;
}
static int myri10ge_alloc_slices(struct myri10ge_priv *mgp)
{
struct myri10ge_slice_state *ss;
struct pci_dev *pdev = mgp->pdev;
size_t bytes;
int i;
bytes = sizeof(*mgp->ss) * mgp->num_slices;
mgp->ss = kzalloc(bytes, GFP_KERNEL);
if (mgp->ss == NULL) {
return -ENOMEM;
}
for (i = 0; i < mgp->num_slices; i++) {
ss = &mgp->ss[i];
bytes = mgp->max_intr_slots * sizeof(*ss->rx_done.entry);
ss->rx_done.entry = dma_alloc_coherent(&pdev->dev, bytes,
&ss->rx_done.bus,
GFP_KERNEL);
if (ss->rx_done.entry == NULL)
goto abort;
memset(ss->rx_done.entry, 0, bytes);
bytes = sizeof(*ss->fw_stats);
ss->fw_stats = dma_alloc_coherent(&pdev->dev, bytes,
&ss->fw_stats_bus,
GFP_KERNEL);
if (ss->fw_stats == NULL)
goto abort;
ss->mgp = mgp;
ss->dev = mgp->dev;
netif_napi_add(ss->dev, &ss->napi, myri10ge_poll,
myri10ge_napi_weight);
}
return 0;
abort:
myri10ge_free_slices(mgp);
return -ENOMEM;
}
/*
* This function determines the number of slices supported.
* The number slices is the minimum of the number of CPUS,
* the number of MSI-X irqs supported, the number of slices
* supported by the firmware
*/
static void myri10ge_probe_slices(struct myri10ge_priv *mgp)
{
struct myri10ge_cmd cmd;
struct pci_dev *pdev = mgp->pdev;
char *old_fw;
bool old_allocated;
int i, status, ncpus, msix_cap;
mgp->num_slices = 1;
msix_cap = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
ncpus = num_online_cpus();
if (myri10ge_max_slices == 1 || msix_cap == 0 ||
(myri10ge_max_slices == -1 && ncpus < 2))
return;
/* try to load the slice aware rss firmware */
old_fw = mgp->fw_name;
old_allocated = mgp->fw_name_allocated;
/* don't free old_fw if we override it. */
mgp->fw_name_allocated = false;
if (myri10ge_fw_name != NULL) {
dev_info(&mgp->pdev->dev, "overriding rss firmware to %s\n",
myri10ge_fw_name);
set_fw_name(mgp, myri10ge_fw_name, false);
} else if (old_fw == myri10ge_fw_aligned)
set_fw_name(mgp, myri10ge_fw_rss_aligned, false);
else
set_fw_name(mgp, myri10ge_fw_rss_unaligned, false);
status = myri10ge_load_firmware(mgp, 0);
if (status != 0) {
dev_info(&pdev->dev, "Rss firmware not found\n");
if (old_allocated)
kfree(old_fw);
return;
}
/* hit the board with a reset to ensure it is alive */
memset(&cmd, 0, sizeof(cmd));
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_RESET, &cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed reset\n");
goto abort_with_fw;
}
mgp->max_intr_slots = cmd.data0 / sizeof(struct mcp_slot);
/* tell it the size of the interrupt queues */
cmd.data0 = mgp->max_intr_slots * sizeof(struct mcp_slot);
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed MXGEFW_CMD_SET_INTRQ_SIZE\n");
goto abort_with_fw;
}
/* ask the maximum number of slices it supports */
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_MAX_RSS_QUEUES, &cmd, 0);
if (status != 0)
goto abort_with_fw;
else
mgp->num_slices = cmd.data0;
/* Only allow multiple slices if MSI-X is usable */
if (!myri10ge_msi) {
goto abort_with_fw;
}
/* if the admin did not specify a limit to how many
* slices we should use, cap it automatically to the
* number of CPUs currently online */
if (myri10ge_max_slices == -1)
myri10ge_max_slices = ncpus;
if (mgp->num_slices > myri10ge_max_slices)
mgp->num_slices = myri10ge_max_slices;
/* Now try to allocate as many MSI-X vectors as we have
* slices. We give up on MSI-X if we can only get a single
* vector. */
mgp->msix_vectors = kcalloc(mgp->num_slices, sizeof(*mgp->msix_vectors),
GFP_KERNEL);
if (mgp->msix_vectors == NULL)
goto disable_msix;
for (i = 0; i < mgp->num_slices; i++) {
mgp->msix_vectors[i].entry = i;
}
while (mgp->num_slices > 1) {
/* make sure it is a power of two */
while (!is_power_of_2(mgp->num_slices))
mgp->num_slices--;
if (mgp->num_slices == 1)
goto disable_msix;
status = pci_enable_msix(pdev, mgp->msix_vectors,
mgp->num_slices);
if (status == 0) {
pci_disable_msix(pdev);
if (old_allocated)
kfree(old_fw);
return;
}
if (status > 0)
mgp->num_slices = status;
else
goto disable_msix;
}
disable_msix:
if (mgp->msix_vectors != NULL) {
kfree(mgp->msix_vectors);
mgp->msix_vectors = NULL;
}
abort_with_fw:
mgp->num_slices = 1;
set_fw_name(mgp, old_fw, old_allocated);
myri10ge_load_firmware(mgp, 0);
}
static const struct net_device_ops myri10ge_netdev_ops = {
.ndo_open = myri10ge_open,
.ndo_stop = myri10ge_close,
.ndo_start_xmit = myri10ge_xmit,
.ndo_get_stats64 = myri10ge_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = myri10ge_change_mtu,
.ndo_fix_features = myri10ge_fix_features,
.ndo_set_rx_mode = myri10ge_set_multicast_list,
.ndo_set_mac_address = myri10ge_set_mac_address,
};
static int myri10ge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct myri10ge_priv *mgp;
struct device *dev = &pdev->dev;
int i;
int status = -ENXIO;
int dac_enabled;
unsigned hdr_offset, ss_offset;
static int board_number;
netdev = alloc_etherdev_mq(sizeof(*mgp), MYRI10GE_MAX_SLICES);
if (netdev == NULL) {
dev_err(dev, "Could not allocate ethernet device\n");
return -ENOMEM;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
mgp = netdev_priv(netdev);
mgp->dev = netdev;
mgp->pdev = pdev;
mgp->pause = myri10ge_flow_control;
mgp->intr_coal_delay = myri10ge_intr_coal_delay;
mgp->msg_enable = netif_msg_init(myri10ge_debug, MYRI10GE_MSG_DEFAULT);
mgp->board_number = board_number;
init_waitqueue_head(&mgp->down_wq);
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev, "pci_enable_device call failed\n");
status = -ENODEV;
goto abort_with_netdev;
}
/* Find the vendor-specific cap so we can check
* the reboot register later on */
mgp->vendor_specific_offset
= pci_find_capability(pdev, PCI_CAP_ID_VNDR);
/* Set our max read request to 4KB */
status = pcie_set_readrq(pdev, 4096);
if (status != 0) {
dev_err(&pdev->dev, "Error %d writing PCI_EXP_DEVCTL\n",
status);
goto abort_with_enabled;
}
myri10ge_mask_surprise_down(pdev);
pci_set_master(pdev);
dac_enabled = 1;
status = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (status != 0) {
dac_enabled = 0;
dev_err(&pdev->dev,
"64-bit pci address mask was refused, "
"trying 32-bit\n");
status = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
}
if (status != 0) {
dev_err(&pdev->dev, "Error %d setting DMA mask\n", status);
goto abort_with_enabled;
}
(void)pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
mgp->cmd = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->cmd),
&mgp->cmd_bus, GFP_KERNEL);
if (mgp->cmd == NULL)
goto abort_with_enabled;
mgp->board_span = pci_resource_len(pdev, 0);
mgp->iomem_base = pci_resource_start(pdev, 0);
mgp->mtrr = -1;
mgp->wc_enabled = 0;
#ifdef CONFIG_MTRR
mgp->mtrr = mtrr_add(mgp->iomem_base, mgp->board_span,
MTRR_TYPE_WRCOMB, 1);
if (mgp->mtrr >= 0)
mgp->wc_enabled = 1;
#endif
mgp->sram = ioremap_wc(mgp->iomem_base, mgp->board_span);
if (mgp->sram == NULL) {
dev_err(&pdev->dev, "ioremap failed for %ld bytes at 0x%lx\n",
mgp->board_span, mgp->iomem_base);
status = -ENXIO;
goto abort_with_mtrr;
}
hdr_offset =
ntohl(__raw_readl(mgp->sram + MCP_HEADER_PTR_OFFSET)) & 0xffffc;
ss_offset = hdr_offset + offsetof(struct mcp_gen_header, string_specs);
mgp->sram_size = ntohl(__raw_readl(mgp->sram + ss_offset));
if (mgp->sram_size > mgp->board_span ||
mgp->sram_size <= MYRI10GE_FW_OFFSET) {
dev_err(&pdev->dev,
"invalid sram_size %dB or board span %ldB\n",
mgp->sram_size, mgp->board_span);
goto abort_with_ioremap;
}
memcpy_fromio(mgp->eeprom_strings,
mgp->sram + mgp->sram_size, MYRI10GE_EEPROM_STRINGS_SIZE);
memset(mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE - 2, 0, 2);
status = myri10ge_read_mac_addr(mgp);
if (status)
goto abort_with_ioremap;
for (i = 0; i < ETH_ALEN; i++)
netdev->dev_addr[i] = mgp->mac_addr[i];
myri10ge_select_firmware(mgp);
status = myri10ge_load_firmware(mgp, 1);
if (status != 0) {
dev_err(&pdev->dev, "failed to load firmware\n");
goto abort_with_ioremap;
}
myri10ge_probe_slices(mgp);
status = myri10ge_alloc_slices(mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to alloc slice state\n");
goto abort_with_firmware;
}
netif_set_real_num_tx_queues(netdev, mgp->num_slices);
netif_set_real_num_rx_queues(netdev, mgp->num_slices);
status = myri10ge_reset(mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed reset\n");
goto abort_with_slices;
}
#ifdef CONFIG_MYRI10GE_DCA
myri10ge_setup_dca(mgp);
#endif
pci_set_drvdata(pdev, mgp);
if ((myri10ge_initial_mtu + ETH_HLEN) > MYRI10GE_MAX_ETHER_MTU)
myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
if ((myri10ge_initial_mtu + ETH_HLEN) < 68)
myri10ge_initial_mtu = 68;
netdev->netdev_ops = &myri10ge_netdev_ops;
netdev->mtu = myri10ge_initial_mtu;
netdev->base_addr = mgp->iomem_base;
netdev->hw_features = mgp->features | NETIF_F_LRO | NETIF_F_RXCSUM;
netdev->features = netdev->hw_features;
if (dac_enabled)
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= mgp->features;
if (mgp->fw_ver_tiny < 37)
netdev->vlan_features &= ~NETIF_F_TSO6;
if (mgp->fw_ver_tiny < 32)
netdev->vlan_features &= ~NETIF_F_TSO;
/* make sure we can get an irq, and that MSI can be
* setup (if available). Also ensure netdev->irq
* is set to correct value if MSI is enabled */
status = myri10ge_request_irq(mgp);
if (status != 0)
goto abort_with_firmware;
netdev->irq = pdev->irq;
myri10ge_free_irq(mgp);
/* Save configuration space to be restored if the
* nic resets due to a parity error */
pci_save_state(pdev);
/* Setup the watchdog timer */
setup_timer(&mgp->watchdog_timer, myri10ge_watchdog_timer,
(unsigned long)mgp);
SET_ETHTOOL_OPS(netdev, &myri10ge_ethtool_ops);
INIT_WORK(&mgp->watchdog_work, myri10ge_watchdog);
status = register_netdev(netdev);
if (status != 0) {
dev_err(&pdev->dev, "register_netdev failed: %d\n", status);
goto abort_with_state;
}
if (mgp->msix_enabled)
dev_info(dev, "%d MSI-X IRQs, tx bndry %d, fw %s, WC %s\n",
mgp->num_slices, mgp->tx_boundary, mgp->fw_name,
(mgp->wc_enabled ? "Enabled" : "Disabled"));
else
dev_info(dev, "%s IRQ %d, tx bndry %d, fw %s, WC %s\n",
mgp->msi_enabled ? "MSI" : "xPIC",
netdev->irq, mgp->tx_boundary, mgp->fw_name,
(mgp->wc_enabled ? "Enabled" : "Disabled"));
board_number++;
return 0;
abort_with_state:
pci_restore_state(pdev);
abort_with_slices:
myri10ge_free_slices(mgp);
abort_with_firmware:
myri10ge_dummy_rdma(mgp, 0);
abort_with_ioremap:
if (mgp->mac_addr_string != NULL)
dev_err(&pdev->dev,
"myri10ge_probe() failed: MAC=%s, SN=%ld\n",
mgp->mac_addr_string, mgp->serial_number);
iounmap(mgp->sram);
abort_with_mtrr:
#ifdef CONFIG_MTRR
if (mgp->mtrr >= 0)
mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
#endif
dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd),
mgp->cmd, mgp->cmd_bus);
abort_with_enabled:
pci_disable_device(pdev);
abort_with_netdev:
set_fw_name(mgp, NULL, false);
free_netdev(netdev);
return status;
}
/*
* myri10ge_remove
*
* Does what is necessary to shutdown one Myrinet device. Called
* once for each Myrinet card by the kernel when a module is
* unloaded.
*/
static void myri10ge_remove(struct pci_dev *pdev)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return;
cancel_work_sync(&mgp->watchdog_work);
netdev = mgp->dev;
unregister_netdev(netdev);
#ifdef CONFIG_MYRI10GE_DCA
myri10ge_teardown_dca(mgp);
#endif
myri10ge_dummy_rdma(mgp, 0);
/* avoid a memory leak */
pci_restore_state(pdev);
iounmap(mgp->sram);
#ifdef CONFIG_MTRR
if (mgp->mtrr >= 0)
mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
#endif
myri10ge_free_slices(mgp);
if (mgp->msix_vectors != NULL)
kfree(mgp->msix_vectors);
dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd),
mgp->cmd, mgp->cmd_bus);
set_fw_name(mgp, NULL, false);
free_netdev(netdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
#define PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E 0x0008
#define PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E_9 0x0009
static DEFINE_PCI_DEVICE_TABLE(myri10ge_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_MYRICOM, PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E)},
{PCI_DEVICE
(PCI_VENDOR_ID_MYRICOM, PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E_9)},
{0},
};
MODULE_DEVICE_TABLE(pci, myri10ge_pci_tbl);
static struct pci_driver myri10ge_driver = {
.name = "myri10ge",
.probe = myri10ge_probe,
.remove = myri10ge_remove,
.id_table = myri10ge_pci_tbl,
#ifdef CONFIG_PM
.suspend = myri10ge_suspend,
.resume = myri10ge_resume,
#endif
};
#ifdef CONFIG_MYRI10GE_DCA
static int
myri10ge_notify_dca(struct notifier_block *nb, unsigned long event, void *p)
{
int err = driver_for_each_device(&myri10ge_driver.driver,
NULL, &event,
myri10ge_notify_dca_device);
if (err)
return NOTIFY_BAD;
return NOTIFY_DONE;
}
static struct notifier_block myri10ge_dca_notifier = {
.notifier_call = myri10ge_notify_dca,
.next = NULL,
.priority = 0,
};
#endif /* CONFIG_MYRI10GE_DCA */
static __init int myri10ge_init_module(void)
{
pr_info("Version %s\n", MYRI10GE_VERSION_STR);
if (myri10ge_rss_hash > MXGEFW_RSS_HASH_TYPE_MAX) {
pr_err("Illegal rssh hash type %d, defaulting to source port\n",
myri10ge_rss_hash);
myri10ge_rss_hash = MXGEFW_RSS_HASH_TYPE_SRC_PORT;
}
#ifdef CONFIG_MYRI10GE_DCA
dca_register_notify(&myri10ge_dca_notifier);
#endif
if (myri10ge_max_slices > MYRI10GE_MAX_SLICES)
myri10ge_max_slices = MYRI10GE_MAX_SLICES;
return pci_register_driver(&myri10ge_driver);
}
module_init(myri10ge_init_module);
static __exit void myri10ge_cleanup_module(void)
{
#ifdef CONFIG_MYRI10GE_DCA
dca_unregister_notify(&myri10ge_dca_notifier);
#endif
pci_unregister_driver(&myri10ge_driver);
}
module_exit(myri10ge_cleanup_module);