blob: 0d96a510389f412c0287f4f67484a23ae71356f1 [file] [log] [blame]
/*
* exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
*
* Copyright (C) 2011 Samsung Electronics
* Donggeun Kim <dg77.kim@samsung.com>
* Amit Daniel Kachhap <amit.kachhap@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include "exynos_thermal_common.h"
#include "exynos_tmu.h"
#include "exynos_tmu_data.h"
/**
* struct exynos_tmu_data : A structure to hold the private data of the TMU
driver
* @id: identifier of the one instance of the TMU controller.
* @pdata: pointer to the tmu platform/configuration data
* @base: base address of the single instance of the TMU controller.
* @base_common: base address of the common registers of the TMU controller.
* @irq: irq number of the TMU controller.
* @soc: id of the SOC type.
* @irq_work: pointer to the irq work structure.
* @lock: lock to implement synchronization.
* @clk: pointer to the clock structure.
* @temp_error1: fused value of the first point trim.
* @temp_error2: fused value of the second point trim.
* @regulator: pointer to the TMU regulator structure.
* @reg_conf: pointer to structure to register with core thermal.
*/
struct exynos_tmu_data {
int id;
struct exynos_tmu_platform_data *pdata;
void __iomem *base;
void __iomem *base_common;
int irq;
enum soc_type soc;
struct work_struct irq_work;
struct mutex lock;
struct clk *clk;
u8 temp_error1, temp_error2;
struct regulator *regulator;
struct thermal_sensor_conf *reg_conf;
};
/*
* TMU treats temperature as a mapped temperature code.
* The temperature is converted differently depending on the calibration type.
*/
static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
int temp_code;
if (pdata->cal_mode == HW_MODE)
return temp;
if (data->soc == SOC_ARCH_EXYNOS4210)
/* temp should range between 25 and 125 */
if (temp < 25 || temp > 125) {
temp_code = -EINVAL;
goto out;
}
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
temp_code = (temp - pdata->first_point_trim) *
(data->temp_error2 - data->temp_error1) /
(pdata->second_point_trim - pdata->first_point_trim) +
data->temp_error1;
break;
case TYPE_ONE_POINT_TRIMMING:
temp_code = temp + data->temp_error1 - pdata->first_point_trim;
break;
default:
temp_code = temp + pdata->default_temp_offset;
break;
}
out:
return temp_code;
}
/*
* Calculate a temperature value from a temperature code.
* The unit of the temperature is degree Celsius.
*/
static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
int temp;
if (pdata->cal_mode == HW_MODE)
return temp_code;
if (data->soc == SOC_ARCH_EXYNOS4210)
/* temp_code should range between 75 and 175 */
if (temp_code < 75 || temp_code > 175) {
temp = -ENODATA;
goto out;
}
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
temp = (temp_code - data->temp_error1) *
(pdata->second_point_trim - pdata->first_point_trim) /
(data->temp_error2 - data->temp_error1) +
pdata->first_point_trim;
break;
case TYPE_ONE_POINT_TRIMMING:
temp = temp_code - data->temp_error1 + pdata->first_point_trim;
break;
default:
temp = temp_code - pdata->default_temp_offset;
break;
}
out:
return temp;
}
static int exynos_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct exynos_tmu_platform_data *pdata = data->pdata;
const struct exynos_tmu_registers *reg = pdata->registers;
unsigned int status, trim_info = 0, con;
unsigned int rising_threshold = 0, falling_threshold = 0;
int ret = 0, threshold_code, i, trigger_levs = 0;
mutex_lock(&data->lock);
clk_enable(data->clk);
if (TMU_SUPPORTS(pdata, READY_STATUS)) {
status = readb(data->base + reg->tmu_status);
if (!status) {
ret = -EBUSY;
goto out;
}
}
if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
__raw_writel(1, data->base + reg->triminfo_ctrl);
if (pdata->cal_mode == HW_MODE)
goto skip_calib_data;
/* Save trimming info in order to perform calibration */
if (data->soc == SOC_ARCH_EXYNOS5440) {
/*
* For exynos5440 soc triminfo value is swapped between TMU0 and
* TMU2, so the below logic is needed.
*/
switch (data->id) {
case 0:
trim_info = readl(data->base +
EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
break;
case 1:
trim_info = readl(data->base + reg->triminfo_data);
break;
case 2:
trim_info = readl(data->base -
EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
}
} else {
trim_info = readl(data->base + reg->triminfo_data);
}
data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
EXYNOS_TMU_TEMP_MASK);
if (!data->temp_error1 ||
(pdata->min_efuse_value > data->temp_error1) ||
(data->temp_error1 > pdata->max_efuse_value))
data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
if (!data->temp_error2)
data->temp_error2 =
(pdata->efuse_value >> reg->triminfo_85_shift) &
EXYNOS_TMU_TEMP_MASK;
skip_calib_data:
if (pdata->max_trigger_level > MAX_THRESHOLD_LEVS) {
dev_err(&pdev->dev, "Invalid max trigger level\n");
ret = -EINVAL;
goto out;
}
for (i = 0; i < pdata->max_trigger_level; i++) {
if (!pdata->trigger_levels[i])
continue;
if ((pdata->trigger_type[i] == HW_TRIP) &&
(!pdata->trigger_levels[pdata->max_trigger_level - 1])) {
dev_err(&pdev->dev, "Invalid hw trigger level\n");
ret = -EINVAL;
goto out;
}
/* Count trigger levels except the HW trip*/
if (!(pdata->trigger_type[i] == HW_TRIP))
trigger_levs++;
}
if (data->soc == SOC_ARCH_EXYNOS4210) {
/* Write temperature code for threshold */
threshold_code = temp_to_code(data, pdata->threshold);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
writeb(threshold_code,
data->base + reg->threshold_temp);
for (i = 0; i < trigger_levs; i++)
writeb(pdata->trigger_levels[i], data->base +
reg->threshold_th0 + i * sizeof(reg->threshold_th0));
writel(reg->inten_rise_mask, data->base + reg->tmu_intclear);
} else {
/* Write temperature code for rising and falling threshold */
for (i = 0;
i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
threshold_code = temp_to_code(data,
pdata->trigger_levels[i]);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
rising_threshold |= threshold_code << 8 * i;
if (pdata->threshold_falling) {
threshold_code = temp_to_code(data,
pdata->trigger_levels[i] -
pdata->threshold_falling);
if (threshold_code > 0)
falling_threshold |=
threshold_code << 8 * i;
}
}
writel(rising_threshold,
data->base + reg->threshold_th0);
writel(falling_threshold,
data->base + reg->threshold_th1);
writel((reg->inten_rise_mask << reg->inten_rise_shift) |
(reg->inten_fall_mask << reg->inten_fall_shift),
data->base + reg->tmu_intclear);
/* if last threshold limit is also present */
i = pdata->max_trigger_level - 1;
if (pdata->trigger_levels[i] &&
(pdata->trigger_type[i] == HW_TRIP)) {
threshold_code = temp_to_code(data,
pdata->trigger_levels[i]);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
/* 1-4 level to be assigned in th0 reg */
rising_threshold |= threshold_code << 8 * i;
writel(rising_threshold,
data->base + reg->threshold_th0);
} else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
/* 5th level to be assigned in th2 reg */
rising_threshold =
threshold_code << reg->threshold_th3_l0_shift;
writel(rising_threshold,
data->base + reg->threshold_th2);
}
con = readl(data->base + reg->tmu_ctrl);
con |= (1 << reg->therm_trip_en_shift);
writel(con, data->base + reg->tmu_ctrl);
}
}
/*Clear the PMIN in the common TMU register*/
if (reg->tmu_pmin && !data->id)
writel(0, data->base_common + reg->tmu_pmin);
out:
clk_disable(data->clk);
mutex_unlock(&data->lock);
return ret;
}
static void exynos_tmu_control(struct platform_device *pdev, bool on)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct exynos_tmu_platform_data *pdata = data->pdata;
const struct exynos_tmu_registers *reg = pdata->registers;
unsigned int con, interrupt_en, cal_val;
mutex_lock(&data->lock);
clk_enable(data->clk);
con = readl(data->base + reg->tmu_ctrl);
if (pdata->test_mux)
con |= (pdata->test_mux << reg->test_mux_addr_shift);
if (pdata->reference_voltage) {
con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
}
if (pdata->gain) {
con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
con |= (pdata->gain << reg->buf_slope_sel_shift);
}
if (pdata->noise_cancel_mode) {
con &= ~(reg->therm_trip_mode_mask <<
reg->therm_trip_mode_shift);
con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
}
if (pdata->cal_mode == HW_MODE) {
con &= ~(reg->calib_mode_mask << reg->calib_mode_shift);
cal_val = 0;
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
cal_val = 3;
break;
case TYPE_ONE_POINT_TRIMMING_85:
cal_val = 2;
break;
case TYPE_ONE_POINT_TRIMMING_25:
cal_val = 1;
break;
case TYPE_NONE:
break;
default:
dev_err(&pdev->dev, "Invalid calibration type, using none\n");
}
con |= cal_val << reg->calib_mode_shift;
}
if (on) {
con |= (1 << reg->core_en_shift);
interrupt_en =
pdata->trigger_enable[3] << reg->inten_rise3_shift |
pdata->trigger_enable[2] << reg->inten_rise2_shift |
pdata->trigger_enable[1] << reg->inten_rise1_shift |
pdata->trigger_enable[0] << reg->inten_rise0_shift;
if (TMU_SUPPORTS(pdata, FALLING_TRIP))
interrupt_en |=
interrupt_en << reg->inten_fall0_shift;
} else {
con &= ~(1 << reg->core_en_shift);
interrupt_en = 0; /* Disable all interrupts */
}
writel(interrupt_en, data->base + reg->tmu_inten);
writel(con, data->base + reg->tmu_ctrl);
clk_disable(data->clk);
mutex_unlock(&data->lock);
}
static int exynos_tmu_read(struct exynos_tmu_data *data)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
const struct exynos_tmu_registers *reg = pdata->registers;
u8 temp_code;
int temp;
mutex_lock(&data->lock);
clk_enable(data->clk);
temp_code = readb(data->base + reg->tmu_cur_temp);
temp = code_to_temp(data, temp_code);
clk_disable(data->clk);
mutex_unlock(&data->lock);
return temp;
}
#ifdef CONFIG_THERMAL_EMULATION
static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
{
struct exynos_tmu_data *data = drv_data;
struct exynos_tmu_platform_data *pdata = data->pdata;
const struct exynos_tmu_registers *reg = pdata->registers;
unsigned int val;
int ret = -EINVAL;
if (!TMU_SUPPORTS(pdata, EMULATION))
goto out;
if (temp && temp < MCELSIUS)
goto out;
mutex_lock(&data->lock);
clk_enable(data->clk);
val = readl(data->base + reg->emul_con);
if (temp) {
temp /= MCELSIUS;
if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
}
val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
EXYNOS_EMUL_ENABLE;
} else {
val &= ~EXYNOS_EMUL_ENABLE;
}
writel(val, data->base + reg->emul_con);
clk_disable(data->clk);
mutex_unlock(&data->lock);
return 0;
out:
return ret;
}
#else
static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
{ return -EINVAL; }
#endif/*CONFIG_THERMAL_EMULATION*/
static void exynos_tmu_work(struct work_struct *work)
{
struct exynos_tmu_data *data = container_of(work,
struct exynos_tmu_data, irq_work);
struct exynos_tmu_platform_data *pdata = data->pdata;
const struct exynos_tmu_registers *reg = pdata->registers;
unsigned int val_irq, val_type;
/* Find which sensor generated this interrupt */
if (reg->tmu_irqstatus) {
val_type = readl(data->base_common + reg->tmu_irqstatus);
if (!((val_type >> data->id) & 0x1))
goto out;
}
exynos_report_trigger(data->reg_conf);
mutex_lock(&data->lock);
clk_enable(data->clk);
/* TODO: take action based on particular interrupt */
val_irq = readl(data->base + reg->tmu_intstat);
/* clear the interrupts */
writel(val_irq, data->base + reg->tmu_intclear);
clk_disable(data->clk);
mutex_unlock(&data->lock);
out:
enable_irq(data->irq);
}
static irqreturn_t exynos_tmu_irq(int irq, void *id)
{
struct exynos_tmu_data *data = id;
disable_irq_nosync(irq);
schedule_work(&data->irq_work);
return IRQ_HANDLED;
}
static const struct of_device_id exynos_tmu_match[] = {
{
.compatible = "samsung,exynos4210-tmu",
.data = (void *)EXYNOS4210_TMU_DRV_DATA,
},
{
.compatible = "samsung,exynos4412-tmu",
.data = (void *)EXYNOS4412_TMU_DRV_DATA,
},
{
.compatible = "samsung,exynos5250-tmu",
.data = (void *)EXYNOS5250_TMU_DRV_DATA,
},
{
.compatible = "samsung,exynos5440-tmu",
.data = (void *)EXYNOS5440_TMU_DRV_DATA,
},
{},
};
MODULE_DEVICE_TABLE(of, exynos_tmu_match);
static inline struct exynos_tmu_platform_data *exynos_get_driver_data(
struct platform_device *pdev, int id)
{
struct exynos_tmu_init_data *data_table;
struct exynos_tmu_platform_data *tmu_data;
const struct of_device_id *match;
match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
if (!match)
return NULL;
data_table = (struct exynos_tmu_init_data *) match->data;
if (!data_table || id >= data_table->tmu_count)
return NULL;
tmu_data = data_table->tmu_data;
return (struct exynos_tmu_platform_data *) (tmu_data + id);
}
static int exynos_map_dt_data(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct exynos_tmu_platform_data *pdata;
struct resource res;
int ret;
if (!data || !pdev->dev.of_node)
return -ENODEV;
/*
* Try enabling the regulator if found
* TODO: Add regulator as an SOC feature, so that regulator enable
* is a compulsory call.
*/
data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
if (!IS_ERR(data->regulator)) {
ret = regulator_enable(data->regulator);
if (ret) {
dev_err(&pdev->dev, "failed to enable vtmu\n");
return ret;
}
} else {
dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
}
data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
if (data->id < 0)
data->id = 0;
data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
if (data->irq <= 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
return -ENODEV;
}
if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
dev_err(&pdev->dev, "failed to get Resource 0\n");
return -ENODEV;
}
data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
if (!data->base) {
dev_err(&pdev->dev, "Failed to ioremap memory\n");
return -EADDRNOTAVAIL;
}
pdata = exynos_get_driver_data(pdev, data->id);
if (!pdata) {
dev_err(&pdev->dev, "No platform init data supplied.\n");
return -ENODEV;
}
data->pdata = pdata;
/*
* Check if the TMU shares some registers and then try to map the
* memory of common registers.
*/
if (!TMU_SUPPORTS(pdata, SHARED_MEMORY))
return 0;
if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
dev_err(&pdev->dev, "failed to get Resource 1\n");
return -ENODEV;
}
data->base_common = devm_ioremap(&pdev->dev, res.start,
resource_size(&res));
if (!data->base_common) {
dev_err(&pdev->dev, "Failed to ioremap memory\n");
return -ENOMEM;
}
return 0;
}
static int exynos_tmu_probe(struct platform_device *pdev)
{
struct exynos_tmu_data *data;
struct exynos_tmu_platform_data *pdata;
struct thermal_sensor_conf *sensor_conf;
int ret, i;
data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
GFP_KERNEL);
if (!data) {
dev_err(&pdev->dev, "Failed to allocate driver structure\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, data);
mutex_init(&data->lock);
ret = exynos_map_dt_data(pdev);
if (ret)
return ret;
pdata = data->pdata;
INIT_WORK(&data->irq_work, exynos_tmu_work);
data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
if (IS_ERR(data->clk)) {
dev_err(&pdev->dev, "Failed to get clock\n");
return PTR_ERR(data->clk);
}
ret = clk_prepare(data->clk);
if (ret)
return ret;
if (pdata->type == SOC_ARCH_EXYNOS4210 ||
pdata->type == SOC_ARCH_EXYNOS4412 ||
pdata->type == SOC_ARCH_EXYNOS5250 ||
pdata->type == SOC_ARCH_EXYNOS5440)
data->soc = pdata->type;
else {
ret = -EINVAL;
dev_err(&pdev->dev, "Platform not supported\n");
goto err_clk;
}
ret = exynos_tmu_initialize(pdev);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize TMU\n");
goto err_clk;
}
exynos_tmu_control(pdev, true);
/* Allocate a structure to register with the exynos core thermal */
sensor_conf = devm_kzalloc(&pdev->dev,
sizeof(struct thermal_sensor_conf), GFP_KERNEL);
if (!sensor_conf) {
dev_err(&pdev->dev, "Failed to allocate registration struct\n");
ret = -ENOMEM;
goto err_clk;
}
sprintf(sensor_conf->name, "therm_zone%d", data->id);
sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
sensor_conf->write_emul_temp =
(int (*)(void *, unsigned long))exynos_tmu_set_emulation;
sensor_conf->driver_data = data;
sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
pdata->trigger_enable[1] + pdata->trigger_enable[2]+
pdata->trigger_enable[3];
for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
sensor_conf->trip_data.trip_val[i] =
pdata->threshold + pdata->trigger_levels[i];
sensor_conf->trip_data.trip_type[i] =
pdata->trigger_type[i];
}
sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
for (i = 0; i < pdata->freq_tab_count; i++) {
sensor_conf->cooling_data.freq_data[i].freq_clip_max =
pdata->freq_tab[i].freq_clip_max;
sensor_conf->cooling_data.freq_data[i].temp_level =
pdata->freq_tab[i].temp_level;
}
sensor_conf->dev = &pdev->dev;
/* Register the sensor with thermal management interface */
ret = exynos_register_thermal(sensor_conf);
if (ret) {
dev_err(&pdev->dev, "Failed to register thermal interface\n");
goto err_clk;
}
data->reg_conf = sensor_conf;
ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
goto err_clk;
}
return 0;
err_clk:
clk_unprepare(data->clk);
return ret;
}
static int exynos_tmu_remove(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
exynos_tmu_control(pdev, false);
exynos_unregister_thermal(data->reg_conf);
clk_unprepare(data->clk);
if (!IS_ERR(data->regulator))
regulator_disable(data->regulator);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int exynos_tmu_suspend(struct device *dev)
{
exynos_tmu_control(to_platform_device(dev), false);
return 0;
}
static int exynos_tmu_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
exynos_tmu_initialize(pdev);
exynos_tmu_control(pdev, true);
return 0;
}
static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
exynos_tmu_suspend, exynos_tmu_resume);
#define EXYNOS_TMU_PM (&exynos_tmu_pm)
#else
#define EXYNOS_TMU_PM NULL
#endif
static struct platform_driver exynos_tmu_driver = {
.driver = {
.name = "exynos-tmu",
.owner = THIS_MODULE,
.pm = EXYNOS_TMU_PM,
.of_match_table = exynos_tmu_match,
},
.probe = exynos_tmu_probe,
.remove = exynos_tmu_remove,
};
module_platform_driver(exynos_tmu_driver);
MODULE_DESCRIPTION("EXYNOS TMU Driver");
MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:exynos-tmu");