| /* Lzma decompressor for Linux kernel. Shamelessly snarfed |
| *from busybox 1.1.1 |
| * |
| *Linux kernel adaptation |
| *Copyright (C) 2006 Alain < alain@knaff.lu > |
| * |
| *Based on small lzma deflate implementation/Small range coder |
| *implementation for lzma. |
| *Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org > |
| * |
| *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) |
| *Copyright (C) 1999-2005 Igor Pavlov |
| * |
| *Copyrights of the parts, see headers below. |
| * |
| * |
| *This program is free software; you can redistribute it and/or |
| *modify it under the terms of the GNU Lesser General Public |
| *License as published by the Free Software Foundation; either |
| *version 2.1 of the License, or (at your option) any later version. |
| * |
| *This program is distributed in the hope that it will be useful, |
| *but WITHOUT ANY WARRANTY; without even the implied warranty of |
| *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| *Lesser General Public License for more details. |
| * |
| *You should have received a copy of the GNU Lesser General Public |
| *License along with this library; if not, write to the Free Software |
| *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifdef STATIC |
| #define PREBOOT |
| #else |
| #include <linux/decompress/unlzma.h> |
| #endif /* STATIC */ |
| |
| #include <linux/decompress/mm.h> |
| |
| #define MIN(a, b) (((a) < (b)) ? (a) : (b)) |
| |
| static long long INIT read_int(unsigned char *ptr, int size) |
| { |
| int i; |
| long long ret = 0; |
| |
| for (i = 0; i < size; i++) |
| ret = (ret << 8) | ptr[size-i-1]; |
| return ret; |
| } |
| |
| #define ENDIAN_CONVERT(x) \ |
| x = (typeof(x))read_int((unsigned char *)&x, sizeof(x)) |
| |
| |
| /* Small range coder implementation for lzma. |
| *Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org > |
| * |
| *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) |
| *Copyright (c) 1999-2005 Igor Pavlov |
| */ |
| |
| #include <linux/compiler.h> |
| |
| #define LZMA_IOBUF_SIZE 0x10000 |
| |
| struct rc { |
| long (*fill)(void*, unsigned long); |
| uint8_t *ptr; |
| uint8_t *buffer; |
| uint8_t *buffer_end; |
| long buffer_size; |
| uint32_t code; |
| uint32_t range; |
| uint32_t bound; |
| void (*error)(char *); |
| }; |
| |
| |
| #define RC_TOP_BITS 24 |
| #define RC_MOVE_BITS 5 |
| #define RC_MODEL_TOTAL_BITS 11 |
| |
| |
| static long INIT nofill(void *buffer, unsigned long len) |
| { |
| return -1; |
| } |
| |
| /* Called twice: once at startup and once in rc_normalize() */ |
| static void INIT rc_read(struct rc *rc) |
| { |
| rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE); |
| if (rc->buffer_size <= 0) |
| rc->error("unexpected EOF"); |
| rc->ptr = rc->buffer; |
| rc->buffer_end = rc->buffer + rc->buffer_size; |
| } |
| |
| /* Called once */ |
| static inline void INIT rc_init(struct rc *rc, |
| long (*fill)(void*, unsigned long), |
| char *buffer, long buffer_size) |
| { |
| if (fill) |
| rc->fill = fill; |
| else |
| rc->fill = nofill; |
| rc->buffer = (uint8_t *)buffer; |
| rc->buffer_size = buffer_size; |
| rc->buffer_end = rc->buffer + rc->buffer_size; |
| rc->ptr = rc->buffer; |
| |
| rc->code = 0; |
| rc->range = 0xFFFFFFFF; |
| } |
| |
| static inline void INIT rc_init_code(struct rc *rc) |
| { |
| int i; |
| |
| for (i = 0; i < 5; i++) { |
| if (rc->ptr >= rc->buffer_end) |
| rc_read(rc); |
| rc->code = (rc->code << 8) | *rc->ptr++; |
| } |
| } |
| |
| |
| /* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */ |
| static void INIT rc_do_normalize(struct rc *rc) |
| { |
| if (rc->ptr >= rc->buffer_end) |
| rc_read(rc); |
| rc->range <<= 8; |
| rc->code = (rc->code << 8) | *rc->ptr++; |
| } |
| static inline void INIT rc_normalize(struct rc *rc) |
| { |
| if (rc->range < (1 << RC_TOP_BITS)) |
| rc_do_normalize(rc); |
| } |
| |
| /* Called 9 times */ |
| /* Why rc_is_bit_0_helper exists? |
| *Because we want to always expose (rc->code < rc->bound) to optimizer |
| */ |
| static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p) |
| { |
| rc_normalize(rc); |
| rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS); |
| return rc->bound; |
| } |
| static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p) |
| { |
| uint32_t t = rc_is_bit_0_helper(rc, p); |
| return rc->code < t; |
| } |
| |
| /* Called ~10 times, but very small, thus inlined */ |
| static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p) |
| { |
| rc->range = rc->bound; |
| *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS; |
| } |
| static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p) |
| { |
| rc->range -= rc->bound; |
| rc->code -= rc->bound; |
| *p -= *p >> RC_MOVE_BITS; |
| } |
| |
| /* Called 4 times in unlzma loop */ |
| static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol) |
| { |
| if (rc_is_bit_0(rc, p)) { |
| rc_update_bit_0(rc, p); |
| *symbol *= 2; |
| return 0; |
| } else { |
| rc_update_bit_1(rc, p); |
| *symbol = *symbol * 2 + 1; |
| return 1; |
| } |
| } |
| |
| /* Called once */ |
| static inline int INIT rc_direct_bit(struct rc *rc) |
| { |
| rc_normalize(rc); |
| rc->range >>= 1; |
| if (rc->code >= rc->range) { |
| rc->code -= rc->range; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Called twice */ |
| static inline void INIT |
| rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol) |
| { |
| int i = num_levels; |
| |
| *symbol = 1; |
| while (i--) |
| rc_get_bit(rc, p + *symbol, symbol); |
| *symbol -= 1 << num_levels; |
| } |
| |
| |
| /* |
| * Small lzma deflate implementation. |
| * Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org > |
| * |
| * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) |
| * Copyright (C) 1999-2005 Igor Pavlov |
| */ |
| |
| |
| struct lzma_header { |
| uint8_t pos; |
| uint32_t dict_size; |
| uint64_t dst_size; |
| } __attribute__ ((packed)) ; |
| |
| |
| #define LZMA_BASE_SIZE 1846 |
| #define LZMA_LIT_SIZE 768 |
| |
| #define LZMA_NUM_POS_BITS_MAX 4 |
| |
| #define LZMA_LEN_NUM_LOW_BITS 3 |
| #define LZMA_LEN_NUM_MID_BITS 3 |
| #define LZMA_LEN_NUM_HIGH_BITS 8 |
| |
| #define LZMA_LEN_CHOICE 0 |
| #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1) |
| #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1) |
| #define LZMA_LEN_MID (LZMA_LEN_LOW \ |
| + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))) |
| #define LZMA_LEN_HIGH (LZMA_LEN_MID \ |
| +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))) |
| #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)) |
| |
| #define LZMA_NUM_STATES 12 |
| #define LZMA_NUM_LIT_STATES 7 |
| |
| #define LZMA_START_POS_MODEL_INDEX 4 |
| #define LZMA_END_POS_MODEL_INDEX 14 |
| #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1)) |
| |
| #define LZMA_NUM_POS_SLOT_BITS 6 |
| #define LZMA_NUM_LEN_TO_POS_STATES 4 |
| |
| #define LZMA_NUM_ALIGN_BITS 4 |
| |
| #define LZMA_MATCH_MIN_LEN 2 |
| |
| #define LZMA_IS_MATCH 0 |
| #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)) |
| #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES) |
| #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES) |
| #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES) |
| #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES) |
| #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \ |
| + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)) |
| #define LZMA_SPEC_POS (LZMA_POS_SLOT \ |
| +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)) |
| #define LZMA_ALIGN (LZMA_SPEC_POS \ |
| + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX) |
| #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)) |
| #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS) |
| #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS) |
| |
| |
| struct writer { |
| uint8_t *buffer; |
| uint8_t previous_byte; |
| size_t buffer_pos; |
| int bufsize; |
| size_t global_pos; |
| long (*flush)(void*, unsigned long); |
| struct lzma_header *header; |
| }; |
| |
| struct cstate { |
| int state; |
| uint32_t rep0, rep1, rep2, rep3; |
| }; |
| |
| static inline size_t INIT get_pos(struct writer *wr) |
| { |
| return |
| wr->global_pos + wr->buffer_pos; |
| } |
| |
| static inline uint8_t INIT peek_old_byte(struct writer *wr, |
| uint32_t offs) |
| { |
| if (!wr->flush) { |
| int32_t pos; |
| while (offs > wr->header->dict_size) |
| offs -= wr->header->dict_size; |
| pos = wr->buffer_pos - offs; |
| return wr->buffer[pos]; |
| } else { |
| uint32_t pos = wr->buffer_pos - offs; |
| while (pos >= wr->header->dict_size) |
| pos += wr->header->dict_size; |
| return wr->buffer[pos]; |
| } |
| |
| } |
| |
| static inline int INIT write_byte(struct writer *wr, uint8_t byte) |
| { |
| wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte; |
| if (wr->flush && wr->buffer_pos == wr->header->dict_size) { |
| wr->buffer_pos = 0; |
| wr->global_pos += wr->header->dict_size; |
| if (wr->flush((char *)wr->buffer, wr->header->dict_size) |
| != wr->header->dict_size) |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| static inline int INIT copy_byte(struct writer *wr, uint32_t offs) |
| { |
| return write_byte(wr, peek_old_byte(wr, offs)); |
| } |
| |
| static inline int INIT copy_bytes(struct writer *wr, |
| uint32_t rep0, int len) |
| { |
| do { |
| if (copy_byte(wr, rep0)) |
| return -1; |
| len--; |
| } while (len != 0 && wr->buffer_pos < wr->header->dst_size); |
| |
| return len; |
| } |
| |
| static inline int INIT process_bit0(struct writer *wr, struct rc *rc, |
| struct cstate *cst, uint16_t *p, |
| int pos_state, uint16_t *prob, |
| int lc, uint32_t literal_pos_mask) { |
| int mi = 1; |
| rc_update_bit_0(rc, prob); |
| prob = (p + LZMA_LITERAL + |
| (LZMA_LIT_SIZE |
| * (((get_pos(wr) & literal_pos_mask) << lc) |
| + (wr->previous_byte >> (8 - lc)))) |
| ); |
| |
| if (cst->state >= LZMA_NUM_LIT_STATES) { |
| int match_byte = peek_old_byte(wr, cst->rep0); |
| do { |
| int bit; |
| uint16_t *prob_lit; |
| |
| match_byte <<= 1; |
| bit = match_byte & 0x100; |
| prob_lit = prob + 0x100 + bit + mi; |
| if (rc_get_bit(rc, prob_lit, &mi)) { |
| if (!bit) |
| break; |
| } else { |
| if (bit) |
| break; |
| } |
| } while (mi < 0x100); |
| } |
| while (mi < 0x100) { |
| uint16_t *prob_lit = prob + mi; |
| rc_get_bit(rc, prob_lit, &mi); |
| } |
| if (cst->state < 4) |
| cst->state = 0; |
| else if (cst->state < 10) |
| cst->state -= 3; |
| else |
| cst->state -= 6; |
| |
| return write_byte(wr, mi); |
| } |
| |
| static inline int INIT process_bit1(struct writer *wr, struct rc *rc, |
| struct cstate *cst, uint16_t *p, |
| int pos_state, uint16_t *prob) { |
| int offset; |
| uint16_t *prob_len; |
| int num_bits; |
| int len; |
| |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP + cst->state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| cst->rep3 = cst->rep2; |
| cst->rep2 = cst->rep1; |
| cst->rep1 = cst->rep0; |
| cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3; |
| prob = p + LZMA_LEN_CODER; |
| } else { |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP_G0 + cst->state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| prob = (p + LZMA_IS_REP_0_LONG |
| + (cst->state << |
| LZMA_NUM_POS_BITS_MAX) + |
| pos_state); |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| |
| cst->state = cst->state < LZMA_NUM_LIT_STATES ? |
| 9 : 11; |
| return copy_byte(wr, cst->rep0); |
| } else { |
| rc_update_bit_1(rc, prob); |
| } |
| } else { |
| uint32_t distance; |
| |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP_G1 + cst->state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| distance = cst->rep1; |
| } else { |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP_G2 + cst->state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| distance = cst->rep2; |
| } else { |
| rc_update_bit_1(rc, prob); |
| distance = cst->rep3; |
| cst->rep3 = cst->rep2; |
| } |
| cst->rep2 = cst->rep1; |
| } |
| cst->rep1 = cst->rep0; |
| cst->rep0 = distance; |
| } |
| cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11; |
| prob = p + LZMA_REP_LEN_CODER; |
| } |
| |
| prob_len = prob + LZMA_LEN_CHOICE; |
| if (rc_is_bit_0(rc, prob_len)) { |
| rc_update_bit_0(rc, prob_len); |
| prob_len = (prob + LZMA_LEN_LOW |
| + (pos_state << |
| LZMA_LEN_NUM_LOW_BITS)); |
| offset = 0; |
| num_bits = LZMA_LEN_NUM_LOW_BITS; |
| } else { |
| rc_update_bit_1(rc, prob_len); |
| prob_len = prob + LZMA_LEN_CHOICE_2; |
| if (rc_is_bit_0(rc, prob_len)) { |
| rc_update_bit_0(rc, prob_len); |
| prob_len = (prob + LZMA_LEN_MID |
| + (pos_state << |
| LZMA_LEN_NUM_MID_BITS)); |
| offset = 1 << LZMA_LEN_NUM_LOW_BITS; |
| num_bits = LZMA_LEN_NUM_MID_BITS; |
| } else { |
| rc_update_bit_1(rc, prob_len); |
| prob_len = prob + LZMA_LEN_HIGH; |
| offset = ((1 << LZMA_LEN_NUM_LOW_BITS) |
| + (1 << LZMA_LEN_NUM_MID_BITS)); |
| num_bits = LZMA_LEN_NUM_HIGH_BITS; |
| } |
| } |
| |
| rc_bit_tree_decode(rc, prob_len, num_bits, &len); |
| len += offset; |
| |
| if (cst->state < 4) { |
| int pos_slot; |
| |
| cst->state += LZMA_NUM_LIT_STATES; |
| prob = |
| p + LZMA_POS_SLOT + |
| ((len < |
| LZMA_NUM_LEN_TO_POS_STATES ? len : |
| LZMA_NUM_LEN_TO_POS_STATES - 1) |
| << LZMA_NUM_POS_SLOT_BITS); |
| rc_bit_tree_decode(rc, prob, |
| LZMA_NUM_POS_SLOT_BITS, |
| &pos_slot); |
| if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { |
| int i, mi; |
| num_bits = (pos_slot >> 1) - 1; |
| cst->rep0 = 2 | (pos_slot & 1); |
| if (pos_slot < LZMA_END_POS_MODEL_INDEX) { |
| cst->rep0 <<= num_bits; |
| prob = p + LZMA_SPEC_POS + |
| cst->rep0 - pos_slot - 1; |
| } else { |
| num_bits -= LZMA_NUM_ALIGN_BITS; |
| while (num_bits--) |
| cst->rep0 = (cst->rep0 << 1) | |
| rc_direct_bit(rc); |
| prob = p + LZMA_ALIGN; |
| cst->rep0 <<= LZMA_NUM_ALIGN_BITS; |
| num_bits = LZMA_NUM_ALIGN_BITS; |
| } |
| i = 1; |
| mi = 1; |
| while (num_bits--) { |
| if (rc_get_bit(rc, prob + mi, &mi)) |
| cst->rep0 |= i; |
| i <<= 1; |
| } |
| } else |
| cst->rep0 = pos_slot; |
| if (++(cst->rep0) == 0) |
| return 0; |
| if (cst->rep0 > wr->header->dict_size |
| || cst->rep0 > get_pos(wr)) |
| return -1; |
| } |
| |
| len += LZMA_MATCH_MIN_LEN; |
| |
| return copy_bytes(wr, cst->rep0, len); |
| } |
| |
| |
| |
| STATIC inline int INIT unlzma(unsigned char *buf, long in_len, |
| long (*fill)(void*, unsigned long), |
| long (*flush)(void*, unsigned long), |
| unsigned char *output, |
| long *posp, |
| void(*error)(char *x) |
| ) |
| { |
| struct lzma_header header; |
| int lc, pb, lp; |
| uint32_t pos_state_mask; |
| uint32_t literal_pos_mask; |
| uint16_t *p; |
| int num_probs; |
| struct rc rc; |
| int i, mi; |
| struct writer wr; |
| struct cstate cst; |
| unsigned char *inbuf; |
| int ret = -1; |
| |
| rc.error = error; |
| |
| if (buf) |
| inbuf = buf; |
| else |
| inbuf = malloc(LZMA_IOBUF_SIZE); |
| if (!inbuf) { |
| error("Could not allocate input buffer"); |
| goto exit_0; |
| } |
| |
| cst.state = 0; |
| cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1; |
| |
| wr.header = &header; |
| wr.flush = flush; |
| wr.global_pos = 0; |
| wr.previous_byte = 0; |
| wr.buffer_pos = 0; |
| |
| rc_init(&rc, fill, inbuf, in_len); |
| |
| for (i = 0; i < sizeof(header); i++) { |
| if (rc.ptr >= rc.buffer_end) |
| rc_read(&rc); |
| ((unsigned char *)&header)[i] = *rc.ptr++; |
| } |
| |
| if (header.pos >= (9 * 5 * 5)) { |
| error("bad header"); |
| goto exit_1; |
| } |
| |
| mi = 0; |
| lc = header.pos; |
| while (lc >= 9) { |
| mi++; |
| lc -= 9; |
| } |
| pb = 0; |
| lp = mi; |
| while (lp >= 5) { |
| pb++; |
| lp -= 5; |
| } |
| pos_state_mask = (1 << pb) - 1; |
| literal_pos_mask = (1 << lp) - 1; |
| |
| ENDIAN_CONVERT(header.dict_size); |
| ENDIAN_CONVERT(header.dst_size); |
| |
| if (header.dict_size == 0) |
| header.dict_size = 1; |
| |
| if (output) |
| wr.buffer = output; |
| else { |
| wr.bufsize = MIN(header.dst_size, header.dict_size); |
| wr.buffer = large_malloc(wr.bufsize); |
| } |
| if (wr.buffer == NULL) |
| goto exit_1; |
| |
| num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); |
| p = (uint16_t *) large_malloc(num_probs * sizeof(*p)); |
| if (p == 0) |
| goto exit_2; |
| num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp)); |
| for (i = 0; i < num_probs; i++) |
| p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; |
| |
| rc_init_code(&rc); |
| |
| while (get_pos(&wr) < header.dst_size) { |
| int pos_state = get_pos(&wr) & pos_state_mask; |
| uint16_t *prob = p + LZMA_IS_MATCH + |
| (cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state; |
| if (rc_is_bit_0(&rc, prob)) { |
| if (process_bit0(&wr, &rc, &cst, p, pos_state, prob, |
| lc, literal_pos_mask)) { |
| error("LZMA data is corrupt"); |
| goto exit_3; |
| } |
| } else { |
| if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) { |
| error("LZMA data is corrupt"); |
| goto exit_3; |
| } |
| if (cst.rep0 == 0) |
| break; |
| } |
| if (rc.buffer_size <= 0) |
| goto exit_3; |
| } |
| |
| if (posp) |
| *posp = rc.ptr-rc.buffer; |
| if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos) |
| ret = 0; |
| exit_3: |
| large_free(p); |
| exit_2: |
| if (!output) |
| large_free(wr.buffer); |
| exit_1: |
| if (!buf) |
| free(inbuf); |
| exit_0: |
| return ret; |
| } |
| |
| #ifdef PREBOOT |
| STATIC int INIT __decompress(unsigned char *buf, long in_len, |
| long (*fill)(void*, unsigned long), |
| long (*flush)(void*, unsigned long), |
| unsigned char *output, long out_len, |
| long *posp, |
| void (*error)(char *x)) |
| { |
| return unlzma(buf, in_len - 4, fill, flush, output, posp, error); |
| } |
| #endif |