blob: 8dd099dc5f9b26e98169319185cac1628bb75896 [file] [log] [blame]
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/coredump.h>
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/exec.h>
#include <trace/events/task.h>
#include "internal.h"
#include <trace/events/sched.h>
int core_uses_pid;
unsigned int core_pipe_limit;
char core_pattern[CORENAME_MAX_SIZE] = "core";
static int core_name_size = CORENAME_MAX_SIZE;
struct core_name {
char *corename;
int used, size;
};
/* The maximal length of core_pattern is also specified in sysctl.c */
static int expand_corename(struct core_name *cn, int size)
{
char *corename = krealloc(cn->corename, size, GFP_KERNEL);
if (!corename)
return -ENOMEM;
if (size > core_name_size) /* racy but harmless */
core_name_size = size;
cn->size = ksize(corename);
cn->corename = corename;
return 0;
}
static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
{
int free, need;
va_list arg_copy;
again:
free = cn->size - cn->used;
va_copy(arg_copy, arg);
need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
va_end(arg_copy);
if (need < free) {
cn->used += need;
return 0;
}
if (!expand_corename(cn, cn->size + need - free + 1))
goto again;
return -ENOMEM;
}
static int cn_printf(struct core_name *cn, const char *fmt, ...)
{
va_list arg;
int ret;
va_start(arg, fmt);
ret = cn_vprintf(cn, fmt, arg);
va_end(arg);
return ret;
}
static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
{
int cur = cn->used;
va_list arg;
int ret;
va_start(arg, fmt);
ret = cn_vprintf(cn, fmt, arg);
va_end(arg);
for (; cur < cn->used; ++cur) {
if (cn->corename[cur] == '/')
cn->corename[cur] = '!';
}
return ret;
}
static int cn_print_exe_file(struct core_name *cn)
{
struct file *exe_file;
char *pathbuf, *path;
int ret;
exe_file = get_mm_exe_file(current->mm);
if (!exe_file)
return cn_esc_printf(cn, "%s (path unknown)", current->comm);
pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
if (!pathbuf) {
ret = -ENOMEM;
goto put_exe_file;
}
path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
if (IS_ERR(path)) {
ret = PTR_ERR(path);
goto free_buf;
}
ret = cn_esc_printf(cn, "%s", path);
free_buf:
kfree(pathbuf);
put_exe_file:
fput(exe_file);
return ret;
}
/* format_corename will inspect the pattern parameter, and output a
* name into corename, which must have space for at least
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
*/
static int format_corename(struct core_name *cn, struct coredump_params *cprm)
{
const struct cred *cred = current_cred();
const char *pat_ptr = core_pattern;
int ispipe = (*pat_ptr == '|');
int pid_in_pattern = 0;
int err = 0;
cn->used = 0;
cn->corename = NULL;
if (expand_corename(cn, core_name_size))
return -ENOMEM;
cn->corename[0] = '\0';
if (ispipe)
++pat_ptr;
/* Repeat as long as we have more pattern to process and more output
space */
while (*pat_ptr) {
if (*pat_ptr != '%') {
err = cn_printf(cn, "%c", *pat_ptr++);
} else {
switch (*++pat_ptr) {
/* single % at the end, drop that */
case 0:
goto out;
/* Double percent, output one percent */
case '%':
err = cn_printf(cn, "%c", '%');
break;
/* pid */
case 'p':
pid_in_pattern = 1;
err = cn_printf(cn, "%d",
task_tgid_vnr(current));
break;
/* global pid */
case 'P':
err = cn_printf(cn, "%d",
task_tgid_nr(current));
break;
case 'i':
err = cn_printf(cn, "%d",
task_pid_vnr(current));
break;
case 'I':
err = cn_printf(cn, "%d",
task_pid_nr(current));
break;
/* uid */
case 'u':
err = cn_printf(cn, "%d", cred->uid);
break;
/* gid */
case 'g':
err = cn_printf(cn, "%d", cred->gid);
break;
case 'd':
err = cn_printf(cn, "%d",
__get_dumpable(cprm->mm_flags));
break;
/* signal that caused the coredump */
case 's':
err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
break;
/* UNIX time of coredump */
case 't': {
struct timeval tv;
do_gettimeofday(&tv);
err = cn_printf(cn, "%lu", tv.tv_sec);
break;
}
/* hostname */
case 'h':
down_read(&uts_sem);
err = cn_esc_printf(cn, "%s",
utsname()->nodename);
up_read(&uts_sem);
break;
/* executable */
case 'e':
err = cn_esc_printf(cn, "%s", current->comm);
break;
case 'E':
err = cn_print_exe_file(cn);
break;
/* core limit size */
case 'c':
err = cn_printf(cn, "%lu",
rlimit(RLIMIT_CORE));
break;
default:
break;
}
++pat_ptr;
}
if (err)
return err;
}
out:
/* Backward compatibility with core_uses_pid:
*
* If core_pattern does not include a %p (as is the default)
* and core_uses_pid is set, then .%pid will be appended to
* the filename. Do not do this for piped commands. */
if (!ispipe && !pid_in_pattern && core_uses_pid) {
err = cn_printf(cn, ".%d", task_tgid_vnr(current));
if (err)
return err;
}
return ispipe;
}
static int zap_process(struct task_struct *start, int exit_code)
{
struct task_struct *t;
int nr = 0;
start->signal->group_exit_code = exit_code;
start->signal->group_stop_count = 0;
t = start;
do {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
if (t != current && t->mm) {
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
nr++;
}
} while_each_thread(start, t);
return nr;
}
static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
struct core_state *core_state, int exit_code)
{
struct task_struct *g, *p;
unsigned long flags;
int nr = -EAGAIN;
spin_lock_irq(&tsk->sighand->siglock);
if (!signal_group_exit(tsk->signal)) {
mm->core_state = core_state;
nr = zap_process(tsk, exit_code);
tsk->signal->group_exit_task = tsk;
/* ignore all signals except SIGKILL, see prepare_signal() */
tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
}
spin_unlock_irq(&tsk->sighand->siglock);
if (unlikely(nr < 0))
return nr;
tsk->flags |= PF_DUMPCORE;
if (atomic_read(&mm->mm_users) == nr + 1)
goto done;
/*
* We should find and kill all tasks which use this mm, and we should
* count them correctly into ->nr_threads. We don't take tasklist
* lock, but this is safe wrt:
*
* fork:
* None of sub-threads can fork after zap_process(leader). All
* processes which were created before this point should be
* visible to zap_threads() because copy_process() adds the new
* process to the tail of init_task.tasks list, and lock/unlock
* of ->siglock provides a memory barrier.
*
* do_exit:
* The caller holds mm->mmap_sem. This means that the task which
* uses this mm can't pass exit_mm(), so it can't exit or clear
* its ->mm.
*
* de_thread:
* It does list_replace_rcu(&leader->tasks, &current->tasks),
* we must see either old or new leader, this does not matter.
* However, it can change p->sighand, so lock_task_sighand(p)
* must be used. Since p->mm != NULL and we hold ->mmap_sem
* it can't fail.
*
* Note also that "g" can be the old leader with ->mm == NULL
* and already unhashed and thus removed from ->thread_group.
* This is OK, __unhash_process()->list_del_rcu() does not
* clear the ->next pointer, we will find the new leader via
* next_thread().
*/
rcu_read_lock();
for_each_process(g) {
if (g == tsk->group_leader)
continue;
if (g->flags & PF_KTHREAD)
continue;
p = g;
do {
if (p->mm) {
if (unlikely(p->mm == mm)) {
lock_task_sighand(p, &flags);
nr += zap_process(p, exit_code);
p->signal->flags = SIGNAL_GROUP_EXIT;
unlock_task_sighand(p, &flags);
}
break;
}
} while_each_thread(g, p);
}
rcu_read_unlock();
done:
atomic_set(&core_state->nr_threads, nr);
return nr;
}
static int coredump_wait(int exit_code, struct core_state *core_state)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
int core_waiters = -EBUSY;
init_completion(&core_state->startup);
core_state->dumper.task = tsk;
core_state->dumper.next = NULL;
down_write(&mm->mmap_sem);
if (!mm->core_state)
core_waiters = zap_threads(tsk, mm, core_state, exit_code);
up_write(&mm->mmap_sem);
if (core_waiters > 0) {
struct core_thread *ptr;
wait_for_completion(&core_state->startup);
/*
* Wait for all the threads to become inactive, so that
* all the thread context (extended register state, like
* fpu etc) gets copied to the memory.
*/
ptr = core_state->dumper.next;
while (ptr != NULL) {
wait_task_inactive(ptr->task, 0);
ptr = ptr->next;
}
}
return core_waiters;
}
static void coredump_finish(struct mm_struct *mm, bool core_dumped)
{
struct core_thread *curr, *next;
struct task_struct *task;
spin_lock_irq(&current->sighand->siglock);
if (core_dumped && !__fatal_signal_pending(current))
current->signal->group_exit_code |= 0x80;
current->signal->group_exit_task = NULL;
current->signal->flags = SIGNAL_GROUP_EXIT;
spin_unlock_irq(&current->sighand->siglock);
next = mm->core_state->dumper.next;
while ((curr = next) != NULL) {
next = curr->next;
task = curr->task;
/*
* see exit_mm(), curr->task must not see
* ->task == NULL before we read ->next.
*/
smp_mb();
curr->task = NULL;
wake_up_process(task);
}
mm->core_state = NULL;
}
static bool dump_interrupted(void)
{
/*
* SIGKILL or freezing() interrupt the coredumping. Perhaps we
* can do try_to_freeze() and check __fatal_signal_pending(),
* but then we need to teach dump_write() to restart and clear
* TIF_SIGPENDING.
*/
return signal_pending(current);
}
static void wait_for_dump_helpers(struct file *file)
{
struct pipe_inode_info *pipe = file->private_data;
pipe_lock(pipe);
pipe->readers++;
pipe->writers--;
wake_up_interruptible_sync(&pipe->wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
pipe_unlock(pipe);
/*
* We actually want wait_event_freezable() but then we need
* to clear TIF_SIGPENDING and improve dump_interrupted().
*/
wait_event_interruptible(pipe->wait, pipe->readers == 1);
pipe_lock(pipe);
pipe->readers--;
pipe->writers++;
pipe_unlock(pipe);
}
/*
* umh_pipe_setup
* helper function to customize the process used
* to collect the core in userspace. Specifically
* it sets up a pipe and installs it as fd 0 (stdin)
* for the process. Returns 0 on success, or
* PTR_ERR on failure.
* Note that it also sets the core limit to 1. This
* is a special value that we use to trap recursive
* core dumps
*/
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
struct file *files[2];
struct coredump_params *cp = (struct coredump_params *)info->data;
int err = create_pipe_files(files, 0);
if (err)
return err;
cp->file = files[1];
err = replace_fd(0, files[0], 0);
fput(files[0]);
/* and disallow core files too */
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
return err;
}
void do_coredump(const siginfo_t *siginfo)
{
struct core_state core_state;
struct core_name cn;
struct mm_struct *mm = current->mm;
struct linux_binfmt * binfmt;
const struct cred *old_cred;
struct cred *cred;
int retval = 0;
int ispipe;
struct files_struct *displaced;
/* require nonrelative corefile path and be extra careful */
bool need_suid_safe = false;
bool core_dumped = false;
static atomic_t core_dump_count = ATOMIC_INIT(0);
struct coredump_params cprm = {
.siginfo = siginfo,
.regs = signal_pt_regs(),
.limit = rlimit(RLIMIT_CORE),
/*
* We must use the same mm->flags while dumping core to avoid
* inconsistency of bit flags, since this flag is not protected
* by any locks.
*/
.mm_flags = mm->flags,
};
audit_core_dumps(siginfo->si_signo);
binfmt = mm->binfmt;
if (!binfmt || !binfmt->core_dump)
goto fail;
if (!__get_dumpable(cprm.mm_flags))
goto fail;
cred = prepare_creds();
if (!cred)
goto fail;
/*
* We cannot trust fsuid as being the "true" uid of the process
* nor do we know its entire history. We only know it was tainted
* so we dump it as root in mode 2, and only into a controlled
* environment (pipe handler or fully qualified path).
*/
if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
/* Setuid core dump mode */
cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
need_suid_safe = true;
}
retval = coredump_wait(siginfo->si_signo, &core_state);
if (retval < 0)
goto fail_creds;
old_cred = override_creds(cred);
ispipe = format_corename(&cn, &cprm);
if (ispipe) {
int dump_count;
char **helper_argv;
struct subprocess_info *sub_info;
if (ispipe < 0) {
printk(KERN_WARNING "format_corename failed\n");
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
if (cprm.limit == 1) {
/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
*
* Normally core limits are irrelevant to pipes, since
* we're not writing to the file system, but we use
* cprm.limit of 1 here as a special value, this is a
* consistent way to catch recursive crashes.
* We can still crash if the core_pattern binary sets
* RLIM_CORE = !1, but it runs as root, and can do
* lots of stupid things.
*
* Note that we use task_tgid_vnr here to grab the pid
* of the process group leader. That way we get the
* right pid if a thread in a multi-threaded
* core_pattern process dies.
*/
printk(KERN_WARNING
"Process %d(%s) has RLIMIT_CORE set to 1\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
cprm.limit = RLIM_INFINITY;
dump_count = atomic_inc_return(&core_dump_count);
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_dropcount;
}
helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
if (!helper_argv) {
printk(KERN_WARNING "%s failed to allocate memory\n",
__func__);
goto fail_dropcount;
}
retval = -ENOMEM;
sub_info = call_usermodehelper_setup(helper_argv[0],
helper_argv, NULL, GFP_KERNEL,
umh_pipe_setup, NULL, &cprm);
if (sub_info)
retval = call_usermodehelper_exec(sub_info,
UMH_WAIT_EXEC);
argv_free(helper_argv);
if (retval) {
printk(KERN_INFO "Core dump to |%s pipe failed\n",
cn.corename);
goto close_fail;
}
} else {
struct inode *inode;
if (cprm.limit < binfmt->min_coredump)
goto fail_unlock;
if (need_suid_safe && cn.corename[0] != '/') {
printk(KERN_WARNING "Pid %d(%s) can only dump core "\
"to fully qualified path!\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_unlock;
}
/*
* Unlink the file if it exists unless this is a SUID
* binary - in that case, we're running around with root
* privs and don't want to unlink another user's coredump.
*/
if (!need_suid_safe) {
mm_segment_t old_fs;
old_fs = get_fs();
set_fs(KERNEL_DS);
/*
* If it doesn't exist, that's fine. If there's some
* other problem, we'll catch it at the filp_open().
*/
(void) sys_unlink((const char __user *)cn.corename);
set_fs(old_fs);
}
/*
* There is a race between unlinking and creating the
* file, but if that causes an EEXIST here, that's
* fine - another process raced with us while creating
* the corefile, and the other process won. To userspace,
* what matters is that at least one of the two processes
* writes its coredump successfully, not which one.
*/
cprm.file = filp_open(cn.corename,
O_CREAT | 2 | O_NOFOLLOW |
O_LARGEFILE | O_EXCL,
0600);
if (IS_ERR(cprm.file))
goto fail_unlock;
inode = file_inode(cprm.file);
if (inode->i_nlink > 1)
goto close_fail;
if (d_unhashed(cprm.file->f_path.dentry))
goto close_fail;
/*
* AK: actually i see no reason to not allow this for named
* pipes etc, but keep the previous behaviour for now.
*/
if (!S_ISREG(inode->i_mode))
goto close_fail;
/*
* Don't dump core if the filesystem changed owner or mode
* of the file during file creation. This is an issue when
* a process dumps core while its cwd is e.g. on a vfat
* filesystem.
*/
if (!uid_eq(inode->i_uid, current_fsuid()))
goto close_fail;
if ((inode->i_mode & 0677) != 0600)
goto close_fail;
if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
goto close_fail;
if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
goto close_fail;
}
/* get us an unshared descriptor table; almost always a no-op */
retval = unshare_files(&displaced);
if (retval)
goto close_fail;
if (displaced)
put_files_struct(displaced);
if (!dump_interrupted()) {
file_start_write(cprm.file);
core_dumped = binfmt->core_dump(&cprm);
file_end_write(cprm.file);
}
if (ispipe && core_pipe_limit)
wait_for_dump_helpers(cprm.file);
close_fail:
if (cprm.file)
filp_close(cprm.file, NULL);
fail_dropcount:
if (ispipe)
atomic_dec(&core_dump_count);
fail_unlock:
kfree(cn.corename);
coredump_finish(mm, core_dumped);
revert_creds(old_cred);
fail_creds:
put_cred(cred);
fail:
return;
}
/*
* Core dumping helper functions. These are the only things you should
* do on a core-file: use only these functions to write out all the
* necessary info.
*/
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
{
struct file *file = cprm->file;
loff_t pos = file->f_pos;
ssize_t n;
if (cprm->written + nr > cprm->limit)
return 0;
while (nr) {
if (dump_interrupted())
return 0;
n = __kernel_write(file, addr, nr, &pos);
if (n <= 0)
return 0;
file->f_pos = pos;
cprm->written += n;
nr -= n;
}
return 1;
}
EXPORT_SYMBOL(dump_emit);
int dump_skip(struct coredump_params *cprm, size_t nr)
{
static char zeroes[PAGE_SIZE];
struct file *file = cprm->file;
if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
if (cprm->written + nr > cprm->limit)
return 0;
if (dump_interrupted() ||
file->f_op->llseek(file, nr, SEEK_CUR) < 0)
return 0;
cprm->written += nr;
return 1;
} else {
while (nr > PAGE_SIZE) {
if (!dump_emit(cprm, zeroes, PAGE_SIZE))
return 0;
nr -= PAGE_SIZE;
}
return dump_emit(cprm, zeroes, nr);
}
}
EXPORT_SYMBOL(dump_skip);
int dump_align(struct coredump_params *cprm, int align)
{
unsigned mod = cprm->written & (align - 1);
if (align & (align - 1))
return 0;
return mod ? dump_skip(cprm, align - mod) : 1;
}
EXPORT_SYMBOL(dump_align);