| /* |
| * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. |
| * |
| * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * This code is more or less generated from another driver, please |
| * excuse some codingstyle oddities. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/mutex.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include "dib0090.h" |
| #include "dibx000_common.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| #define dprintk(args...) do { \ |
| if (debug) { \ |
| printk(KERN_DEBUG "DiB0090: "); \ |
| printk(args); \ |
| printk("\n"); \ |
| } \ |
| } while (0) |
| |
| #define CONFIG_SYS_DVBT |
| #define CONFIG_SYS_ISDBT |
| #define CONFIG_BAND_CBAND |
| #define CONFIG_BAND_VHF |
| #define CONFIG_BAND_UHF |
| #define CONFIG_DIB0090_USE_PWM_AGC |
| |
| #define EN_LNA0 0x8000 |
| #define EN_LNA1 0x4000 |
| #define EN_LNA2 0x2000 |
| #define EN_LNA3 0x1000 |
| #define EN_MIX0 0x0800 |
| #define EN_MIX1 0x0400 |
| #define EN_MIX2 0x0200 |
| #define EN_MIX3 0x0100 |
| #define EN_IQADC 0x0040 |
| #define EN_PLL 0x0020 |
| #define EN_TX 0x0010 |
| #define EN_BB 0x0008 |
| #define EN_LO 0x0004 |
| #define EN_BIAS 0x0001 |
| |
| #define EN_IQANA 0x0002 |
| #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */ |
| #define EN_CRYSTAL 0x0002 |
| |
| #define EN_UHF 0x22E9 |
| #define EN_VHF 0x44E9 |
| #define EN_LBD 0x11E9 |
| #define EN_SBD 0x44E9 |
| #define EN_CAB 0x88E9 |
| |
| /* Calibration defines */ |
| #define DC_CAL 0x1 |
| #define WBD_CAL 0x2 |
| #define TEMP_CAL 0x4 |
| #define CAPTRIM_CAL 0x8 |
| |
| #define KROSUS_PLL_LOCKED 0x800 |
| #define KROSUS 0x2 |
| |
| /* Use those defines to identify SOC version */ |
| #define SOC 0x02 |
| #define SOC_7090_P1G_11R1 0x82 |
| #define SOC_7090_P1G_21R1 0x8a |
| #define SOC_8090_P1G_11R1 0x86 |
| #define SOC_8090_P1G_21R1 0x8e |
| |
| /* else use thos ones to check */ |
| #define P1A_B 0x0 |
| #define P1C 0x1 |
| #define P1D_E_F 0x3 |
| #define P1G 0x7 |
| #define P1G_21R2 0xf |
| |
| #define MP001 0x1 /* Single 9090/8096 */ |
| #define MP005 0x4 /* Single Sband */ |
| #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */ |
| #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */ |
| |
| #define pgm_read_word(w) (*w) |
| |
| struct dc_calibration; |
| |
| struct dib0090_tuning { |
| u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ |
| u8 switch_trim; |
| u8 lna_tune; |
| u16 lna_bias; |
| u16 v2i; |
| u16 mix; |
| u16 load; |
| u16 tuner_enable; |
| }; |
| |
| struct dib0090_pll { |
| u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ |
| u8 vco_band; |
| u8 hfdiv_code; |
| u8 hfdiv; |
| u8 topresc; |
| }; |
| |
| struct dib0090_identity { |
| u8 version; |
| u8 product; |
| u8 p1g; |
| u8 in_soc; |
| }; |
| |
| struct dib0090_state { |
| struct i2c_adapter *i2c; |
| struct dvb_frontend *fe; |
| const struct dib0090_config *config; |
| |
| u8 current_band; |
| enum frontend_tune_state tune_state; |
| u32 current_rf; |
| |
| u16 wbd_offset; |
| s16 wbd_target; /* in dB */ |
| |
| s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */ |
| s16 current_gain; /* keeps the currently programmed gain */ |
| u8 agc_step; /* new binary search */ |
| |
| u16 gain[2]; /* for channel monitoring */ |
| |
| const u16 *rf_ramp; |
| const u16 *bb_ramp; |
| |
| /* for the software AGC ramps */ |
| u16 bb_1_def; |
| u16 rf_lt_def; |
| u16 gain_reg[4]; |
| |
| /* for the captrim/dc-offset search */ |
| s8 step; |
| s16 adc_diff; |
| s16 min_adc_diff; |
| |
| s8 captrim; |
| s8 fcaptrim; |
| |
| const struct dc_calibration *dc; |
| u16 bb6, bb7; |
| |
| const struct dib0090_tuning *current_tune_table_index; |
| const struct dib0090_pll *current_pll_table_index; |
| |
| u8 tuner_is_tuned; |
| u8 agc_freeze; |
| |
| struct dib0090_identity identity; |
| |
| u32 rf_request; |
| u8 current_standard; |
| |
| u8 calibrate; |
| u32 rest; |
| u16 bias; |
| s16 temperature; |
| |
| u8 wbd_calibration_gain; |
| const struct dib0090_wbd_slope *current_wbd_table; |
| u16 wbdmux; |
| |
| /* for the I2C transfer */ |
| struct i2c_msg msg[2]; |
| u8 i2c_write_buffer[3]; |
| u8 i2c_read_buffer[2]; |
| struct mutex i2c_buffer_lock; |
| }; |
| |
| struct dib0090_fw_state { |
| struct i2c_adapter *i2c; |
| struct dvb_frontend *fe; |
| struct dib0090_identity identity; |
| const struct dib0090_config *config; |
| |
| /* for the I2C transfer */ |
| struct i2c_msg msg; |
| u8 i2c_write_buffer[2]; |
| u8 i2c_read_buffer[2]; |
| struct mutex i2c_buffer_lock; |
| }; |
| |
| static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) |
| { |
| u16 ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock"); |
| return 0; |
| } |
| |
| state->i2c_write_buffer[0] = reg; |
| |
| memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->config->i2c_address; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 1; |
| state->msg[1].addr = state->config->i2c_address; |
| state->msg[1].flags = I2C_M_RD; |
| state->msg[1].buf = state->i2c_read_buffer; |
| state->msg[1].len = 2; |
| |
| if (i2c_transfer(state->i2c, state->msg, 2) != 2) { |
| printk(KERN_WARNING "DiB0090 I2C read failed\n"); |
| ret = 0; |
| } else |
| ret = (state->i2c_read_buffer[0] << 8) |
| | state->i2c_read_buffer[1]; |
| |
| mutex_unlock(&state->i2c_buffer_lock); |
| return ret; |
| } |
| |
| static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) |
| { |
| int ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock"); |
| return -EINVAL; |
| } |
| |
| state->i2c_write_buffer[0] = reg & 0xff; |
| state->i2c_write_buffer[1] = val >> 8; |
| state->i2c_write_buffer[2] = val & 0xff; |
| |
| memset(state->msg, 0, sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->config->i2c_address; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 3; |
| |
| if (i2c_transfer(state->i2c, state->msg, 1) != 1) { |
| printk(KERN_WARNING "DiB0090 I2C write failed\n"); |
| ret = -EREMOTEIO; |
| } else |
| ret = 0; |
| |
| mutex_unlock(&state->i2c_buffer_lock); |
| return ret; |
| } |
| |
| static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg) |
| { |
| u16 ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock"); |
| return 0; |
| } |
| |
| state->i2c_write_buffer[0] = reg; |
| |
| memset(&state->msg, 0, sizeof(struct i2c_msg)); |
| state->msg.addr = reg; |
| state->msg.flags = I2C_M_RD; |
| state->msg.buf = state->i2c_read_buffer; |
| state->msg.len = 2; |
| if (i2c_transfer(state->i2c, &state->msg, 1) != 1) { |
| printk(KERN_WARNING "DiB0090 I2C read failed\n"); |
| ret = 0; |
| } else |
| ret = (state->i2c_read_buffer[0] << 8) |
| | state->i2c_read_buffer[1]; |
| |
| mutex_unlock(&state->i2c_buffer_lock); |
| return ret; |
| } |
| |
| static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val) |
| { |
| int ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock"); |
| return -EINVAL; |
| } |
| |
| state->i2c_write_buffer[0] = val >> 8; |
| state->i2c_write_buffer[1] = val & 0xff; |
| |
| memset(&state->msg, 0, sizeof(struct i2c_msg)); |
| state->msg.addr = reg; |
| state->msg.flags = 0; |
| state->msg.buf = state->i2c_write_buffer; |
| state->msg.len = 2; |
| if (i2c_transfer(state->i2c, &state->msg, 1) != 1) { |
| printk(KERN_WARNING "DiB0090 I2C write failed\n"); |
| ret = -EREMOTEIO; |
| } else |
| ret = 0; |
| |
| mutex_unlock(&state->i2c_buffer_lock); |
| return ret; |
| } |
| |
| #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0) |
| #define ADC_TARGET -220 |
| #define GAIN_ALPHA 5 |
| #define WBD_ALPHA 6 |
| #define LPF 100 |
| static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) |
| { |
| do { |
| dib0090_write_reg(state, r++, *b++); |
| } while (--c); |
| } |
| |
| static int dib0090_identify(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u16 v; |
| struct dib0090_identity *identity = &state->identity; |
| |
| v = dib0090_read_reg(state, 0x1a); |
| |
| identity->p1g = 0; |
| identity->in_soc = 0; |
| |
| dprintk("Tuner identification (Version = 0x%04x)", v); |
| |
| /* without PLL lock info */ |
| v &= ~KROSUS_PLL_LOCKED; |
| |
| identity->version = v & 0xff; |
| identity->product = (v >> 8) & 0xf; |
| |
| if (identity->product != KROSUS) |
| goto identification_error; |
| |
| if ((identity->version & 0x3) == SOC) { |
| identity->in_soc = 1; |
| switch (identity->version) { |
| case SOC_8090_P1G_11R1: |
| dprintk("SOC 8090 P1-G11R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| case SOC_8090_P1G_21R1: |
| dprintk("SOC 8090 P1-G21R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| case SOC_7090_P1G_11R1: |
| dprintk("SOC 7090 P1-G11R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| case SOC_7090_P1G_21R1: |
| dprintk("SOC 7090 P1-G21R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| default: |
| goto identification_error; |
| } |
| } else { |
| switch ((identity->version >> 5) & 0x7) { |
| case MP001: |
| dprintk("MP001 : 9090/8096"); |
| break; |
| case MP005: |
| dprintk("MP005 : Single Sband"); |
| break; |
| case MP008: |
| dprintk("MP008 : diversity VHF-UHF-LBAND"); |
| break; |
| case MP009: |
| dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND"); |
| break; |
| default: |
| goto identification_error; |
| } |
| |
| switch (identity->version & 0x1f) { |
| case P1G_21R2: |
| dprintk("P1G_21R2 detected"); |
| identity->p1g = 1; |
| break; |
| case P1G: |
| dprintk("P1G detected"); |
| identity->p1g = 1; |
| break; |
| case P1D_E_F: |
| dprintk("P1D/E/F detected"); |
| break; |
| case P1C: |
| dprintk("P1C detected"); |
| break; |
| case P1A_B: |
| dprintk("P1-A/B detected: driver is deactivated - not available"); |
| goto identification_error; |
| break; |
| default: |
| goto identification_error; |
| } |
| } |
| |
| return 0; |
| |
| identification_error: |
| return -EIO; |
| } |
| |
| static int dib0090_fw_identify(struct dvb_frontend *fe) |
| { |
| struct dib0090_fw_state *state = fe->tuner_priv; |
| struct dib0090_identity *identity = &state->identity; |
| |
| u16 v = dib0090_fw_read_reg(state, 0x1a); |
| identity->p1g = 0; |
| identity->in_soc = 0; |
| |
| dprintk("FE: Tuner identification (Version = 0x%04x)", v); |
| |
| /* without PLL lock info */ |
| v &= ~KROSUS_PLL_LOCKED; |
| |
| identity->version = v & 0xff; |
| identity->product = (v >> 8) & 0xf; |
| |
| if (identity->product != KROSUS) |
| goto identification_error; |
| |
| if ((identity->version & 0x3) == SOC) { |
| identity->in_soc = 1; |
| switch (identity->version) { |
| case SOC_8090_P1G_11R1: |
| dprintk("SOC 8090 P1-G11R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| case SOC_8090_P1G_21R1: |
| dprintk("SOC 8090 P1-G21R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| case SOC_7090_P1G_11R1: |
| dprintk("SOC 7090 P1-G11R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| case SOC_7090_P1G_21R1: |
| dprintk("SOC 7090 P1-G21R1 Has been detected"); |
| identity->p1g = 1; |
| break; |
| default: |
| goto identification_error; |
| } |
| } else { |
| switch ((identity->version >> 5) & 0x7) { |
| case MP001: |
| dprintk("MP001 : 9090/8096"); |
| break; |
| case MP005: |
| dprintk("MP005 : Single Sband"); |
| break; |
| case MP008: |
| dprintk("MP008 : diversity VHF-UHF-LBAND"); |
| break; |
| case MP009: |
| dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND"); |
| break; |
| default: |
| goto identification_error; |
| } |
| |
| switch (identity->version & 0x1f) { |
| case P1G_21R2: |
| dprintk("P1G_21R2 detected"); |
| identity->p1g = 1; |
| break; |
| case P1G: |
| dprintk("P1G detected"); |
| identity->p1g = 1; |
| break; |
| case P1D_E_F: |
| dprintk("P1D/E/F detected"); |
| break; |
| case P1C: |
| dprintk("P1C detected"); |
| break; |
| case P1A_B: |
| dprintk("P1-A/B detected: driver is deactivated - not available"); |
| goto identification_error; |
| break; |
| default: |
| goto identification_error; |
| } |
| } |
| |
| return 0; |
| |
| identification_error: |
| return -EIO; |
| } |
| |
| static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u16 PllCfg, i, v; |
| |
| HARD_RESET(state); |
| dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); |
| if (cfg->in_soc) |
| return; |
| |
| dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ |
| /* adcClkOutRatio=8->7, release reset */ |
| dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); |
| if (cfg->clkoutdrive != 0) |
| dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) |
| | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); |
| else |
| dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) |
| | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); |
| |
| /* Read Pll current config * */ |
| PllCfg = dib0090_read_reg(state, 0x21); |
| |
| /** Reconfigure PLL if current setting is different from default setting **/ |
| if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc) |
| && !cfg->io.pll_bypass) { |
| |
| /* Set Bypass mode */ |
| PllCfg |= (1 << 15); |
| dib0090_write_reg(state, 0x21, PllCfg); |
| |
| /* Set Reset Pll */ |
| PllCfg &= ~(1 << 13); |
| dib0090_write_reg(state, 0x21, PllCfg); |
| |
| /*** Set new Pll configuration in bypass and reset state ***/ |
| PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); |
| dib0090_write_reg(state, 0x21, PllCfg); |
| |
| /* Remove Reset Pll */ |
| PllCfg |= (1 << 13); |
| dib0090_write_reg(state, 0x21, PllCfg); |
| |
| /*** Wait for PLL lock ***/ |
| i = 100; |
| do { |
| v = !!(dib0090_read_reg(state, 0x1a) & 0x800); |
| if (v) |
| break; |
| } while (--i); |
| |
| if (i == 0) { |
| dprintk("Pll: Unable to lock Pll"); |
| return; |
| } |
| |
| /* Finally Remove Bypass mode */ |
| PllCfg &= ~(1 << 15); |
| dib0090_write_reg(state, 0x21, PllCfg); |
| } |
| |
| if (cfg->io.pll_bypass) { |
| PllCfg |= (cfg->io.pll_bypass << 15); |
| dib0090_write_reg(state, 0x21, PllCfg); |
| } |
| } |
| |
| static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) |
| { |
| struct dib0090_fw_state *state = fe->tuner_priv; |
| u16 PllCfg; |
| u16 v; |
| int i; |
| |
| dprintk("fw reset digital"); |
| HARD_RESET(state); |
| |
| dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); |
| dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ |
| |
| dib0090_fw_write_reg(state, 0x20, |
| ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv); |
| |
| v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0); |
| if (cfg->clkoutdrive != 0) |
| v |= cfg->clkoutdrive << 5; |
| else |
| v |= 7 << 5; |
| |
| v |= 2 << 10; |
| dib0090_fw_write_reg(state, 0x23, v); |
| |
| /* Read Pll current config * */ |
| PllCfg = dib0090_fw_read_reg(state, 0x21); |
| |
| /** Reconfigure PLL if current setting is different from default setting **/ |
| if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) { |
| |
| /* Set Bypass mode */ |
| PllCfg |= (1 << 15); |
| dib0090_fw_write_reg(state, 0x21, PllCfg); |
| |
| /* Set Reset Pll */ |
| PllCfg &= ~(1 << 13); |
| dib0090_fw_write_reg(state, 0x21, PllCfg); |
| |
| /*** Set new Pll configuration in bypass and reset state ***/ |
| PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); |
| dib0090_fw_write_reg(state, 0x21, PllCfg); |
| |
| /* Remove Reset Pll */ |
| PllCfg |= (1 << 13); |
| dib0090_fw_write_reg(state, 0x21, PllCfg); |
| |
| /*** Wait for PLL lock ***/ |
| i = 100; |
| do { |
| v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800); |
| if (v) |
| break; |
| } while (--i); |
| |
| if (i == 0) { |
| dprintk("Pll: Unable to lock Pll"); |
| return -EIO; |
| } |
| |
| /* Finally Remove Bypass mode */ |
| PllCfg &= ~(1 << 15); |
| dib0090_fw_write_reg(state, 0x21, PllCfg); |
| } |
| |
| if (cfg->io.pll_bypass) { |
| PllCfg |= (cfg->io.pll_bypass << 15); |
| dib0090_fw_write_reg(state, 0x21, PllCfg); |
| } |
| |
| return dib0090_fw_identify(fe); |
| } |
| |
| static int dib0090_wakeup(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (state->config->sleep) |
| state->config->sleep(fe, 0); |
| |
| /* enable dataTX in case we have been restarted in the wrong moment */ |
| dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); |
| return 0; |
| } |
| |
| static int dib0090_sleep(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (state->config->sleep) |
| state->config->sleep(fe, 1); |
| return 0; |
| } |
| |
| void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (fast) |
| dib0090_write_reg(state, 0x04, 0); |
| else |
| dib0090_write_reg(state, 0x04, 1); |
| } |
| |
| EXPORT_SYMBOL(dib0090_dcc_freq); |
| |
| static const u16 bb_ramp_pwm_normal_socs[] = { |
| 550, /* max BB gain in 10th of dB */ |
| (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ |
| 440, |
| (4 << 9) | 0, /* BB_RAMP3 = 26dB */ |
| (0 << 9) | 208, /* BB_RAMP4 */ |
| (4 << 9) | 208, /* BB_RAMP5 = 29dB */ |
| (0 << 9) | 440, /* BB_RAMP6 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_cband_7090p[] = { |
| 280, /* max RF gain in 10th of dB */ |
| 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 504, /* ramp_max = maximum X used on the ramp */ |
| (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */ |
| (0 << 10) | 504, /* RF_RAMP6, LNA 1 */ |
| (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */ |
| (0 << 10) | 364, /* RF_RAMP8, LNA 2 */ |
| (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */ |
| (0 << 10) | 228, /* GAIN_4_2, LNA 3 */ |
| (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ |
| (0 << 10) | 109, /* RF_RAMP4, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = { |
| 186, /* max RF gain in 10th of dB */ |
| 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 746, /* ramp_max = maximum X used on the ramp */ |
| (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */ |
| (0 << 10) | 746, /* RF_RAMP6, LNA 1 */ |
| (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */ |
| (0 << 10) | 0, /* RF_RAMP8, LNA 2 */ |
| (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */ |
| (0 << 10) | 345, /* GAIN_4_2, LNA 3 */ |
| (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */ |
| (0 << 10) | 200, /* RF_RAMP4, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_cband_7090e_aci[] = { |
| 86, /* max RF gain in 10th of dB */ |
| 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 345, /* ramp_max = maximum X used on the ramp */ |
| (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */ |
| (0 << 10) | 0, /* RF_RAMP6, LNA 1 */ |
| (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */ |
| (0 << 10) | 0, /* RF_RAMP8, LNA 2 */ |
| (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */ |
| (0 << 10) | 345, /* GAIN_4_2, LNA 3 */ |
| (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */ |
| (0 << 10) | 200, /* RF_RAMP4, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_cband_8090[] = { |
| 345, /* max RF gain in 10th of dB */ |
| 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 1000, /* ramp_max = maximum X used on the ramp */ |
| (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */ |
| (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */ |
| (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */ |
| (0 << 10) | 772, /* RF_RAMP6, LNA 2 */ |
| (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */ |
| (0 << 10) | 496, /* RF_RAMP8, LNA 3 */ |
| (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */ |
| (0 << 10) | 200, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_uhf_7090[] = { |
| 407, /* max RF gain in 10th of dB */ |
| 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 529, /* ramp_max = maximum X used on the ramp */ |
| (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */ |
| (0 << 10) | 176, /* RF_RAMP4, LNA 1 */ |
| (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */ |
| (0 << 10) | 529, /* RF_RAMP6, LNA 2 */ |
| (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */ |
| (0 << 10) | 400, /* RF_RAMP8, LNA 3 */ |
| (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */ |
| (0 << 10) | 316, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_uhf_8090[] = { |
| 388, /* max RF gain in 10th of dB */ |
| 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 1008, /* ramp_max = maximum X used on the ramp */ |
| (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */ |
| (0 << 10) | 369, /* RF_RAMP4, LNA 1 */ |
| (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */ |
| (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */ |
| (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */ |
| (0 << 10) | 809, /* RF_RAMP8, LNA 3 */ |
| (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */ |
| (0 << 10) | 659, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| /* GENERAL PWM ramp definition for all other Krosus */ |
| static const u16 bb_ramp_pwm_normal[] = { |
| 500, /* max BB gain in 10th of dB */ |
| 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ |
| 400, |
| (2 << 9) | 0, /* BB_RAMP3 = 21dB */ |
| (0 << 9) | 168, /* BB_RAMP4 */ |
| (2 << 9) | 168, /* BB_RAMP5 = 29dB */ |
| (0 << 9) | 400, /* BB_RAMP6 */ |
| }; |
| |
| static const u16 bb_ramp_pwm_boost[] = { |
| 550, /* max BB gain in 10th of dB */ |
| 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ |
| 440, |
| (2 << 9) | 0, /* BB_RAMP3 = 26dB */ |
| (0 << 9) | 208, /* BB_RAMP4 */ |
| (2 << 9) | 208, /* BB_RAMP5 = 29dB */ |
| (0 << 9) | 440, /* BB_RAMP6 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_cband[] = { |
| 314, /* max RF gain in 10th of dB */ |
| 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 1023, /* ramp_max = maximum X used on the ramp */ |
| (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */ |
| (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */ |
| (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */ |
| (0 << 10) | 742, /* RF_RAMP6, LNA 2 */ |
| (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */ |
| (0 << 10) | 468, /* RF_RAMP8, LNA 3 */ |
| (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ |
| (0 << 10) | 233, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_vhf[] = { |
| 398, /* max RF gain in 10th of dB */ |
| 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 954, /* ramp_max = maximum X used on the ramp */ |
| (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */ |
| (0 << 10) | 290, /* RF_RAMP4, LNA 1 */ |
| (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */ |
| (0 << 10) | 954, /* RF_RAMP6, LNA 2 */ |
| (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */ |
| (0 << 10) | 699, /* RF_RAMP8, LNA 3 */ |
| (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */ |
| (0 << 10) | 580, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_uhf[] = { |
| 398, /* max RF gain in 10th of dB */ |
| 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 954, /* ramp_max = maximum X used on the ramp */ |
| (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */ |
| (0 << 10) | 290, /* RF_RAMP4, LNA 1 */ |
| (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */ |
| (0 << 10) | 954, /* RF_RAMP6, LNA 2 */ |
| (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */ |
| (0 << 10) | 699, /* RF_RAMP8, LNA 3 */ |
| (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */ |
| (0 << 10) | 580, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| static const u16 rf_ramp_pwm_sband[] = { |
| 253, /* max RF gain in 10th of dB */ |
| 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ |
| 961, |
| (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */ |
| (0 << 10) | 508, /* RF_RAMP4, LNA 1 */ |
| (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */ |
| (0 << 10) | 961, /* RF_RAMP6, LNA 2 */ |
| (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */ |
| (0 << 10) | 0, /* RF_RAMP8, LNA 3 */ |
| (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ |
| (0 << 10) | 0, /* GAIN_4_2, LNA 4 */ |
| }; |
| |
| struct slope { |
| s16 range; |
| s16 slope; |
| }; |
| static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) |
| { |
| u8 i; |
| u16 rest; |
| u16 ret = 0; |
| for (i = 0; i < num; i++) { |
| if (val > slopes[i].range) |
| rest = slopes[i].range; |
| else |
| rest = val; |
| ret += (rest * slopes[i].slope) / slopes[i].range; |
| val -= rest; |
| } |
| return ret; |
| } |
| |
| static const struct slope dib0090_wbd_slopes[3] = { |
| {66, 120}, /* -64,-52: offset - 65 */ |
| {600, 170}, /* -52,-35: 65 - 665 */ |
| {170, 250}, /* -45,-10: 665 - 835 */ |
| }; |
| |
| static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) |
| { |
| wbd &= 0x3ff; |
| if (wbd < state->wbd_offset) |
| wbd = 0; |
| else |
| wbd -= state->wbd_offset; |
| /* -64dB is the floor */ |
| return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); |
| } |
| |
| static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) |
| { |
| u16 offset = 250; |
| |
| /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ |
| |
| if (state->current_band == BAND_VHF) |
| offset = 650; |
| #ifndef FIRMWARE_FIREFLY |
| if (state->current_band == BAND_VHF) |
| offset = state->config->wbd_vhf_offset; |
| if (state->current_band == BAND_CBAND) |
| offset = state->config->wbd_cband_offset; |
| #endif |
| |
| state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); |
| dprintk("wbd-target: %d dB", (u32) state->wbd_target); |
| } |
| |
| static const int gain_reg_addr[4] = { |
| 0x08, 0x0a, 0x0f, 0x01 |
| }; |
| |
| static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) |
| { |
| u16 rf, bb, ref; |
| u16 i, v, gain_reg[4] = { 0 }, gain; |
| const u16 *g; |
| |
| if (top_delta < -511) |
| top_delta = -511; |
| if (top_delta > 511) |
| top_delta = 511; |
| |
| if (force) { |
| top_delta *= (1 << WBD_ALPHA); |
| gain_delta *= (1 << GAIN_ALPHA); |
| } |
| |
| if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */ |
| state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; |
| else |
| state->rf_gain_limit += top_delta; |
| |
| if (state->rf_gain_limit < 0) /*underflow */ |
| state->rf_gain_limit = 0; |
| |
| /* use gain as a temporary variable and correct current_gain */ |
| gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; |
| if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */ |
| state->current_gain = gain; |
| else |
| state->current_gain += gain_delta; |
| /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ |
| if (state->current_gain < 0) |
| state->current_gain = 0; |
| |
| /* now split total gain to rf and bb gain */ |
| gain = state->current_gain >> GAIN_ALPHA; |
| |
| /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ |
| if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { |
| rf = state->rf_gain_limit >> WBD_ALPHA; |
| bb = gain - rf; |
| if (bb > state->bb_ramp[0]) |
| bb = state->bb_ramp[0]; |
| } else { /* high signal level -> all gains put on RF */ |
| rf = gain; |
| bb = 0; |
| } |
| |
| state->gain[0] = rf; |
| state->gain[1] = bb; |
| |
| /* software ramp */ |
| /* Start with RF gains */ |
| g = state->rf_ramp + 1; /* point on RF LNA1 max gain */ |
| ref = rf; |
| for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ |
| if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ |
| v = 0; /* force the gain to write for the current amp to be null */ |
| else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */ |
| v = g[2]; /* force this amp to be full gain */ |
| else /* compute the value to set to this amp because we are somewhere in his range */ |
| v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; |
| |
| if (i == 0) /* LNA 1 reg mapping */ |
| gain_reg[0] = v; |
| else if (i == 1) /* LNA 2 reg mapping */ |
| gain_reg[0] |= v << 7; |
| else if (i == 2) /* LNA 3 reg mapping */ |
| gain_reg[1] = v; |
| else if (i == 3) /* LNA 4 reg mapping */ |
| gain_reg[1] |= v << 7; |
| else if (i == 4) /* CBAND LNA reg mapping */ |
| gain_reg[2] = v | state->rf_lt_def; |
| else if (i == 5) /* BB gain 1 reg mapping */ |
| gain_reg[3] = v << 3; |
| else if (i == 6) /* BB gain 2 reg mapping */ |
| gain_reg[3] |= v << 8; |
| |
| g += 3; /* go to next gain bloc */ |
| |
| /* When RF is finished, start with BB */ |
| if (i == 4) { |
| g = state->bb_ramp + 1; /* point on BB gain 1 max gain */ |
| ref = bb; |
| } |
| } |
| gain_reg[3] |= state->bb_1_def; |
| gain_reg[3] |= ((bb % 10) * 100) / 125; |
| |
| #ifdef DEBUG_AGC |
| dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb, |
| gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); |
| #endif |
| |
| /* Write the amplifier regs */ |
| for (i = 0; i < 4; i++) { |
| v = gain_reg[i]; |
| if (force || state->gain_reg[i] != v) { |
| state->gain_reg[i] = v; |
| dib0090_write_reg(state, gain_reg_addr[i], v); |
| } |
| } |
| } |
| |
| static void dib0090_set_boost(struct dib0090_state *state, int onoff) |
| { |
| state->bb_1_def &= 0xdfff; |
| state->bb_1_def |= onoff << 13; |
| } |
| |
| static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->rf_ramp = cfg; |
| } |
| |
| static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->rf_ramp = cfg; |
| |
| dib0090_write_reg(state, 0x2a, 0xffff); |
| |
| dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); |
| |
| dib0090_write_regs(state, 0x2c, cfg + 3, 6); |
| dib0090_write_regs(state, 0x3e, cfg + 9, 2); |
| } |
| |
| static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->bb_ramp = cfg; |
| dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ |
| } |
| |
| static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) |
| { |
| state->bb_ramp = cfg; |
| |
| dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ |
| |
| dib0090_write_reg(state, 0x33, 0xffff); |
| dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33)); |
| dib0090_write_regs(state, 0x35, cfg + 3, 4); |
| } |
| |
| void dib0090_pwm_gain_reset(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u16 *bb_ramp = (u16 *)&bb_ramp_pwm_normal; /* default baseband config */ |
| u16 *rf_ramp = NULL; |
| u8 en_pwm_rf_mux = 1; |
| |
| /* reset the AGC */ |
| if (state->config->use_pwm_agc) { |
| if (state->current_band == BAND_CBAND) { |
| if (state->identity.in_soc) { |
| bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs; |
| if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) |
| rf_ramp = (u16 *)&rf_ramp_pwm_cband_8090; |
| else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) { |
| if (state->config->is_dib7090e) { |
| if (state->rf_ramp == NULL) |
| rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090e_sensitivity; |
| else |
| rf_ramp = (u16 *)state->rf_ramp; |
| } else |
| rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090p; |
| } |
| } else |
| rf_ramp = (u16 *)&rf_ramp_pwm_cband; |
| } else |
| |
| if (state->current_band == BAND_VHF) { |
| if (state->identity.in_soc) { |
| bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs; |
| /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */ |
| } else |
| rf_ramp = (u16 *)&rf_ramp_pwm_vhf; |
| } else if (state->current_band == BAND_UHF) { |
| if (state->identity.in_soc) { |
| bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs; |
| if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) |
| rf_ramp = (u16 *)&rf_ramp_pwm_uhf_8090; |
| else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) |
| rf_ramp = (u16 *)&rf_ramp_pwm_uhf_7090; |
| } else |
| rf_ramp = (u16 *)&rf_ramp_pwm_uhf; |
| } |
| if (rf_ramp) |
| dib0090_set_rframp_pwm(state, rf_ramp); |
| dib0090_set_bbramp_pwm(state, bb_ramp); |
| |
| /* activate the ramp generator using PWM control */ |
| dprintk("ramp RF gain = %d BAND = %s version = %d", state->rf_ramp[0], (state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND", state->identity.version & 0x1f); |
| |
| if ((state->rf_ramp[0] == 0) || (state->current_band == BAND_CBAND && (state->identity.version & 0x1f) <= P1D_E_F)) { |
| dprintk("DE-Engage mux for direct gain reg control"); |
| en_pwm_rf_mux = 0; |
| } else |
| dprintk("Engage mux for PWM control"); |
| |
| dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11)); |
| |
| /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/ |
| if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) |
| dib0090_write_reg(state, 0x04, 3); |
| else |
| dib0090_write_reg(state, 0x04, 1); |
| dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */ |
| } |
| } |
| EXPORT_SYMBOL(dib0090_pwm_gain_reset); |
| |
| void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (DC_servo_cutoff < 4) |
| dib0090_write_reg(state, 0x04, DC_servo_cutoff); |
| } |
| EXPORT_SYMBOL(dib0090_set_dc_servo); |
| |
| static u32 dib0090_get_slow_adc_val(struct dib0090_state *state) |
| { |
| u16 adc_val = dib0090_read_reg(state, 0x1d); |
| if (state->identity.in_soc) |
| adc_val >>= 2; |
| return adc_val; |
| } |
| |
| int dib0090_gain_control(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| enum frontend_tune_state *tune_state = &state->tune_state; |
| int ret = 10; |
| |
| u16 wbd_val = 0; |
| u8 apply_gain_immediatly = 1; |
| s16 wbd_error = 0, adc_error = 0; |
| |
| if (*tune_state == CT_AGC_START) { |
| state->agc_freeze = 0; |
| dib0090_write_reg(state, 0x04, 0x0); |
| |
| #ifdef CONFIG_BAND_SBAND |
| if (state->current_band == BAND_SBAND) { |
| dib0090_set_rframp(state, rf_ramp_sband); |
| dib0090_set_bbramp(state, bb_ramp_boost); |
| } else |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| if (state->current_band == BAND_VHF && !state->identity.p1g) { |
| dib0090_set_rframp(state, rf_ramp_pwm_vhf); |
| dib0090_set_bbramp(state, bb_ramp_pwm_normal); |
| } else |
| #endif |
| #ifdef CONFIG_BAND_CBAND |
| if (state->current_band == BAND_CBAND && !state->identity.p1g) { |
| dib0090_set_rframp(state, rf_ramp_pwm_cband); |
| dib0090_set_bbramp(state, bb_ramp_pwm_normal); |
| } else |
| #endif |
| if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) { |
| dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p); |
| dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs); |
| } else { |
| dib0090_set_rframp(state, rf_ramp_pwm_uhf); |
| dib0090_set_bbramp(state, bb_ramp_pwm_normal); |
| } |
| |
| dib0090_write_reg(state, 0x32, 0); |
| dib0090_write_reg(state, 0x39, 0); |
| |
| dib0090_wbd_target(state, state->current_rf); |
| |
| state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; |
| state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; |
| |
| *tune_state = CT_AGC_STEP_0; |
| } else if (!state->agc_freeze) { |
| s16 wbd = 0, i, cnt; |
| |
| int adc; |
| wbd_val = dib0090_get_slow_adc_val(state); |
| |
| if (*tune_state == CT_AGC_STEP_0) |
| cnt = 5; |
| else |
| cnt = 1; |
| |
| for (i = 0; i < cnt; i++) { |
| wbd_val = dib0090_get_slow_adc_val(state); |
| wbd += dib0090_wbd_to_db(state, wbd_val); |
| } |
| wbd /= cnt; |
| wbd_error = state->wbd_target - wbd; |
| |
| if (*tune_state == CT_AGC_STEP_0) { |
| if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) { |
| #ifdef CONFIG_BAND_CBAND |
| /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ |
| u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; |
| if (state->current_band == BAND_CBAND && ltg2) { |
| ltg2 >>= 1; |
| state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */ |
| } |
| #endif |
| } else { |
| state->agc_step = 0; |
| *tune_state = CT_AGC_STEP_1; |
| } |
| } else { |
| /* calc the adc power */ |
| adc = state->config->get_adc_power(fe); |
| adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */ |
| |
| adc_error = (s16) (((s32) ADC_TARGET) - adc); |
| #ifdef CONFIG_STANDARD_DAB |
| if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) |
| adc_error -= 10; |
| #endif |
| #ifdef CONFIG_STANDARD_DVBT |
| if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && |
| (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) |
| adc_error += 60; |
| #endif |
| #ifdef CONFIG_SYS_ISDBT |
| if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > |
| 0) |
| && |
| ((state->fe->dtv_property_cache.layer[0].modulation == |
| QAM_64) |
| || (state->fe->dtv_property_cache. |
| layer[0].modulation == QAM_16))) |
| || |
| ((state->fe->dtv_property_cache.layer[1].segment_count > |
| 0) |
| && |
| ((state->fe->dtv_property_cache.layer[1].modulation == |
| QAM_64) |
| || (state->fe->dtv_property_cache. |
| layer[1].modulation == QAM_16))) |
| || |
| ((state->fe->dtv_property_cache.layer[2].segment_count > |
| 0) |
| && |
| ((state->fe->dtv_property_cache.layer[2].modulation == |
| QAM_64) |
| || (state->fe->dtv_property_cache. |
| layer[2].modulation == QAM_16))) |
| ) |
| ) |
| adc_error += 60; |
| #endif |
| |
| if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */ |
| if (ABS(adc_error) < 50 || state->agc_step++ > 5) { |
| |
| #ifdef CONFIG_STANDARD_DAB |
| if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { |
| dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ |
| dib0090_write_reg(state, 0x04, 0x0); |
| } else |
| #endif |
| { |
| dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); |
| dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ |
| } |
| |
| *tune_state = CT_AGC_STOP; |
| } |
| } else { |
| /* everything higher than or equal to CT_AGC_STOP means tracking */ |
| ret = 100; /* 10ms interval */ |
| apply_gain_immediatly = 0; |
| } |
| } |
| #ifdef DEBUG_AGC |
| dprintk |
| ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", |
| (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, |
| (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); |
| #endif |
| } |
| |
| /* apply gain */ |
| if (!state->agc_freeze) |
| dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(dib0090_gain_control); |
| |
| void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| if (rf) |
| *rf = state->gain[0]; |
| if (bb) |
| *bb = state->gain[1]; |
| if (rf_gain_limit) |
| *rf_gain_limit = state->rf_gain_limit; |
| if (rflt) |
| *rflt = (state->rf_lt_def >> 10) & 0x7; |
| } |
| |
| EXPORT_SYMBOL(dib0090_get_current_gain); |
| |
| u16 dib0090_get_wbd_target(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000; |
| s32 current_temp = state->temperature; |
| s32 wbd_thot, wbd_tcold; |
| const struct dib0090_wbd_slope *wbd = state->current_wbd_table; |
| |
| while (f_MHz > wbd->max_freq) |
| wbd++; |
| |
| dprintk("using wbd-table-entry with max freq %d", wbd->max_freq); |
| |
| if (current_temp < 0) |
| current_temp = 0; |
| if (current_temp > 128) |
| current_temp = 128; |
| |
| state->wbdmux &= ~(7 << 13); |
| if (wbd->wbd_gain != 0) |
| state->wbdmux |= (wbd->wbd_gain << 13); |
| else |
| state->wbdmux |= (4 << 13); |
| |
| dib0090_write_reg(state, 0x10, state->wbdmux); |
| |
| wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6); |
| wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6); |
| |
| wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7; |
| |
| state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold); |
| dprintk("wbd-target: %d dB", (u32) state->wbd_target); |
| dprintk("wbd offset applied is %d", wbd_tcold); |
| |
| return state->wbd_offset + wbd_tcold; |
| } |
| EXPORT_SYMBOL(dib0090_get_wbd_target); |
| |
| u16 dib0090_get_wbd_offset(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| return state->wbd_offset; |
| } |
| EXPORT_SYMBOL(dib0090_get_wbd_offset); |
| |
| int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8) |
| | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1)); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dib0090_set_switch); |
| |
| int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff) |
| | ((onoff & 1) << 15)); |
| return 0; |
| } |
| EXPORT_SYMBOL(dib0090_set_vga); |
| |
| int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| if ((!state->identity.p1g) || (!state->identity.in_soc) |
| || ((state->identity.version != SOC_7090_P1G_21R1) |
| && (state->identity.version != SOC_7090_P1G_11R1))) { |
| dprintk("%s() function can only be used for dib7090P", __func__); |
| return -ENODEV; |
| } |
| |
| if (cfg_sensitivity) |
| state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_sensitivity; |
| else |
| state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_aci; |
| dib0090_pwm_gain_reset(fe); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dib0090_update_rframp_7090); |
| |
| static const u16 dib0090_defaults[] = { |
| |
| 25, 0x01, |
| 0x0000, |
| 0x99a0, |
| 0x6008, |
| 0x0000, |
| 0x8bcb, |
| 0x0000, |
| 0x0405, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0xb802, |
| 0x0300, |
| 0x2d12, |
| 0xbac0, |
| 0x7c00, |
| 0xdbb9, |
| 0x0954, |
| 0x0743, |
| 0x8000, |
| 0x0001, |
| 0x0040, |
| 0x0100, |
| 0x0000, |
| 0xe910, |
| 0x149e, |
| |
| 1, 0x1c, |
| 0xff2d, |
| |
| 1, 0x39, |
| 0x0000, |
| |
| 2, 0x1e, |
| 0x07FF, |
| 0x0007, |
| |
| 1, 0x24, |
| EN_UHF | EN_CRYSTAL, |
| |
| 2, 0x3c, |
| 0x3ff, |
| 0x111, |
| 0 |
| }; |
| |
| static const u16 dib0090_p1g_additionnal_defaults[] = { |
| 1, 0x05, |
| 0xabcd, |
| |
| 1, 0x11, |
| 0x00b4, |
| |
| 1, 0x1c, |
| 0xfffd, |
| |
| 1, 0x40, |
| 0x108, |
| 0 |
| }; |
| |
| static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n) |
| { |
| u16 l, r; |
| |
| l = pgm_read_word(n++); |
| while (l) { |
| r = pgm_read_word(n++); |
| do { |
| dib0090_write_reg(state, r, pgm_read_word(n++)); |
| r++; |
| } while (--l); |
| l = pgm_read_word(n++); |
| } |
| } |
| |
| #define CAP_VALUE_MIN (u8) 9 |
| #define CAP_VALUE_MAX (u8) 40 |
| #define HR_MIN (u8) 25 |
| #define HR_MAX (u8) 40 |
| #define POLY_MIN (u8) 0 |
| #define POLY_MAX (u8) 8 |
| |
| static void dib0090_set_EFUSE(struct dib0090_state *state) |
| { |
| u8 c, h, n; |
| u16 e2, e4; |
| u16 cal; |
| |
| e2 = dib0090_read_reg(state, 0x26); |
| e4 = dib0090_read_reg(state, 0x28); |
| |
| if ((state->identity.version == P1D_E_F) || |
| (state->identity.version == P1G) || (e2 == 0xffff)) { |
| |
| dib0090_write_reg(state, 0x22, 0x10); |
| cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff; |
| |
| if ((cal < 670) || (cal == 1023)) |
| cal = 850; |
| n = 165 - ((cal * 10)>>6) ; |
| e2 = e4 = (3<<12) | (34<<6) | (n); |
| } |
| |
| if (e2 != e4) |
| e2 &= e4; /* Remove the redundancy */ |
| |
| if (e2 != 0xffff) { |
| c = e2 & 0x3f; |
| n = (e2 >> 12) & 0xf; |
| h = (e2 >> 6) & 0x3f; |
| |
| if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN)) |
| c = 32; |
| else |
| c += 14; |
| if ((h >= HR_MAX) || (h <= HR_MIN)) |
| h = 34; |
| if ((n >= POLY_MAX) || (n <= POLY_MIN)) |
| n = 3; |
| |
| dib0090_write_reg(state, 0x13, (h << 10)); |
| e2 = (n << 11) | ((h >> 2)<<6) | c; |
| dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */ |
| } |
| } |
| |
| static int dib0090_reset(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| dib0090_reset_digital(fe, state->config); |
| if (dib0090_identify(fe) < 0) |
| return -EIO; |
| |
| #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT |
| if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */ |
| return 0; |
| #endif |
| |
| if (!state->identity.in_soc) { |
| if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2) |
| dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL)); |
| else |
| dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL)); |
| } |
| |
| dib0090_set_default_config(state, dib0090_defaults); |
| |
| if (state->identity.in_soc) |
| dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */ |
| |
| if (state->identity.p1g) |
| dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults); |
| |
| /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/ |
| if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) |
| dib0090_set_EFUSE(state); |
| |
| /* Congigure in function of the crystal */ |
| if (state->config->force_crystal_mode != 0) |
| dib0090_write_reg(state, 0x14, |
| state->config->force_crystal_mode & 3); |
| else if (state->config->io.clock_khz >= 24000) |
| dib0090_write_reg(state, 0x14, 1); |
| else |
| dib0090_write_reg(state, 0x14, 2); |
| dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); |
| |
| state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */ |
| |
| return 0; |
| } |
| |
| #define steps(u) (((u) > 15) ? ((u)-16) : (u)) |
| #define INTERN_WAIT 10 |
| static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| int ret = INTERN_WAIT * 10; |
| |
| switch (*tune_state) { |
| case CT_TUNER_STEP_2: |
| /* Turns to positive */ |
| dib0090_write_reg(state, 0x1f, 0x7); |
| *tune_state = CT_TUNER_STEP_3; |
| break; |
| |
| case CT_TUNER_STEP_3: |
| state->adc_diff = dib0090_read_reg(state, 0x1d); |
| |
| /* Turns to negative */ |
| dib0090_write_reg(state, 0x1f, 0x4); |
| *tune_state = CT_TUNER_STEP_4; |
| break; |
| |
| case CT_TUNER_STEP_4: |
| state->adc_diff -= dib0090_read_reg(state, 0x1d); |
| *tune_state = CT_TUNER_STEP_5; |
| ret = 0; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| struct dc_calibration { |
| u8 addr; |
| u8 offset; |
| u8 pga:1; |
| u16 bb1; |
| u8 i:1; |
| }; |
| |
| static const struct dc_calibration dc_table[] = { |
| /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ |
| {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, |
| {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, |
| /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ |
| {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, |
| {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, |
| {0}, |
| }; |
| |
| static const struct dc_calibration dc_p1g_table[] = { |
| /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ |
| /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */ |
| {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, |
| {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, |
| /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ |
| {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, |
| {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, |
| {0}, |
| }; |
| |
| static void dib0090_set_trim(struct dib0090_state *state) |
| { |
| u16 *val; |
| |
| if (state->dc->addr == 0x07) |
| val = &state->bb7; |
| else |
| val = &state->bb6; |
| |
| *val &= ~(0x1f << state->dc->offset); |
| *val |= state->step << state->dc->offset; |
| |
| dib0090_write_reg(state, state->dc->addr, *val); |
| } |
| |
| static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| int ret = 0; |
| u16 reg; |
| |
| switch (*tune_state) { |
| case CT_TUNER_START: |
| dprintk("Start DC offset calibration"); |
| |
| /* force vcm2 = 0.8V */ |
| state->bb6 = 0; |
| state->bb7 = 0x040d; |
| |
| /* the LNA AND LO are off */ |
| reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */ |
| dib0090_write_reg(state, 0x24, reg); |
| |
| state->wbdmux = dib0090_read_reg(state, 0x10); |
| dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3); |
| dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); |
| |
| state->dc = dc_table; |
| |
| if (state->identity.p1g) |
| state->dc = dc_p1g_table; |
| *tune_state = CT_TUNER_STEP_0; |
| |
| /* fall through */ |
| |
| case CT_TUNER_STEP_0: |
| dprintk("Sart/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q"); |
| dib0090_write_reg(state, 0x01, state->dc->bb1); |
| dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); |
| |
| state->step = 0; |
| state->min_adc_diff = 1023; |
| *tune_state = CT_TUNER_STEP_1; |
| ret = 50; |
| break; |
| |
| case CT_TUNER_STEP_1: |
| dib0090_set_trim(state); |
| *tune_state = CT_TUNER_STEP_2; |
| break; |
| |
| case CT_TUNER_STEP_2: |
| case CT_TUNER_STEP_3: |
| case CT_TUNER_STEP_4: |
| ret = dib0090_get_offset(state, tune_state); |
| break; |
| |
| case CT_TUNER_STEP_5: /* found an offset */ |
| dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step); |
| if (state->step == 0 && state->adc_diff < 0) { |
| state->min_adc_diff = -1023; |
| dprintk("Change of sign of the minimum adc diff"); |
| } |
| |
| dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step); |
| |
| /* first turn for this frequency */ |
| if (state->step == 0) { |
| if (state->dc->pga && state->adc_diff < 0) |
| state->step = 0x10; |
| if (state->dc->pga == 0 && state->adc_diff > 0) |
| state->step = 0x10; |
| } |
| |
| /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */ |
| if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) { |
| /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */ |
| state->step++; |
| state->min_adc_diff = state->adc_diff; |
| *tune_state = CT_TUNER_STEP_1; |
| } else { |
| /* the minimum was what we have seen in the step before */ |
| if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) { |
| dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff); |
| state->step--; |
| } |
| |
| dib0090_set_trim(state); |
| dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step); |
| |
| state->dc++; |
| if (state->dc->addr == 0) /* done */ |
| *tune_state = CT_TUNER_STEP_6; |
| else |
| *tune_state = CT_TUNER_STEP_0; |
| |
| } |
| break; |
| |
| case CT_TUNER_STEP_6: |
| dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); |
| dib0090_write_reg(state, 0x1f, 0x7); |
| *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ |
| state->calibrate &= ~DC_CAL; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| u8 wbd_gain; |
| const struct dib0090_wbd_slope *wbd = state->current_wbd_table; |
| |
| switch (*tune_state) { |
| case CT_TUNER_START: |
| while (state->current_rf / 1000 > wbd->max_freq) |
| wbd++; |
| if (wbd->wbd_gain != 0) |
| wbd_gain = wbd->wbd_gain; |
| else { |
| wbd_gain = 4; |
| #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) |
| if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) |
| wbd_gain = 2; |
| #endif |
| } |
| |
| if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */ |
| *tune_state = CT_TUNER_START; |
| state->calibrate &= ~WBD_CAL; |
| return 0; |
| } |
| |
| dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3)); |
| |
| dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1))); |
| *tune_state = CT_TUNER_STEP_0; |
| state->wbd_calibration_gain = wbd_gain; |
| return 90; /* wait for the WBDMUX to switch and for the ADC to sample */ |
| |
| case CT_TUNER_STEP_0: |
| state->wbd_offset = dib0090_get_slow_adc_val(state); |
| dprintk("WBD calibration offset = %d", state->wbd_offset); |
| *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ |
| state->calibrate &= ~WBD_CAL; |
| break; |
| |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static void dib0090_set_bandwidth(struct dib0090_state *state) |
| { |
| u16 tmp; |
| |
| if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) |
| tmp = (3 << 14); |
| else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) |
| tmp = (2 << 14); |
| else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) |
| tmp = (1 << 14); |
| else |
| tmp = (0 << 14); |
| |
| state->bb_1_def &= 0x3fff; |
| state->bb_1_def |= tmp; |
| |
| dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */ |
| |
| dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */ |
| dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */ |
| if (state->identity.in_soc) { |
| dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */ |
| } else { |
| dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */ |
| dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */ |
| } |
| } |
| |
| static const struct dib0090_pll dib0090_pll_table[] = { |
| #ifdef CONFIG_BAND_CBAND |
| {56000, 0, 9, 48, 6}, |
| {70000, 1, 9, 48, 6}, |
| {87000, 0, 8, 32, 4}, |
| {105000, 1, 8, 32, 4}, |
| {115000, 0, 7, 24, 6}, |
| {140000, 1, 7, 24, 6}, |
| {170000, 0, 6, 16, 4}, |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| {200000, 1, 6, 16, 4}, |
| {230000, 0, 5, 12, 6}, |
| {280000, 1, 5, 12, 6}, |
| {340000, 0, 4, 8, 4}, |
| {380000, 1, 4, 8, 4}, |
| {450000, 0, 3, 6, 6}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {580000, 1, 3, 6, 6}, |
| {700000, 0, 2, 4, 4}, |
| {860000, 1, 2, 4, 4}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1800000, 1, 0, 2, 4}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2900000, 0, 14, 1, 4}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { |
| |
| #ifdef CONFIG_BAND_CBAND |
| {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, |
| {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_tuning_table[] = { |
| |
| #ifdef CONFIG_BAND_CBAND |
| {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, |
| {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_p1g_tuning_table[] = { |
| #ifdef CONFIG_BAND_CBAND |
| {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB}, |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, |
| {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, |
| #endif |
| }; |
| |
| static const struct dib0090_pll dib0090_p1g_pll_table[] = { |
| #ifdef CONFIG_BAND_CBAND |
| {57000, 0, 11, 48, 6}, |
| {70000, 1, 11, 48, 6}, |
| {86000, 0, 10, 32, 4}, |
| {105000, 1, 10, 32, 4}, |
| {115000, 0, 9, 24, 6}, |
| {140000, 1, 9, 24, 6}, |
| {170000, 0, 8, 16, 4}, |
| #endif |
| #ifdef CONFIG_BAND_VHF |
| {200000, 1, 8, 16, 4}, |
| {230000, 0, 7, 12, 6}, |
| {280000, 1, 7, 12, 6}, |
| {340000, 0, 6, 8, 4}, |
| {380000, 1, 6, 8, 4}, |
| {455000, 0, 5, 6, 6}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {580000, 1, 5, 6, 6}, |
| {680000, 0, 4, 4, 4}, |
| {860000, 1, 4, 4, 4}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1800000, 1, 2, 2, 4}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2900000, 0, 1, 1, 6}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = { |
| #ifdef CONFIG_BAND_CBAND |
| {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, |
| {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, |
| {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, |
| #endif |
| #ifdef CONFIG_BAND_UHF |
| {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, |
| #endif |
| #ifdef CONFIG_BAND_LBAND |
| {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, |
| #endif |
| #ifdef CONFIG_BAND_SBAND |
| {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, |
| {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = { |
| #ifdef CONFIG_BAND_CBAND |
| {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, |
| {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, |
| {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, |
| {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, |
| #endif |
| }; |
| |
| static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = { |
| #ifdef CONFIG_BAND_CBAND |
| { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, |
| { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, |
| { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB }, |
| { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB }, |
| { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB }, |
| { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB }, |
| #endif |
| }; |
| |
| int dib0090_update_tuning_table_7090(struct dvb_frontend *fe, |
| u8 cfg_sensitivity) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| const struct dib0090_tuning *tune = |
| dib0090_tuning_table_cband_7090e_sensitivity; |
| const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = { |
| { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, |
| { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB }, |
| { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB }, |
| }; |
| |
| if ((!state->identity.p1g) || (!state->identity.in_soc) |
| || ((state->identity.version != SOC_7090_P1G_21R1) |
| && (state->identity.version != SOC_7090_P1G_11R1))) { |
| dprintk("%s() function can only be used for dib7090", __func__); |
| return -ENODEV; |
| } |
| |
| if (cfg_sensitivity) |
| tune = dib0090_tuning_table_cband_7090e_sensitivity; |
| else |
| tune = dib0090_tuning_table_cband_7090e_aci; |
| |
| while (state->rf_request > tune->max_freq) |
| tune++; |
| |
| dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000) |
| | (tune->lna_bias & 0x7fff)); |
| dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f) |
| | ((tune->lna_tune << 6) & 0x07c0)); |
| return 0; |
| } |
| EXPORT_SYMBOL(dib0090_update_tuning_table_7090); |
| |
| static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| int ret = 0; |
| u16 lo4 = 0xe900; |
| |
| s16 adc_target; |
| u16 adc; |
| s8 step_sign; |
| u8 force_soft_search = 0; |
| |
| if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) |
| force_soft_search = 1; |
| |
| if (*tune_state == CT_TUNER_START) { |
| dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO"); |
| dib0090_write_reg(state, 0x10, 0x2B1); |
| dib0090_write_reg(state, 0x1e, 0x0032); |
| |
| if (!state->tuner_is_tuned) { |
| /* prepare a complete captrim */ |
| if (!state->identity.p1g || force_soft_search) |
| state->step = state->captrim = state->fcaptrim = 64; |
| |
| state->current_rf = state->rf_request; |
| } else { /* we are already tuned to this frequency - the configuration is correct */ |
| if (!state->identity.p1g || force_soft_search) { |
| /* do a minimal captrim even if the frequency has not changed */ |
| state->step = 4; |
| state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; |
| } |
| } |
| state->adc_diff = 3000; |
| *tune_state = CT_TUNER_STEP_0; |
| |
| } else if (*tune_state == CT_TUNER_STEP_0) { |
| if (state->identity.p1g && !force_soft_search) { |
| u8 ratio = 31; |
| |
| dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1); |
| dib0090_read_reg(state, 0x40); |
| ret = 50; |
| } else { |
| state->step /= 2; |
| dib0090_write_reg(state, 0x18, lo4 | state->captrim); |
| |
| if (state->identity.in_soc) |
| ret = 25; |
| } |
| *tune_state = CT_TUNER_STEP_1; |
| |
| } else if (*tune_state == CT_TUNER_STEP_1) { |
| if (state->identity.p1g && !force_soft_search) { |
| dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0); |
| dib0090_read_reg(state, 0x40); |
| |
| state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F; |
| dprintk("***Final Captrim= 0x%x", state->fcaptrim); |
| *tune_state = CT_TUNER_STEP_3; |
| |
| } else { |
| /* MERGE for all krosus before P1G */ |
| adc = dib0090_get_slow_adc_val(state); |
| dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024); |
| |
| if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */ |
| adc_target = 200; |
| } else |
| adc_target = 400; |
| |
| if (adc >= adc_target) { |
| adc -= adc_target; |
| step_sign = -1; |
| } else { |
| adc = adc_target - adc; |
| step_sign = 1; |
| } |
| |
| if (adc < state->adc_diff) { |
| dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff); |
| state->adc_diff = adc; |
| state->fcaptrim = state->captrim; |
| } |
| |
| state->captrim += step_sign * state->step; |
| if (state->step >= 1) |
| *tune_state = CT_TUNER_STEP_0; |
| else |
| *tune_state = CT_TUNER_STEP_2; |
| |
| ret = 25; |
| } |
| } else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */ |
| /*write the final cptrim config */ |
| dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); |
| |
| *tune_state = CT_TUNER_STEP_3; |
| |
| } else if (*tune_state == CT_TUNER_STEP_3) { |
| state->calibrate &= ~CAPTRIM_CAL; |
| *tune_state = CT_TUNER_STEP_0; |
| } |
| |
| return ret; |
| } |
| |
| static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state) |
| { |
| int ret = 15; |
| s16 val; |
| |
| switch (*tune_state) { |
| case CT_TUNER_START: |
| state->wbdmux = dib0090_read_reg(state, 0x10); |
| dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3)); |
| |
| state->bias = dib0090_read_reg(state, 0x13); |
| dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8)); |
| |
| *tune_state = CT_TUNER_STEP_0; |
| /* wait for the WBDMUX to switch and for the ADC to sample */ |
| break; |
| |
| case CT_TUNER_STEP_0: |
| state->adc_diff = dib0090_get_slow_adc_val(state); |
| dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8)); |
| *tune_state = CT_TUNER_STEP_1; |
| break; |
| |
| case CT_TUNER_STEP_1: |
| val = dib0090_get_slow_adc_val(state); |
| state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55; |
| |
| dprintk("temperature: %d C", state->temperature - 30); |
| |
| *tune_state = CT_TUNER_STEP_2; |
| break; |
| |
| case CT_TUNER_STEP_2: |
| dib0090_write_reg(state, 0x13, state->bias); |
| dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */ |
| |
| *tune_state = CT_TUNER_START; |
| state->calibrate &= ~TEMP_CAL; |
| if (state->config->analog_output == 0) |
| dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); |
| |
| break; |
| |
| default: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| |
| #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ |
| static int dib0090_tune(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| const struct dib0090_tuning *tune = state->current_tune_table_index; |
| const struct dib0090_pll *pll = state->current_pll_table_index; |
| enum frontend_tune_state *tune_state = &state->tune_state; |
| |
| u16 lo5, lo6, Den, tmp; |
| u32 FBDiv, Rest, FREF, VCOF_kHz = 0; |
| int ret = 10; /* 1ms is the default delay most of the time */ |
| u8 c, i; |
| |
| /************************* VCO ***************************/ |
| /* Default values for FG */ |
| /* from these are needed : */ |
| /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */ |
| |
| /* in any case we first need to do a calibration if needed */ |
| if (*tune_state == CT_TUNER_START) { |
| /* deactivate DataTX before some calibrations */ |
| if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL)) |
| dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); |
| else |
| /* Activate DataTX in case a calibration has been done before */ |
| if (state->config->analog_output == 0) |
| dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); |
| } |
| |
| if (state->calibrate & DC_CAL) |
| return dib0090_dc_offset_calibration(state, tune_state); |
| else if (state->calibrate & WBD_CAL) { |
| if (state->current_rf == 0) |
| state->current_rf = state->fe->dtv_property_cache.frequency / 1000; |
| return dib0090_wbd_calibration(state, tune_state); |
| } else if (state->calibrate & TEMP_CAL) |
| return dib0090_get_temperature(state, tune_state); |
| else if (state->calibrate & CAPTRIM_CAL) |
| return dib0090_captrim_search(state, tune_state); |
| |
| if (*tune_state == CT_TUNER_START) { |
| /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */ |
| if (state->config->use_pwm_agc && state->identity.in_soc) { |
| tmp = dib0090_read_reg(state, 0x39); |
| if ((tmp >> 10) & 0x1) |
| dib0090_write_reg(state, 0x39, tmp & ~(1 << 10)); |
| } |
| |
| state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000); |
| state->rf_request = |
| state->fe->dtv_property_cache.frequency / 1000 + (state->current_band == |
| BAND_UHF ? state->config->freq_offset_khz_uhf : state->config-> |
| freq_offset_khz_vhf); |
| |
| /* in ISDB-T 1seg we shift tuning frequency */ |
| if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1 |
| && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) { |
| const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if; |
| u8 found_offset = 0; |
| u32 margin_khz = 100; |
| |
| if (LUT_offset != NULL) { |
| while (LUT_offset->RF_freq != 0xffff) { |
| if (((state->rf_request > (LUT_offset->RF_freq - margin_khz)) |
| && (state->rf_request < (LUT_offset->RF_freq + margin_khz))) |
| && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) { |
| state->rf_request += LUT_offset->offset_khz; |
| found_offset = 1; |
| break; |
| } |
| LUT_offset++; |
| } |
| } |
| |
| if (found_offset == 0) |
| state->rf_request += 400; |
| } |
| if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) { |
| state->tuner_is_tuned = 0; |
| state->current_rf = 0; |
| state->current_standard = 0; |
| |
| tune = dib0090_tuning_table; |
| if (state->identity.p1g) |
| tune = dib0090_p1g_tuning_table; |
| |
| tmp = (state->identity.version >> 5) & 0x7; |
| |
| if (state->identity.in_soc) { |
| if (state->config->force_cband_input) { /* Use the CBAND input for all band */ |
| if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF |
| || state->current_band & BAND_UHF) { |
| state->current_band = BAND_CBAND; |
| if (state->config->is_dib7090e) |
| tune = dib0090_tuning_table_cband_7090e_sensitivity; |
| else |
| tune = dib0090_tuning_table_cband_7090; |
| } |
| } else { /* Use the CBAND input for all band under UHF */ |
| if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) { |
| state->current_band = BAND_CBAND; |
| if (state->config->is_dib7090e) |
| tune = dib0090_tuning_table_cband_7090e_sensitivity; |
| else |
| tune = dib0090_tuning_table_cband_7090; |
| } |
| } |
| } else |
| if (tmp == 0x4 || tmp == 0x7) { |
| /* CBAND tuner version for VHF */ |
| if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) { |
| state->current_band = BAND_CBAND; /* Force CBAND */ |
| |
| tune = dib0090_tuning_table_fm_vhf_on_cband; |
| if (state->identity.p1g) |
| tune = dib0090_p1g_tuning_table_fm_vhf_on_cband; |
| } |
| } |
| |
| pll = dib0090_pll_table; |
| if (state->identity.p1g) |
| pll = dib0090_p1g_pll_table; |
| |
| /* Look for the interval */ |
| while (state->rf_request > tune->max_freq) |
| tune++; |
| while (state->rf_request > pll->max_freq) |
| pll++; |
| |
| state->current_tune_table_index = tune; |
| state->current_pll_table_index = pll; |
| |
| dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); |
| |
| VCOF_kHz = (pll->hfdiv * state->rf_request) * 2; |
| |
| FREF = state->config->io.clock_khz; |
| if (state->config->fref_clock_ratio != 0) |
| FREF /= state->config->fref_clock_ratio; |
| |
| FBDiv = (VCOF_kHz / pll->topresc / FREF); |
| Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; |
| |
| if (Rest < LPF) |
| Rest = 0; |
| else if (Rest < 2 * LPF) |
| Rest = 2 * LPF; |
| else if (Rest > (FREF - LPF)) { |
| Rest = 0; |
| FBDiv += 1; |
| } else if (Rest > (FREF - 2 * LPF)) |
| Rest = FREF - 2 * LPF; |
| Rest = (Rest * 6528) / (FREF / 10); |
| state->rest = Rest; |
| |
| /* external loop filter, otherwise: |
| * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; |
| * lo6 = 0x0e34 */ |
| |
| if (Rest == 0) { |
| if (pll->vco_band) |
| lo5 = 0x049f; |
| else |
| lo5 = 0x041f; |
| } else { |
| if (pll->vco_band) |
| lo5 = 0x049e; |
| else if (state->config->analog_output) |
| lo5 = 0x041d; |
| else |
| lo5 = 0x041c; |
| } |
| |
| if (state->identity.p1g) { /* Bias is done automatically in P1G */ |
| if (state->identity.in_soc) { |
| if (state->identity.version == SOC_8090_P1G_11R1) |
| lo5 = 0x46f; |
| else |
| lo5 = 0x42f; |
| } else |
| lo5 = 0x42c; |
| } |
| |
| lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */ |
| |
| if (!state->config->io.pll_int_loop_filt) { |
| if (state->identity.in_soc) |
| lo6 = 0xff98; |
| else if (state->identity.p1g || (Rest == 0)) |
| lo6 = 0xfff8; |
| else |
| lo6 = 0xff28; |
| } else |
| lo6 = (state->config->io.pll_int_loop_filt << 3); |
| |
| Den = 1; |
| |
| if (Rest > 0) { |
| if (state->config->analog_output) |
| lo6 |= (1 << 2) | 2; |
| else { |
| if (state->identity.in_soc) |
| lo6 |= (1 << 2) | 2; |
| else |
| lo6 |= (1 << 2) | 2; |
| } |
| Den = 255; |
| } |
| dib0090_write_reg(state, 0x15, (u16) FBDiv); |
| if (state->config->fref_clock_ratio != 0) |
| dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio); |
| else |
| dib0090_write_reg(state, 0x16, (Den << 8) | 1); |
| dib0090_write_reg(state, 0x17, (u16) Rest); |
| dib0090_write_reg(state, 0x19, lo5); |
| dib0090_write_reg(state, 0x1c, lo6); |
| |
| lo6 = tune->tuner_enable; |
| if (state->config->analog_output) |
| lo6 = (lo6 & 0xff9f) | 0x2; |
| |
| dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL); |
| |
| } |
| |
| state->current_rf = state->rf_request; |
| state->current_standard = state->fe->dtv_property_cache.delivery_system; |
| |
| ret = 20; |
| state->calibrate = CAPTRIM_CAL; /* captrim serach now */ |
| } |
| |
| else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */ |
| const struct dib0090_wbd_slope *wbd = state->current_wbd_table; |
| |
| while (state->current_rf / 1000 > wbd->max_freq) |
| wbd++; |
| |
| dib0090_write_reg(state, 0x1e, 0x07ff); |
| dprintk("Final Captrim: %d", (u32) state->fcaptrim); |
| dprintk("HFDIV code: %d", (u32) pll->hfdiv_code); |
| dprintk("VCO = %d", (u32) pll->vco_band); |
| dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request); |
| dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz); |
| dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); |
| dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8), |
| (u32) dib0090_read_reg(state, 0x1c) & 0x3); |
| |
| #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ |
| c = 4; |
| i = 3; |
| |
| if (wbd->wbd_gain != 0) |
| c = wbd->wbd_gain; |
| |
| state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1)); |
| dib0090_write_reg(state, 0x10, state->wbdmux); |
| |
| if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) { |
| dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune); |
| dib0090_write_reg(state, 0x09, tune->lna_bias); |
| dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim)); |
| } else |
| dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias); |
| |
| dib0090_write_reg(state, 0x0c, tune->v2i); |
| dib0090_write_reg(state, 0x0d, tune->mix); |
| dib0090_write_reg(state, 0x0e, tune->load); |
| *tune_state = CT_TUNER_STEP_1; |
| |
| } else if (*tune_state == CT_TUNER_STEP_1) { |
| /* initialize the lt gain register */ |
| state->rf_lt_def = 0x7c00; |
| |
| dib0090_set_bandwidth(state); |
| state->tuner_is_tuned = 1; |
| |
| state->calibrate |= WBD_CAL; |
| state->calibrate |= TEMP_CAL; |
| *tune_state = CT_TUNER_STOP; |
| } else |
| ret = FE_CALLBACK_TIME_NEVER; |
| return ret; |
| } |
| |
| static int dib0090_release(struct dvb_frontend *fe) |
| { |
| kfree(fe->tuner_priv); |
| fe->tuner_priv = NULL; |
| return 0; |
| } |
| |
| enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| return state->tune_state; |
| } |
| |
| EXPORT_SYMBOL(dib0090_get_tune_state); |
| |
| int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| state->tune_state = tune_state; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(dib0090_set_tune_state); |
| |
| static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| |
| *frequency = 1000 * state->current_rf; |
| return 0; |
| } |
| |
| static int dib0090_set_params(struct dvb_frontend *fe) |
| { |
| struct dib0090_state *state = fe->tuner_priv; |
| u32 ret; |
| |
| state->tune_state = CT_TUNER_START; |
| |
| do { |
| ret = dib0090_tune(fe); |
| if (ret == FE_CALLBACK_TIME_NEVER) |
| break; |
| |
| /* |
| * Despite dib0090_tune returns time at a 0.1 ms range, |
| * the actual sleep time depends on CONFIG_HZ. The worse case |
| * is when CONFIG_HZ=100. In such case, the minimum granularity |
| * is 10ms. On some real field tests, the tuner sometimes don't |
| * lock when this timer is lower than 10ms. So, enforce a 10ms |
| * granularity and use usleep_range() instead of msleep(). |
| */ |
| ret = 10 * (ret + 99)/100; |
| usleep_range(ret * 1000, (ret + 1) * 1000); |
| } while (state->tune_state != CT_TUNER_STOP); |
| |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops dib0090_ops = { |
| .info = { |
| .name = "DiBcom DiB0090", |
| .frequency_min = 45000000, |
| .frequency_max = 860000000, |
| .frequency_step = 1000, |
| }, |
| .release = dib0090_release, |
| |
| .init = dib0090_wakeup, |
| .sleep = dib0090_sleep, |
| .set_params = dib0090_set_params, |
| .get_frequency = dib0090_get_frequency, |
| }; |
| |
| static const struct dvb_tuner_ops dib0090_fw_ops = { |
| .info = { |
| .name = "DiBcom DiB0090", |
| .frequency_min = 45000000, |
| .frequency_max = 860000000, |
| .frequency_step = 1000, |
| }, |
| .release = dib0090_release, |
| |
| .init = NULL, |
| .sleep = NULL, |
| .set_params = NULL, |
| .get_frequency = NULL, |
| }; |
| |
| static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = { |
| {470, 0, 250, 0, 100, 4}, |
| {860, 51, 866, 21, 375, 4}, |
| {1700, 0, 800, 0, 850, 4}, |
| {2900, 0, 250, 0, 100, 6}, |
| {0xFFFF, 0, 0, 0, 0, 0}, |
| }; |
| |
| struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) |
| { |
| struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); |
| if (st == NULL) |
|