| /* |
| * hcd_queue.c - DesignWare HS OTG Controller host queuing routines |
| * |
| * Copyright (C) 2004-2013 Synopsys, Inc. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The names of the above-listed copyright holders may not be used |
| * to endorse or promote products derived from this software without |
| * specific prior written permission. |
| * |
| * ALTERNATIVELY, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") as published by the Free Software |
| * Foundation; either version 2 of the License, or (at your option) any |
| * later version. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * This file contains the functions to manage Queue Heads and Queue |
| * Transfer Descriptors for Host mode |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/usb.h> |
| |
| #include <linux/usb/hcd.h> |
| #include <linux/usb/ch11.h> |
| |
| #include "core.h" |
| #include "hcd.h" |
| |
| /** |
| * dwc2_qh_init() - Initializes a QH structure |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @qh: The QH to init |
| * @urb: Holds the information about the device/endpoint needed to initialize |
| * the QH |
| */ |
| #define SCHEDULE_SLOP 10 |
| static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, |
| struct dwc2_hcd_urb *urb) |
| { |
| int dev_speed, hub_addr, hub_port; |
| char *speed, *type; |
| |
| dev_vdbg(hsotg->dev, "%s()\n", __func__); |
| |
| /* Initialize QH */ |
| qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info); |
| qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0; |
| |
| qh->data_toggle = DWC2_HC_PID_DATA0; |
| qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info); |
| INIT_LIST_HEAD(&qh->qtd_list); |
| INIT_LIST_HEAD(&qh->qh_list_entry); |
| |
| /* FS/LS Endpoint on HS Hub, NOT virtual root hub */ |
| dev_speed = dwc2_host_get_speed(hsotg, urb->priv); |
| |
| dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); |
| |
| if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) && |
| hub_addr != 0 && hub_addr != 1) { |
| dev_vdbg(hsotg->dev, |
| "QH init: EP %d: TT found at hub addr %d, for port %d\n", |
| dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr, |
| hub_port); |
| qh->do_split = 1; |
| } |
| |
| if (qh->ep_type == USB_ENDPOINT_XFER_INT || |
| qh->ep_type == USB_ENDPOINT_XFER_ISOC) { |
| /* Compute scheduling parameters once and save them */ |
| u32 hprt, prtspd; |
| |
| /* Todo: Account for split transfers in the bus time */ |
| int bytecount = |
| dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp); |
| |
| qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ? |
| USB_SPEED_HIGH : dev_speed, qh->ep_is_in, |
| qh->ep_type == USB_ENDPOINT_XFER_ISOC, |
| bytecount)); |
| /* Start in a slightly future (micro)frame */ |
| qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number, |
| SCHEDULE_SLOP); |
| qh->interval = urb->interval; |
| #if 0 |
| /* Increase interrupt polling rate for debugging */ |
| if (qh->ep_type == USB_ENDPOINT_XFER_INT) |
| qh->interval = 8; |
| #endif |
| hprt = readl(hsotg->regs + HPRT0); |
| prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; |
| if (prtspd == HPRT0_SPD_HIGH_SPEED && |
| (dev_speed == USB_SPEED_LOW || |
| dev_speed == USB_SPEED_FULL)) { |
| qh->interval *= 8; |
| qh->sched_frame |= 0x7; |
| qh->start_split_frame = qh->sched_frame; |
| } |
| dev_dbg(hsotg->dev, "interval=%d\n", qh->interval); |
| } |
| |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n"); |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh); |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n", |
| dwc2_hcd_get_dev_addr(&urb->pipe_info)); |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n", |
| dwc2_hcd_get_ep_num(&urb->pipe_info), |
| dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT"); |
| |
| qh->dev_speed = dev_speed; |
| |
| switch (dev_speed) { |
| case USB_SPEED_LOW: |
| speed = "low"; |
| break; |
| case USB_SPEED_FULL: |
| speed = "full"; |
| break; |
| case USB_SPEED_HIGH: |
| speed = "high"; |
| break; |
| default: |
| speed = "?"; |
| break; |
| } |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed); |
| |
| switch (qh->ep_type) { |
| case USB_ENDPOINT_XFER_ISOC: |
| type = "isochronous"; |
| break; |
| case USB_ENDPOINT_XFER_INT: |
| type = "interrupt"; |
| break; |
| case USB_ENDPOINT_XFER_CONTROL: |
| type = "control"; |
| break; |
| case USB_ENDPOINT_XFER_BULK: |
| type = "bulk"; |
| break; |
| default: |
| type = "?"; |
| break; |
| } |
| |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type); |
| |
| if (qh->ep_type == USB_ENDPOINT_XFER_INT) { |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n", |
| qh->usecs); |
| dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n", |
| qh->interval); |
| } |
| } |
| |
| /** |
| * dwc2_hcd_qh_create() - Allocates and initializes a QH |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @urb: Holds the information about the device/endpoint needed |
| * to initialize the QH |
| * @atomic_alloc: Flag to do atomic allocation if needed |
| * |
| * Return: Pointer to the newly allocated QH, or NULL on error |
| */ |
| static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, |
| struct dwc2_hcd_urb *urb, |
| gfp_t mem_flags) |
| { |
| struct dwc2_qh *qh; |
| |
| if (!urb->priv) |
| return NULL; |
| |
| /* Allocate memory */ |
| qh = kzalloc(sizeof(*qh), mem_flags); |
| if (!qh) |
| return NULL; |
| |
| dwc2_qh_init(hsotg, qh, urb); |
| |
| if (hsotg->core_params->dma_desc_enable > 0 && |
| dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) { |
| dwc2_hcd_qh_free(hsotg, qh); |
| return NULL; |
| } |
| |
| return qh; |
| } |
| |
| /** |
| * dwc2_hcd_qh_free() - Frees the QH |
| * |
| * @hsotg: HCD instance |
| * @qh: The QH to free |
| * |
| * QH should already be removed from the list. QTD list should already be empty |
| * if called from URB Dequeue. |
| * |
| * Must NOT be called with interrupt disabled or spinlock held |
| */ |
| void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| if (hsotg->core_params->dma_desc_enable > 0) |
| dwc2_hcd_qh_free_ddma(hsotg, qh); |
| else if (qh->dw_align_buf) |
| dma_free_coherent(hsotg->dev, qh->dw_align_buf_size, |
| qh->dw_align_buf, qh->dw_align_buf_dma); |
| kfree(qh); |
| } |
| |
| /** |
| * dwc2_periodic_channel_available() - Checks that a channel is available for a |
| * periodic transfer |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * |
| * Return: 0 if successful, negative error code otherwise |
| */ |
| static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg) |
| { |
| /* |
| * Currently assuming that there is a dedicated host channel for |
| * each periodic transaction plus at least one host channel for |
| * non-periodic transactions |
| */ |
| int status; |
| int num_channels; |
| |
| num_channels = hsotg->core_params->host_channels; |
| if (hsotg->periodic_channels + hsotg->non_periodic_channels < |
| num_channels |
| && hsotg->periodic_channels < num_channels - 1) { |
| status = 0; |
| } else { |
| dev_dbg(hsotg->dev, |
| "%s: Total channels: %d, Periodic: %d, " |
| "Non-periodic: %d\n", __func__, num_channels, |
| hsotg->periodic_channels, hsotg->non_periodic_channels); |
| status = -ENOSPC; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth |
| * for the specified QH in the periodic schedule |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @qh: QH containing periodic bandwidth required |
| * |
| * Return: 0 if successful, negative error code otherwise |
| * |
| * For simplicity, this calculation assumes that all the transfers in the |
| * periodic schedule may occur in the same (micro)frame |
| */ |
| static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg, |
| struct dwc2_qh *qh) |
| { |
| int status; |
| s16 max_claimed_usecs; |
| |
| status = 0; |
| |
| if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { |
| /* |
| * High speed mode |
| * Max periodic usecs is 80% x 125 usec = 100 usec |
| */ |
| max_claimed_usecs = 100 - qh->usecs; |
| } else { |
| /* |
| * Full speed mode |
| * Max periodic usecs is 90% x 1000 usec = 900 usec |
| */ |
| max_claimed_usecs = 900 - qh->usecs; |
| } |
| |
| if (hsotg->periodic_usecs > max_claimed_usecs) { |
| dev_err(hsotg->dev, |
| "%s: already claimed usecs %d, required usecs %d\n", |
| __func__, hsotg->periodic_usecs, qh->usecs); |
| status = -ENOSPC; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * Microframe scheduler |
| * track the total use in hsotg->frame_usecs |
| * keep each qh use in qh->frame_usecs |
| * when surrendering the qh then donate the time back |
| */ |
| static const unsigned short max_uframe_usecs[] = { |
| 100, 100, 100, 100, 100, 100, 30, 0 |
| }; |
| |
| void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg) |
| { |
| int i; |
| |
| for (i = 0; i < 8; i++) |
| hsotg->frame_usecs[i] = max_uframe_usecs[i]; |
| } |
| |
| static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| unsigned short utime = qh->usecs; |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| /* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */ |
| if (utime <= hsotg->frame_usecs[i]) { |
| hsotg->frame_usecs[i] -= utime; |
| qh->frame_usecs[i] += utime; |
| return i; |
| } |
| } |
| return -ENOSPC; |
| } |
| |
| /* |
| * use this for FS apps that can span multiple uframes |
| */ |
| static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| unsigned short utime = qh->usecs; |
| unsigned short xtime; |
| int t_left; |
| int i; |
| int j; |
| int k; |
| |
| for (i = 0; i < 8; i++) { |
| if (hsotg->frame_usecs[i] <= 0) |
| continue; |
| |
| /* |
| * we need n consecutive slots so use j as a start slot |
| * j plus j+1 must be enough time (for now) |
| */ |
| xtime = hsotg->frame_usecs[i]; |
| for (j = i + 1; j < 8; j++) { |
| /* |
| * if we add this frame remaining time to xtime we may |
| * be OK, if not we need to test j for a complete frame |
| */ |
| if (xtime + hsotg->frame_usecs[j] < utime) { |
| if (hsotg->frame_usecs[j] < |
| max_uframe_usecs[j]) |
| continue; |
| } |
| if (xtime >= utime) { |
| t_left = utime; |
| for (k = i; k < 8; k++) { |
| t_left -= hsotg->frame_usecs[k]; |
| if (t_left <= 0) { |
| qh->frame_usecs[k] += |
| hsotg->frame_usecs[k] |
| + t_left; |
| hsotg->frame_usecs[k] = -t_left; |
| return i; |
| } else { |
| qh->frame_usecs[k] += |
| hsotg->frame_usecs[k]; |
| hsotg->frame_usecs[k] = 0; |
| } |
| } |
| } |
| /* add the frame time to x time */ |
| xtime += hsotg->frame_usecs[j]; |
| /* we must have a fully available next frame or break */ |
| if (xtime < utime && |
| hsotg->frame_usecs[j] == max_uframe_usecs[j]) |
| continue; |
| } |
| } |
| return -ENOSPC; |
| } |
| |
| static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| int ret; |
| |
| if (qh->dev_speed == USB_SPEED_HIGH) { |
| /* if this is a hs transaction we need a full frame */ |
| ret = dwc2_find_single_uframe(hsotg, qh); |
| } else { |
| /* |
| * if this is a fs transaction we may need a sequence |
| * of frames |
| */ |
| ret = dwc2_find_multi_uframe(hsotg, qh); |
| } |
| return ret; |
| } |
| |
| /** |
| * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a |
| * host channel is large enough to handle the maximum data transfer in a single |
| * (micro)frame for a periodic transfer |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @qh: QH for a periodic endpoint |
| * |
| * Return: 0 if successful, negative error code otherwise |
| */ |
| static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg, |
| struct dwc2_qh *qh) |
| { |
| u32 max_xfer_size; |
| u32 max_channel_xfer_size; |
| int status = 0; |
| |
| max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp); |
| max_channel_xfer_size = hsotg->core_params->max_transfer_size; |
| |
| if (max_xfer_size > max_channel_xfer_size) { |
| dev_err(hsotg->dev, |
| "%s: Periodic xfer length %d > max xfer length for channel %d\n", |
| __func__, max_xfer_size, max_channel_xfer_size); |
| status = -ENOSPC; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in |
| * the periodic schedule |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @qh: QH for the periodic transfer. The QH should already contain the |
| * scheduling information. |
| * |
| * Return: 0 if successful, negative error code otherwise |
| */ |
| static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| int status; |
| |
| if (hsotg->core_params->uframe_sched > 0) { |
| int frame = -1; |
| |
| status = dwc2_find_uframe(hsotg, qh); |
| if (status == 0) |
| frame = 7; |
| else if (status > 0) |
| frame = status - 1; |
| |
| /* Set the new frame up */ |
| if (frame >= 0) { |
| qh->sched_frame &= ~0x7; |
| qh->sched_frame |= (frame & 7); |
| } |
| |
| if (status > 0) |
| status = 0; |
| } else { |
| status = dwc2_periodic_channel_available(hsotg); |
| if (status) { |
| dev_info(hsotg->dev, |
| "%s: No host channel available for periodic transfer\n", |
| __func__); |
| return status; |
| } |
| |
| status = dwc2_check_periodic_bandwidth(hsotg, qh); |
| } |
| |
| if (status) { |
| dev_dbg(hsotg->dev, |
| "%s: Insufficient periodic bandwidth for periodic transfer\n", |
| __func__); |
| return status; |
| } |
| |
| status = dwc2_check_max_xfer_size(hsotg, qh); |
| if (status) { |
| dev_dbg(hsotg->dev, |
| "%s: Channel max transfer size too small for periodic transfer\n", |
| __func__); |
| return status; |
| } |
| |
| if (hsotg->core_params->dma_desc_enable > 0) |
| /* Don't rely on SOF and start in ready schedule */ |
| list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready); |
| else |
| /* Always start in inactive schedule */ |
| list_add_tail(&qh->qh_list_entry, |
| &hsotg->periodic_sched_inactive); |
| |
| if (hsotg->core_params->uframe_sched <= 0) |
| /* Reserve periodic channel */ |
| hsotg->periodic_channels++; |
| |
| /* Update claimed usecs per (micro)frame */ |
| hsotg->periodic_usecs += qh->usecs; |
| |
| return status; |
| } |
| |
| /** |
| * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer |
| * from the periodic schedule |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @qh: QH for the periodic transfer |
| */ |
| static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg, |
| struct dwc2_qh *qh) |
| { |
| int i; |
| |
| list_del_init(&qh->qh_list_entry); |
| |
| /* Update claimed usecs per (micro)frame */ |
| hsotg->periodic_usecs -= qh->usecs; |
| |
| if (hsotg->core_params->uframe_sched > 0) { |
| for (i = 0; i < 8; i++) { |
| hsotg->frame_usecs[i] += qh->frame_usecs[i]; |
| qh->frame_usecs[i] = 0; |
| } |
| } else { |
| /* Release periodic channel reservation */ |
| hsotg->periodic_channels--; |
| } |
| } |
| |
| /** |
| * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic |
| * schedule if it is not already in the schedule. If the QH is already in |
| * the schedule, no action is taken. |
| * |
| * @hsotg: The HCD state structure for the DWC OTG controller |
| * @qh: The QH to add |
| * |
| * Return: 0 if successful, negative error code otherwise |
| */ |
| int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| int status; |
| u32 intr_mask; |
| |
| if (dbg_qh(qh)) |
| dev_vdbg(hsotg->dev, "%s()\n", __func__); |
| |
| if (!list_empty(&qh->qh_list_entry)) |
| /* QH already in a schedule */ |
| return 0; |
| |
| /* Add the new QH to the appropriate schedule */ |
| if (dwc2_qh_is_non_per(qh)) { |
| /* Always start in inactive schedule */ |
| list_add_tail(&qh->qh_list_entry, |
| &hsotg->non_periodic_sched_inactive); |
| return 0; |
| } |
| |
| status = dwc2_schedule_periodic(hsotg, qh); |
| if (status) |
| return status; |
| if (!hsotg->periodic_qh_count) { |
| intr_mask = readl(hsotg->regs + GINTMSK); |
| intr_mask |= GINTSTS_SOF; |
| writel(intr_mask, hsotg->regs + GINTMSK); |
| } |
| hsotg->periodic_qh_count++; |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic |
| * schedule. Memory is not freed. |
| * |
| * @hsotg: The HCD state structure |
| * @qh: QH to remove from schedule |
| */ |
| void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) |
| { |
| u32 intr_mask; |
| |
| dev_vdbg(hsotg->dev, "%s()\n", __func__); |
| |
| if (list_empty(&qh->qh_list_entry)) |
| /* QH is not in a schedule */ |
| return; |
| |
| if (dwc2_qh_is_non_per(qh)) { |
| if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry) |
| hsotg->non_periodic_qh_ptr = |
| hsotg->non_periodic_qh_ptr->next; |
| list_del_init(&qh->qh_list_entry); |
| return; |
| } |
| |
| dwc2_deschedule_periodic(hsotg, qh); |
| hsotg->periodic_qh_count--; |
| if (!hsotg->periodic_qh_count) { |
| intr_mask = readl(hsotg->regs + GINTMSK); |
| intr_mask &= ~GINTSTS_SOF; |
| writel(intr_mask, hsotg->regs + GINTMSK); |
| } |
| } |
| |
| /* |
| * Schedule the next continuing periodic split transfer |
| */ |
| static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg, |
| struct dwc2_qh *qh, u16 frame_number, |
| int sched_next_periodic_split) |
| { |
| u16 incr; |
| |
| if (sched_next_periodic_split) { |
| qh->sched_frame = frame_number; |
| incr = dwc2_frame_num_inc(qh->start_split_frame, 1); |
| if (dwc2_frame_num_le(frame_number, incr)) { |
| /* |
| * Allow one frame to elapse after start split |
| * microframe before scheduling complete split, but |
| * DON'T if we are doing the next start split in the |
| * same frame for an ISOC out |
| */ |
| if (qh->ep_type != USB_ENDPOINT_XFER_ISOC || |
| qh->ep_is_in != 0) { |
| qh->sched_frame = |
| dwc2_frame_num_inc(qh->sched_frame, 1); |
| } |
| } |
| } else { |
| qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame, |
| qh->interval); |
| if (dwc2_frame_num_le(qh->sched_frame, frame_number)) |
| qh->sched_frame = frame_number; |
| qh->sched_frame |= 0x7; |
| qh->start_split_frame = qh->sched_frame; |
| } |
| } |
| |
| /* |
| * Deactivates a QH. For non-periodic QHs, removes the QH from the active |
| * non-periodic schedule. The QH is added to the inactive non-periodic |
| * schedule if any QTDs are still attached to the QH. |
| * |
| * For periodic QHs, the QH is removed from the periodic queued schedule. If |
| * there are any QTDs still attached to the QH, the QH is added to either the |
| * periodic inactive schedule or the periodic ready schedule and its next |
| * scheduled frame is calculated. The QH is placed in the ready schedule if |
| * the scheduled frame has been reached already. Otherwise it's placed in the |
| * inactive schedule. If there are no QTDs attached to the QH, the QH is |
| * completely removed from the periodic schedule. |
| */ |
| void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, |
| int sched_next_periodic_split) |
| { |
| u16 frame_number; |
| |
| if (dbg_qh(qh)) |
| dev_vdbg(hsotg->dev, "%s()\n", __func__); |
| |
| if (dwc2_qh_is_non_per(qh)) { |
| dwc2_hcd_qh_unlink(hsotg, qh); |
| if (!list_empty(&qh->qtd_list)) |
| /* Add back to inactive non-periodic schedule */ |
| dwc2_hcd_qh_add(hsotg, qh); |
| return; |
| } |
| |
| frame_number = dwc2_hcd_get_frame_number(hsotg); |
| |
| if (qh->do_split) { |
| dwc2_sched_periodic_split(hsotg, qh, frame_number, |
| sched_next_periodic_split); |
| } else { |
| qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame, |
| qh->interval); |
| if (dwc2_frame_num_le(qh->sched_frame, frame_number)) |
| qh->sched_frame = frame_number; |
| } |
| |
| if (list_empty(&qh->qtd_list)) { |
| dwc2_hcd_qh_unlink(hsotg, qh); |
| return; |
| } |
| /* |
| * Remove from periodic_sched_queued and move to |
| * appropriate queue |
| */ |
| if ((hsotg->core_params->uframe_sched > 0 && |
| dwc2_frame_num_le(qh->sched_frame, frame_number)) || |
| (hsotg->core_params->uframe_sched <= 0 && |
| qh->sched_frame == frame_number)) |
| list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready); |
| else |
| list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive); |
| } |
| |
| /** |
| * dwc2_hcd_qtd_init() - Initializes a QTD structure |
| * |
| * @qtd: The QTD to initialize |
| * @urb: The associated URB |
| */ |
| void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) |
| { |
| qtd->urb = urb; |
| if (dwc2_hcd_get_pipe_type(&urb->pipe_info) == |
| USB_ENDPOINT_XFER_CONTROL) { |
| /* |
| * The only time the QTD data toggle is used is on the data |
| * phase of control transfers. This phase always starts with |
| * DATA1. |
| */ |
| qtd->data_toggle = DWC2_HC_PID_DATA1; |
| qtd->control_phase = DWC2_CONTROL_SETUP; |
| } |
| |
| /* Start split */ |
| qtd->complete_split = 0; |
| qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL; |
| qtd->isoc_split_offset = 0; |
| qtd->in_process = 0; |
| |
| /* Store the qtd ptr in the urb to reference the QTD */ |
| urb->qtd = qtd; |
| } |
| |
| /** |
| * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH |
| * |
| * @hsotg: The DWC HCD structure |
| * @qtd: The QTD to add |
| * @qh: Out parameter to return queue head |
| * @atomic_alloc: Flag to do atomic alloc if needed |
| * |
| * Return: 0 if successful, negative error code otherwise |
| * |
| * Finds the correct QH to place the QTD into. If it does not find a QH, it |
| * will create a new QH. If the QH to which the QTD is added is not currently |
| * scheduled, it is placed into the proper schedule based on its EP type. |
| */ |
| int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, |
| struct dwc2_qh **qh, gfp_t mem_flags) |
| { |
| struct dwc2_hcd_urb *urb = qtd->urb; |
| unsigned long flags; |
| int allocated = 0; |
| int retval; |
| |
| /* |
| * Get the QH which holds the QTD-list to insert to. Create QH if it |
| * doesn't exist. |
| */ |
| if (*qh == NULL) { |
| *qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags); |
| if (*qh == NULL) |
| return -ENOMEM; |
| allocated = 1; |
| } |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| |
| retval = dwc2_hcd_qh_add(hsotg, *qh); |
| if (retval) |
| goto fail; |
| |
| qtd->qh = *qh; |
| list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list); |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| return 0; |
| |
| fail: |
| if (allocated) { |
| struct dwc2_qtd *qtd2, *qtd2_tmp; |
| struct dwc2_qh *qh_tmp = *qh; |
| |
| *qh = NULL; |
| dwc2_hcd_qh_unlink(hsotg, qh_tmp); |
| |
| /* Free each QTD in the QH's QTD list */ |
| list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list, |
| qtd_list_entry) |
| dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp); |
| |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| dwc2_hcd_qh_free(hsotg, qh_tmp); |
| } else { |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| } |
| |
| return retval; |
| } |