| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP |
| M68000 Hi-Performance Microprocessor Division |
| M68060 Software Package |
| Production Release P1.00 -- October 10, 1994 |
| |
| M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. |
| |
| THE SOFTWARE is provided on an "AS IS" basis and without warranty. |
| To the maximum extent permitted by applicable law, |
| MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, |
| INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE |
| and any warranty against infringement with regard to the SOFTWARE |
| (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. |
| |
| To the maximum extent permitted by applicable law, |
| IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER |
| (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, |
| BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) |
| ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. |
| Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. |
| |
| You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE |
| so long as this entire notice is retained without alteration in any modified and/or |
| redistributed versions, and that such modified versions are clearly identified as such. |
| No licenses are granted by implication, estoppel or otherwise under any patents |
| or trademarks of Motorola, Inc. |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # |
| # lfptop.s: |
| # This file is appended to the top of the 060ILSP package |
| # and contains the entry points into the package. The user, in |
| # effect, branches to one of the branch table entries located here. |
| # |
| |
| bra.l _facoss_ |
| short 0x0000 |
| bra.l _facosd_ |
| short 0x0000 |
| bra.l _facosx_ |
| short 0x0000 |
| |
| bra.l _fasins_ |
| short 0x0000 |
| bra.l _fasind_ |
| short 0x0000 |
| bra.l _fasinx_ |
| short 0x0000 |
| |
| bra.l _fatans_ |
| short 0x0000 |
| bra.l _fatand_ |
| short 0x0000 |
| bra.l _fatanx_ |
| short 0x0000 |
| |
| bra.l _fatanhs_ |
| short 0x0000 |
| bra.l _fatanhd_ |
| short 0x0000 |
| bra.l _fatanhx_ |
| short 0x0000 |
| |
| bra.l _fcoss_ |
| short 0x0000 |
| bra.l _fcosd_ |
| short 0x0000 |
| bra.l _fcosx_ |
| short 0x0000 |
| |
| bra.l _fcoshs_ |
| short 0x0000 |
| bra.l _fcoshd_ |
| short 0x0000 |
| bra.l _fcoshx_ |
| short 0x0000 |
| |
| bra.l _fetoxs_ |
| short 0x0000 |
| bra.l _fetoxd_ |
| short 0x0000 |
| bra.l _fetoxx_ |
| short 0x0000 |
| |
| bra.l _fetoxm1s_ |
| short 0x0000 |
| bra.l _fetoxm1d_ |
| short 0x0000 |
| bra.l _fetoxm1x_ |
| short 0x0000 |
| |
| bra.l _fgetexps_ |
| short 0x0000 |
| bra.l _fgetexpd_ |
| short 0x0000 |
| bra.l _fgetexpx_ |
| short 0x0000 |
| |
| bra.l _fgetmans_ |
| short 0x0000 |
| bra.l _fgetmand_ |
| short 0x0000 |
| bra.l _fgetmanx_ |
| short 0x0000 |
| |
| bra.l _flog10s_ |
| short 0x0000 |
| bra.l _flog10d_ |
| short 0x0000 |
| bra.l _flog10x_ |
| short 0x0000 |
| |
| bra.l _flog2s_ |
| short 0x0000 |
| bra.l _flog2d_ |
| short 0x0000 |
| bra.l _flog2x_ |
| short 0x0000 |
| |
| bra.l _flogns_ |
| short 0x0000 |
| bra.l _flognd_ |
| short 0x0000 |
| bra.l _flognx_ |
| short 0x0000 |
| |
| bra.l _flognp1s_ |
| short 0x0000 |
| bra.l _flognp1d_ |
| short 0x0000 |
| bra.l _flognp1x_ |
| short 0x0000 |
| |
| bra.l _fmods_ |
| short 0x0000 |
| bra.l _fmodd_ |
| short 0x0000 |
| bra.l _fmodx_ |
| short 0x0000 |
| |
| bra.l _frems_ |
| short 0x0000 |
| bra.l _fremd_ |
| short 0x0000 |
| bra.l _fremx_ |
| short 0x0000 |
| |
| bra.l _fscales_ |
| short 0x0000 |
| bra.l _fscaled_ |
| short 0x0000 |
| bra.l _fscalex_ |
| short 0x0000 |
| |
| bra.l _fsins_ |
| short 0x0000 |
| bra.l _fsind_ |
| short 0x0000 |
| bra.l _fsinx_ |
| short 0x0000 |
| |
| bra.l _fsincoss_ |
| short 0x0000 |
| bra.l _fsincosd_ |
| short 0x0000 |
| bra.l _fsincosx_ |
| short 0x0000 |
| |
| bra.l _fsinhs_ |
| short 0x0000 |
| bra.l _fsinhd_ |
| short 0x0000 |
| bra.l _fsinhx_ |
| short 0x0000 |
| |
| bra.l _ftans_ |
| short 0x0000 |
| bra.l _ftand_ |
| short 0x0000 |
| bra.l _ftanx_ |
| short 0x0000 |
| |
| bra.l _ftanhs_ |
| short 0x0000 |
| bra.l _ftanhd_ |
| short 0x0000 |
| bra.l _ftanhx_ |
| short 0x0000 |
| |
| bra.l _ftentoxs_ |
| short 0x0000 |
| bra.l _ftentoxd_ |
| short 0x0000 |
| bra.l _ftentoxx_ |
| short 0x0000 |
| |
| bra.l _ftwotoxs_ |
| short 0x0000 |
| bra.l _ftwotoxd_ |
| short 0x0000 |
| bra.l _ftwotoxx_ |
| short 0x0000 |
| |
| bra.l _fabss_ |
| short 0x0000 |
| bra.l _fabsd_ |
| short 0x0000 |
| bra.l _fabsx_ |
| short 0x0000 |
| |
| bra.l _fadds_ |
| short 0x0000 |
| bra.l _faddd_ |
| short 0x0000 |
| bra.l _faddx_ |
| short 0x0000 |
| |
| bra.l _fdivs_ |
| short 0x0000 |
| bra.l _fdivd_ |
| short 0x0000 |
| bra.l _fdivx_ |
| short 0x0000 |
| |
| bra.l _fints_ |
| short 0x0000 |
| bra.l _fintd_ |
| short 0x0000 |
| bra.l _fintx_ |
| short 0x0000 |
| |
| bra.l _fintrzs_ |
| short 0x0000 |
| bra.l _fintrzd_ |
| short 0x0000 |
| bra.l _fintrzx_ |
| short 0x0000 |
| |
| bra.l _fmuls_ |
| short 0x0000 |
| bra.l _fmuld_ |
| short 0x0000 |
| bra.l _fmulx_ |
| short 0x0000 |
| |
| bra.l _fnegs_ |
| short 0x0000 |
| bra.l _fnegd_ |
| short 0x0000 |
| bra.l _fnegx_ |
| short 0x0000 |
| |
| bra.l _fsqrts_ |
| short 0x0000 |
| bra.l _fsqrtd_ |
| short 0x0000 |
| bra.l _fsqrtx_ |
| short 0x0000 |
| |
| bra.l _fsubs_ |
| short 0x0000 |
| bra.l _fsubd_ |
| short 0x0000 |
| bra.l _fsubx_ |
| short 0x0000 |
| |
| # leave room for future possible additions |
| align 0x400 |
| |
| # |
| # This file contains a set of define statements for constants |
| # in order to promote readability within the corecode itself. |
| # |
| |
| set LOCAL_SIZE, 192 # stack frame size(bytes) |
| set LV, -LOCAL_SIZE # stack offset |
| |
| set EXC_SR, 0x4 # stack status register |
| set EXC_PC, 0x6 # stack pc |
| set EXC_VOFF, 0xa # stacked vector offset |
| set EXC_EA, 0xc # stacked <ea> |
| |
| set EXC_FP, 0x0 # frame pointer |
| |
| set EXC_AREGS, -68 # offset of all address regs |
| set EXC_DREGS, -100 # offset of all data regs |
| set EXC_FPREGS, -36 # offset of all fp regs |
| |
| set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 |
| set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 |
| set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 |
| set EXC_A5, EXC_AREGS+(5*4) |
| set EXC_A4, EXC_AREGS+(4*4) |
| set EXC_A3, EXC_AREGS+(3*4) |
| set EXC_A2, EXC_AREGS+(2*4) |
| set EXC_A1, EXC_AREGS+(1*4) |
| set EXC_A0, EXC_AREGS+(0*4) |
| set EXC_D7, EXC_DREGS+(7*4) |
| set EXC_D6, EXC_DREGS+(6*4) |
| set EXC_D5, EXC_DREGS+(5*4) |
| set EXC_D4, EXC_DREGS+(4*4) |
| set EXC_D3, EXC_DREGS+(3*4) |
| set EXC_D2, EXC_DREGS+(2*4) |
| set EXC_D1, EXC_DREGS+(1*4) |
| set EXC_D0, EXC_DREGS+(0*4) |
| |
| set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 |
| set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 |
| set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) |
| |
| set FP_SCR1, LV+80 # fp scratch 1 |
| set FP_SCR1_EX, FP_SCR1+0 |
| set FP_SCR1_SGN, FP_SCR1+2 |
| set FP_SCR1_HI, FP_SCR1+4 |
| set FP_SCR1_LO, FP_SCR1+8 |
| |
| set FP_SCR0, LV+68 # fp scratch 0 |
| set FP_SCR0_EX, FP_SCR0+0 |
| set FP_SCR0_SGN, FP_SCR0+2 |
| set FP_SCR0_HI, FP_SCR0+4 |
| set FP_SCR0_LO, FP_SCR0+8 |
| |
| set FP_DST, LV+56 # fp destination operand |
| set FP_DST_EX, FP_DST+0 |
| set FP_DST_SGN, FP_DST+2 |
| set FP_DST_HI, FP_DST+4 |
| set FP_DST_LO, FP_DST+8 |
| |
| set FP_SRC, LV+44 # fp source operand |
| set FP_SRC_EX, FP_SRC+0 |
| set FP_SRC_SGN, FP_SRC+2 |
| set FP_SRC_HI, FP_SRC+4 |
| set FP_SRC_LO, FP_SRC+8 |
| |
| set USER_FPIAR, LV+40 # FP instr address register |
| |
| set USER_FPSR, LV+36 # FP status register |
| set FPSR_CC, USER_FPSR+0 # FPSR condition codes |
| set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte |
| set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte |
| set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte |
| |
| set USER_FPCR, LV+32 # FP control register |
| set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable |
| set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control |
| |
| set L_SCR3, LV+28 # integer scratch 3 |
| set L_SCR2, LV+24 # integer scratch 2 |
| set L_SCR1, LV+20 # integer scratch 1 |
| |
| set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) |
| |
| set EXC_TEMP2, LV+24 # temporary space |
| set EXC_TEMP, LV+16 # temporary space |
| |
| set DTAG, LV+15 # destination operand type |
| set STAG, LV+14 # source operand type |
| |
| set SPCOND_FLG, LV+10 # flag: special case (see below) |
| |
| set EXC_CC, LV+8 # saved condition codes |
| set EXC_EXTWPTR, LV+4 # saved current PC (active) |
| set EXC_EXTWORD, LV+2 # saved extension word |
| set EXC_CMDREG, LV+2 # saved extension word |
| set EXC_OPWORD, LV+0 # saved operation word |
| |
| ################################ |
| |
| # Helpful macros |
| |
| set FTEMP, 0 # offsets within an |
| set FTEMP_EX, 0 # extended precision |
| set FTEMP_SGN, 2 # value saved in memory. |
| set FTEMP_HI, 4 |
| set FTEMP_LO, 8 |
| set FTEMP_GRS, 12 |
| |
| set LOCAL, 0 # offsets within an |
| set LOCAL_EX, 0 # extended precision |
| set LOCAL_SGN, 2 # value saved in memory. |
| set LOCAL_HI, 4 |
| set LOCAL_LO, 8 |
| set LOCAL_GRS, 12 |
| |
| set DST, 0 # offsets within an |
| set DST_EX, 0 # extended precision |
| set DST_HI, 4 # value saved in memory. |
| set DST_LO, 8 |
| |
| set SRC, 0 # offsets within an |
| set SRC_EX, 0 # extended precision |
| set SRC_HI, 4 # value saved in memory. |
| set SRC_LO, 8 |
| |
| set SGL_LO, 0x3f81 # min sgl prec exponent |
| set SGL_HI, 0x407e # max sgl prec exponent |
| set DBL_LO, 0x3c01 # min dbl prec exponent |
| set DBL_HI, 0x43fe # max dbl prec exponent |
| set EXT_LO, 0x0 # min ext prec exponent |
| set EXT_HI, 0x7ffe # max ext prec exponent |
| |
| set EXT_BIAS, 0x3fff # extended precision bias |
| set SGL_BIAS, 0x007f # single precision bias |
| set DBL_BIAS, 0x03ff # double precision bias |
| |
| set NORM, 0x00 # operand type for STAG/DTAG |
| set ZERO, 0x01 # operand type for STAG/DTAG |
| set INF, 0x02 # operand type for STAG/DTAG |
| set QNAN, 0x03 # operand type for STAG/DTAG |
| set DENORM, 0x04 # operand type for STAG/DTAG |
| set SNAN, 0x05 # operand type for STAG/DTAG |
| set UNNORM, 0x06 # operand type for STAG/DTAG |
| |
| ################## |
| # FPSR/FPCR bits # |
| ################## |
| set neg_bit, 0x3 # negative result |
| set z_bit, 0x2 # zero result |
| set inf_bit, 0x1 # infinite result |
| set nan_bit, 0x0 # NAN result |
| |
| set q_sn_bit, 0x7 # sign bit of quotient byte |
| |
| set bsun_bit, 7 # branch on unordered |
| set snan_bit, 6 # signalling NAN |
| set operr_bit, 5 # operand error |
| set ovfl_bit, 4 # overflow |
| set unfl_bit, 3 # underflow |
| set dz_bit, 2 # divide by zero |
| set inex2_bit, 1 # inexact result 2 |
| set inex1_bit, 0 # inexact result 1 |
| |
| set aiop_bit, 7 # accrued inexact operation bit |
| set aovfl_bit, 6 # accrued overflow bit |
| set aunfl_bit, 5 # accrued underflow bit |
| set adz_bit, 4 # accrued dz bit |
| set ainex_bit, 3 # accrued inexact bit |
| |
| ############################# |
| # FPSR individual bit masks # |
| ############################# |
| set neg_mask, 0x08000000 # negative bit mask (lw) |
| set inf_mask, 0x02000000 # infinity bit mask (lw) |
| set z_mask, 0x04000000 # zero bit mask (lw) |
| set nan_mask, 0x01000000 # nan bit mask (lw) |
| |
| set neg_bmask, 0x08 # negative bit mask (byte) |
| set inf_bmask, 0x02 # infinity bit mask (byte) |
| set z_bmask, 0x04 # zero bit mask (byte) |
| set nan_bmask, 0x01 # nan bit mask (byte) |
| |
| set bsun_mask, 0x00008000 # bsun exception mask |
| set snan_mask, 0x00004000 # snan exception mask |
| set operr_mask, 0x00002000 # operr exception mask |
| set ovfl_mask, 0x00001000 # overflow exception mask |
| set unfl_mask, 0x00000800 # underflow exception mask |
| set dz_mask, 0x00000400 # dz exception mask |
| set inex2_mask, 0x00000200 # inex2 exception mask |
| set inex1_mask, 0x00000100 # inex1 exception mask |
| |
| set aiop_mask, 0x00000080 # accrued illegal operation |
| set aovfl_mask, 0x00000040 # accrued overflow |
| set aunfl_mask, 0x00000020 # accrued underflow |
| set adz_mask, 0x00000010 # accrued divide by zero |
| set ainex_mask, 0x00000008 # accrued inexact |
| |
| ###################################### |
| # FPSR combinations used in the FPSP # |
| ###################################### |
| set dzinf_mask, inf_mask+dz_mask+adz_mask |
| set opnan_mask, nan_mask+operr_mask+aiop_mask |
| set nzi_mask, 0x01ffffff #clears N, Z, and I |
| set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask |
| set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask |
| set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask |
| set inx1a_mask, inex1_mask+ainex_mask |
| set inx2a_mask, inex2_mask+ainex_mask |
| set snaniop_mask, nan_mask+snan_mask+aiop_mask |
| set snaniop2_mask, snan_mask+aiop_mask |
| set naniop_mask, nan_mask+aiop_mask |
| set neginf_mask, neg_mask+inf_mask |
| set infaiop_mask, inf_mask+aiop_mask |
| set negz_mask, neg_mask+z_mask |
| set opaop_mask, operr_mask+aiop_mask |
| set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask |
| set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask |
| |
| ######### |
| # misc. # |
| ######### |
| set rnd_stky_bit, 29 # stky bit pos in longword |
| |
| set sign_bit, 0x7 # sign bit |
| set signan_bit, 0x6 # signalling nan bit |
| |
| set sgl_thresh, 0x3f81 # minimum sgl exponent |
| set dbl_thresh, 0x3c01 # minimum dbl exponent |
| |
| set x_mode, 0x0 # extended precision |
| set s_mode, 0x4 # single precision |
| set d_mode, 0x8 # double precision |
| |
| set rn_mode, 0x0 # round-to-nearest |
| set rz_mode, 0x1 # round-to-zero |
| set rm_mode, 0x2 # round-tp-minus-infinity |
| set rp_mode, 0x3 # round-to-plus-infinity |
| |
| set mantissalen, 64 # length of mantissa in bits |
| |
| set BYTE, 1 # len(byte) == 1 byte |
| set WORD, 2 # len(word) == 2 bytes |
| set LONG, 4 # len(longword) == 2 bytes |
| |
| set BSUN_VEC, 0xc0 # bsun vector offset |
| set INEX_VEC, 0xc4 # inexact vector offset |
| set DZ_VEC, 0xc8 # dz vector offset |
| set UNFL_VEC, 0xcc # unfl vector offset |
| set OPERR_VEC, 0xd0 # operr vector offset |
| set OVFL_VEC, 0xd4 # ovfl vector offset |
| set SNAN_VEC, 0xd8 # snan vector offset |
| |
| ########################### |
| # SPecial CONDition FLaGs # |
| ########################### |
| set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception |
| set fbsun_flg, 0x02 # flag bit: bsun exception |
| set mia7_flg, 0x04 # flag bit: (a7)+ <ea> |
| set mda7_flg, 0x08 # flag bit: -(a7) <ea> |
| set fmovm_flg, 0x40 # flag bit: fmovm instruction |
| set immed_flg, 0x80 # flag bit: &<data> <ea> |
| |
| set ftrapcc_bit, 0x0 |
| set fbsun_bit, 0x1 |
| set mia7_bit, 0x2 |
| set mda7_bit, 0x3 |
| set immed_bit, 0x7 |
| |
| ################################## |
| # TRANSCENDENTAL "LAST-OP" FLAGS # |
| ################################## |
| set FMUL_OP, 0x0 # fmul instr performed last |
| set FDIV_OP, 0x1 # fdiv performed last |
| set FADD_OP, 0x2 # fadd performed last |
| set FMOV_OP, 0x3 # fmov performed last |
| |
| ############# |
| # CONSTANTS # |
| ############# |
| T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD |
| T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL |
| |
| PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 |
| PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| |
| TWOBYPI: |
| long 0x3FE45F30,0x6DC9C883 |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fsins_ |
| _fsins_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L0_2s |
| bsr.l ssin # operand is a NORM |
| bra.b _L0_6s |
| _L0_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L0_3s # no |
| bsr.l src_zero # yes |
| bra.b _L0_6s |
| _L0_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L0_4s # no |
| bsr.l t_operr # yes |
| bra.b _L0_6s |
| _L0_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L0_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L0_6s |
| _L0_5s: |
| bsr.l ssind # operand is a DENORM |
| _L0_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fsind_ |
| _fsind_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L0_2d |
| bsr.l ssin # operand is a NORM |
| bra.b _L0_6d |
| _L0_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L0_3d # no |
| bsr.l src_zero # yes |
| bra.b _L0_6d |
| _L0_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L0_4d # no |
| bsr.l t_operr # yes |
| bra.b _L0_6d |
| _L0_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L0_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L0_6d |
| _L0_5d: |
| bsr.l ssind # operand is a DENORM |
| _L0_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fsinx_ |
| _fsinx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L0_2x |
| bsr.l ssin # operand is a NORM |
| bra.b _L0_6x |
| _L0_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L0_3x # no |
| bsr.l src_zero # yes |
| bra.b _L0_6x |
| _L0_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L0_4x # no |
| bsr.l t_operr # yes |
| bra.b _L0_6x |
| _L0_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L0_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L0_6x |
| _L0_5x: |
| bsr.l ssind # operand is a DENORM |
| _L0_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fcoss_ |
| _fcoss_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L1_2s |
| bsr.l scos # operand is a NORM |
| bra.b _L1_6s |
| _L1_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L1_3s # no |
| bsr.l ld_pone # yes |
| bra.b _L1_6s |
| _L1_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L1_4s # no |
| bsr.l t_operr # yes |
| bra.b _L1_6s |
| _L1_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L1_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L1_6s |
| _L1_5s: |
| bsr.l scosd # operand is a DENORM |
| _L1_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fcosd_ |
| _fcosd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L1_2d |
| bsr.l scos # operand is a NORM |
| bra.b _L1_6d |
| _L1_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L1_3d # no |
| bsr.l ld_pone # yes |
| bra.b _L1_6d |
| _L1_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L1_4d # no |
| bsr.l t_operr # yes |
| bra.b _L1_6d |
| _L1_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L1_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L1_6d |
| _L1_5d: |
| bsr.l scosd # operand is a DENORM |
| _L1_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fcosx_ |
| _fcosx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L1_2x |
| bsr.l scos # operand is a NORM |
| bra.b _L1_6x |
| _L1_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L1_3x # no |
| bsr.l ld_pone # yes |
| bra.b _L1_6x |
| _L1_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L1_4x # no |
| bsr.l t_operr # yes |
| bra.b _L1_6x |
| _L1_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L1_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L1_6x |
| _L1_5x: |
| bsr.l scosd # operand is a DENORM |
| _L1_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fsinhs_ |
| _fsinhs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L2_2s |
| bsr.l ssinh # operand is a NORM |
| bra.b _L2_6s |
| _L2_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L2_3s # no |
| bsr.l src_zero # yes |
| bra.b _L2_6s |
| _L2_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L2_4s # no |
| bsr.l src_inf # yes |
| bra.b _L2_6s |
| _L2_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L2_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L2_6s |
| _L2_5s: |
| bsr.l ssinhd # operand is a DENORM |
| _L2_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fsinhd_ |
| _fsinhd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L2_2d |
| bsr.l ssinh # operand is a NORM |
| bra.b _L2_6d |
| _L2_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L2_3d # no |
| bsr.l src_zero # yes |
| bra.b _L2_6d |
| _L2_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L2_4d # no |
| bsr.l src_inf # yes |
| bra.b _L2_6d |
| _L2_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L2_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L2_6d |
| _L2_5d: |
| bsr.l ssinhd # operand is a DENORM |
| _L2_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fsinhx_ |
| _fsinhx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L2_2x |
| bsr.l ssinh # operand is a NORM |
| bra.b _L2_6x |
| _L2_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L2_3x # no |
| bsr.l src_zero # yes |
| bra.b _L2_6x |
| _L2_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L2_4x # no |
| bsr.l src_inf # yes |
| bra.b _L2_6x |
| _L2_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L2_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L2_6x |
| _L2_5x: |
| bsr.l ssinhd # operand is a DENORM |
| _L2_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _flognp1s_ |
| _flognp1s_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L3_2s |
| bsr.l slognp1 # operand is a NORM |
| bra.b _L3_6s |
| _L3_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L3_3s # no |
| bsr.l src_zero # yes |
| bra.b _L3_6s |
| _L3_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L3_4s # no |
| bsr.l sopr_inf # yes |
| bra.b _L3_6s |
| _L3_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L3_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L3_6s |
| _L3_5s: |
| bsr.l slognp1d # operand is a DENORM |
| _L3_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flognp1d_ |
| _flognp1d_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L3_2d |
| bsr.l slognp1 # operand is a NORM |
| bra.b _L3_6d |
| _L3_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L3_3d # no |
| bsr.l src_zero # yes |
| bra.b _L3_6d |
| _L3_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L3_4d # no |
| bsr.l sopr_inf # yes |
| bra.b _L3_6d |
| _L3_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L3_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L3_6d |
| _L3_5d: |
| bsr.l slognp1d # operand is a DENORM |
| _L3_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flognp1x_ |
| _flognp1x_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L3_2x |
| bsr.l slognp1 # operand is a NORM |
| bra.b _L3_6x |
| _L3_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L3_3x # no |
| bsr.l src_zero # yes |
| bra.b _L3_6x |
| _L3_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L3_4x # no |
| bsr.l sopr_inf # yes |
| bra.b _L3_6x |
| _L3_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L3_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L3_6x |
| _L3_5x: |
| bsr.l slognp1d # operand is a DENORM |
| _L3_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fetoxm1s_ |
| _fetoxm1s_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L4_2s |
| bsr.l setoxm1 # operand is a NORM |
| bra.b _L4_6s |
| _L4_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L4_3s # no |
| bsr.l src_zero # yes |
| bra.b _L4_6s |
| _L4_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L4_4s # no |
| bsr.l setoxm1i # yes |
| bra.b _L4_6s |
| _L4_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L4_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L4_6s |
| _L4_5s: |
| bsr.l setoxm1d # operand is a DENORM |
| _L4_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fetoxm1d_ |
| _fetoxm1d_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L4_2d |
| bsr.l setoxm1 # operand is a NORM |
| bra.b _L4_6d |
| _L4_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L4_3d # no |
| bsr.l src_zero # yes |
| bra.b _L4_6d |
| _L4_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L4_4d # no |
| bsr.l setoxm1i # yes |
| bra.b _L4_6d |
| _L4_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L4_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L4_6d |
| _L4_5d: |
| bsr.l setoxm1d # operand is a DENORM |
| _L4_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fetoxm1x_ |
| _fetoxm1x_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L4_2x |
| bsr.l setoxm1 # operand is a NORM |
| bra.b _L4_6x |
| _L4_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L4_3x # no |
| bsr.l src_zero # yes |
| bra.b _L4_6x |
| _L4_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L4_4x # no |
| bsr.l setoxm1i # yes |
| bra.b _L4_6x |
| _L4_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L4_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L4_6x |
| _L4_5x: |
| bsr.l setoxm1d # operand is a DENORM |
| _L4_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _ftanhs_ |
| _ftanhs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L5_2s |
| bsr.l stanh # operand is a NORM |
| bra.b _L5_6s |
| _L5_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L5_3s # no |
| bsr.l src_zero # yes |
| bra.b _L5_6s |
| _L5_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L5_4s # no |
| bsr.l src_one # yes |
| bra.b _L5_6s |
| _L5_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L5_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L5_6s |
| _L5_5s: |
| bsr.l stanhd # operand is a DENORM |
| _L5_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftanhd_ |
| _ftanhd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L5_2d |
| bsr.l stanh # operand is a NORM |
| bra.b _L5_6d |
| _L5_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L5_3d # no |
| bsr.l src_zero # yes |
| bra.b _L5_6d |
| _L5_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L5_4d # no |
| bsr.l src_one # yes |
| bra.b _L5_6d |
| _L5_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L5_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L5_6d |
| _L5_5d: |
| bsr.l stanhd # operand is a DENORM |
| _L5_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftanhx_ |
| _ftanhx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L5_2x |
| bsr.l stanh # operand is a NORM |
| bra.b _L5_6x |
| _L5_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L5_3x # no |
| bsr.l src_zero # yes |
| bra.b _L5_6x |
| _L5_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L5_4x # no |
| bsr.l src_one # yes |
| bra.b _L5_6x |
| _L5_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L5_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L5_6x |
| _L5_5x: |
| bsr.l stanhd # operand is a DENORM |
| _L5_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fatans_ |
| _fatans_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L6_2s |
| bsr.l satan # operand is a NORM |
| bra.b _L6_6s |
| _L6_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L6_3s # no |
| bsr.l src_zero # yes |
| bra.b _L6_6s |
| _L6_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L6_4s # no |
| bsr.l spi_2 # yes |
| bra.b _L6_6s |
| _L6_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L6_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L6_6s |
| _L6_5s: |
| bsr.l satand # operand is a DENORM |
| _L6_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fatand_ |
| _fatand_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L6_2d |
| bsr.l satan # operand is a NORM |
| bra.b _L6_6d |
| _L6_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L6_3d # no |
| bsr.l src_zero # yes |
| bra.b _L6_6d |
| _L6_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L6_4d # no |
| bsr.l spi_2 # yes |
| bra.b _L6_6d |
| _L6_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L6_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L6_6d |
| _L6_5d: |
| bsr.l satand # operand is a DENORM |
| _L6_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fatanx_ |
| _fatanx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L6_2x |
| bsr.l satan # operand is a NORM |
| bra.b _L6_6x |
| _L6_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L6_3x # no |
| bsr.l src_zero # yes |
| bra.b _L6_6x |
| _L6_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L6_4x # no |
| bsr.l spi_2 # yes |
| bra.b _L6_6x |
| _L6_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L6_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L6_6x |
| _L6_5x: |
| bsr.l satand # operand is a DENORM |
| _L6_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fasins_ |
| _fasins_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L7_2s |
| bsr.l sasin # operand is a NORM |
| bra.b _L7_6s |
| _L7_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L7_3s # no |
| bsr.l src_zero # yes |
| bra.b _L7_6s |
| _L7_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L7_4s # no |
| bsr.l t_operr # yes |
| bra.b _L7_6s |
| _L7_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L7_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L7_6s |
| _L7_5s: |
| bsr.l sasind # operand is a DENORM |
| _L7_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fasind_ |
| _fasind_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L7_2d |
| bsr.l sasin # operand is a NORM |
| bra.b _L7_6d |
| _L7_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L7_3d # no |
| bsr.l src_zero # yes |
| bra.b _L7_6d |
| _L7_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L7_4d # no |
| bsr.l t_operr # yes |
| bra.b _L7_6d |
| _L7_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L7_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L7_6d |
| _L7_5d: |
| bsr.l sasind # operand is a DENORM |
| _L7_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fasinx_ |
| _fasinx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L7_2x |
| bsr.l sasin # operand is a NORM |
| bra.b _L7_6x |
| _L7_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L7_3x # no |
| bsr.l src_zero # yes |
| bra.b _L7_6x |
| _L7_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L7_4x # no |
| bsr.l t_operr # yes |
| bra.b _L7_6x |
| _L7_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L7_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L7_6x |
| _L7_5x: |
| bsr.l sasind # operand is a DENORM |
| _L7_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fatanhs_ |
| _fatanhs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L8_2s |
| bsr.l satanh # operand is a NORM |
| bra.b _L8_6s |
| _L8_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L8_3s # no |
| bsr.l src_zero # yes |
| bra.b _L8_6s |
| _L8_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L8_4s # no |
| bsr.l t_operr # yes |
| bra.b _L8_6s |
| _L8_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L8_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L8_6s |
| _L8_5s: |
| bsr.l satanhd # operand is a DENORM |
| _L8_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fatanhd_ |
| _fatanhd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L8_2d |
| bsr.l satanh # operand is a NORM |
| bra.b _L8_6d |
| _L8_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L8_3d # no |
| bsr.l src_zero # yes |
| bra.b _L8_6d |
| _L8_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L8_4d # no |
| bsr.l t_operr # yes |
| bra.b _L8_6d |
| _L8_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L8_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L8_6d |
| _L8_5d: |
| bsr.l satanhd # operand is a DENORM |
| _L8_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fatanhx_ |
| _fatanhx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L8_2x |
| bsr.l satanh # operand is a NORM |
| bra.b _L8_6x |
| _L8_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L8_3x # no |
| bsr.l src_zero # yes |
| bra.b _L8_6x |
| _L8_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L8_4x # no |
| bsr.l t_operr # yes |
| bra.b _L8_6x |
| _L8_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L8_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L8_6x |
| _L8_5x: |
| bsr.l satanhd # operand is a DENORM |
| _L8_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _ftans_ |
| _ftans_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L9_2s |
| bsr.l stan # operand is a NORM |
| bra.b _L9_6s |
| _L9_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L9_3s # no |
| bsr.l src_zero # yes |
| bra.b _L9_6s |
| _L9_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L9_4s # no |
| bsr.l t_operr # yes |
| bra.b _L9_6s |
| _L9_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L9_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L9_6s |
| _L9_5s: |
| bsr.l stand # operand is a DENORM |
| _L9_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftand_ |
| _ftand_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L9_2d |
| bsr.l stan # operand is a NORM |
| bra.b _L9_6d |
| _L9_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L9_3d # no |
| bsr.l src_zero # yes |
| bra.b _L9_6d |
| _L9_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L9_4d # no |
| bsr.l t_operr # yes |
| bra.b _L9_6d |
| _L9_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L9_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L9_6d |
| _L9_5d: |
| bsr.l stand # operand is a DENORM |
| _L9_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftanx_ |
| _ftanx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L9_2x |
| bsr.l stan # operand is a NORM |
| bra.b _L9_6x |
| _L9_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L9_3x # no |
| bsr.l src_zero # yes |
| bra.b _L9_6x |
| _L9_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L9_4x # no |
| bsr.l t_operr # yes |
| bra.b _L9_6x |
| _L9_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L9_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L9_6x |
| _L9_5x: |
| bsr.l stand # operand is a DENORM |
| _L9_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fetoxs_ |
| _fetoxs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L10_2s |
| bsr.l setox # operand is a NORM |
| bra.b _L10_6s |
| _L10_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L10_3s # no |
| bsr.l ld_pone # yes |
| bra.b _L10_6s |
| _L10_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L10_4s # no |
| bsr.l szr_inf # yes |
| bra.b _L10_6s |
| _L10_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L10_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L10_6s |
| _L10_5s: |
| bsr.l setoxd # operand is a DENORM |
| _L10_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fetoxd_ |
| _fetoxd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L10_2d |
| bsr.l setox # operand is a NORM |
| bra.b _L10_6d |
| _L10_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L10_3d # no |
| bsr.l ld_pone # yes |
| bra.b _L10_6d |
| _L10_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L10_4d # no |
| bsr.l szr_inf # yes |
| bra.b _L10_6d |
| _L10_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L10_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L10_6d |
| _L10_5d: |
| bsr.l setoxd # operand is a DENORM |
| _L10_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fetoxx_ |
| _fetoxx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L10_2x |
| bsr.l setox # operand is a NORM |
| bra.b _L10_6x |
| _L10_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L10_3x # no |
| bsr.l ld_pone # yes |
| bra.b _L10_6x |
| _L10_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L10_4x # no |
| bsr.l szr_inf # yes |
| bra.b _L10_6x |
| _L10_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L10_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L10_6x |
| _L10_5x: |
| bsr.l setoxd # operand is a DENORM |
| _L10_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _ftwotoxs_ |
| _ftwotoxs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L11_2s |
| bsr.l stwotox # operand is a NORM |
| bra.b _L11_6s |
| _L11_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L11_3s # no |
| bsr.l ld_pone # yes |
| bra.b _L11_6s |
| _L11_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L11_4s # no |
| bsr.l szr_inf # yes |
| bra.b _L11_6s |
| _L11_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L11_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L11_6s |
| _L11_5s: |
| bsr.l stwotoxd # operand is a DENORM |
| _L11_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftwotoxd_ |
| _ftwotoxd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L11_2d |
| bsr.l stwotox # operand is a NORM |
| bra.b _L11_6d |
| _L11_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L11_3d # no |
| bsr.l ld_pone # yes |
| bra.b _L11_6d |
| _L11_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L11_4d # no |
| bsr.l szr_inf # yes |
| bra.b _L11_6d |
| _L11_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L11_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L11_6d |
| _L11_5d: |
| bsr.l stwotoxd # operand is a DENORM |
| _L11_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftwotoxx_ |
| _ftwotoxx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L11_2x |
| bsr.l stwotox # operand is a NORM |
| bra.b _L11_6x |
| _L11_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L11_3x # no |
| bsr.l ld_pone # yes |
| bra.b _L11_6x |
| _L11_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L11_4x # no |
| bsr.l szr_inf # yes |
| bra.b _L11_6x |
| _L11_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L11_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L11_6x |
| _L11_5x: |
| bsr.l stwotoxd # operand is a DENORM |
| _L11_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _ftentoxs_ |
| _ftentoxs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L12_2s |
| bsr.l stentox # operand is a NORM |
| bra.b _L12_6s |
| _L12_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L12_3s # no |
| bsr.l ld_pone # yes |
| bra.b _L12_6s |
| _L12_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L12_4s # no |
| bsr.l szr_inf # yes |
| bra.b _L12_6s |
| _L12_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L12_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L12_6s |
| _L12_5s: |
| bsr.l stentoxd # operand is a DENORM |
| _L12_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftentoxd_ |
| _ftentoxd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L12_2d |
| bsr.l stentox # operand is a NORM |
| bra.b _L12_6d |
| _L12_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L12_3d # no |
| bsr.l ld_pone # yes |
| bra.b _L12_6d |
| _L12_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L12_4d # no |
| bsr.l szr_inf # yes |
| bra.b _L12_6d |
| _L12_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L12_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L12_6d |
| _L12_5d: |
| bsr.l stentoxd # operand is a DENORM |
| _L12_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _ftentoxx_ |
| _ftentoxx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L12_2x |
| bsr.l stentox # operand is a NORM |
| bra.b _L12_6x |
| _L12_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L12_3x # no |
| bsr.l ld_pone # yes |
| bra.b _L12_6x |
| _L12_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L12_4x # no |
| bsr.l szr_inf # yes |
| bra.b _L12_6x |
| _L12_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L12_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L12_6x |
| _L12_5x: |
| bsr.l stentoxd # operand is a DENORM |
| _L12_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _flogns_ |
| _flogns_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L13_2s |
| bsr.l slogn # operand is a NORM |
| bra.b _L13_6s |
| _L13_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L13_3s # no |
| bsr.l t_dz2 # yes |
| bra.b _L13_6s |
| _L13_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L13_4s # no |
| bsr.l sopr_inf # yes |
| bra.b _L13_6s |
| _L13_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L13_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L13_6s |
| _L13_5s: |
| bsr.l slognd # operand is a DENORM |
| _L13_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flognd_ |
| _flognd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L13_2d |
| bsr.l slogn # operand is a NORM |
| bra.b _L13_6d |
| _L13_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L13_3d # no |
| bsr.l t_dz2 # yes |
| bra.b _L13_6d |
| _L13_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L13_4d # no |
| bsr.l sopr_inf # yes |
| bra.b _L13_6d |
| _L13_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L13_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L13_6d |
| _L13_5d: |
| bsr.l slognd # operand is a DENORM |
| _L13_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flognx_ |
| _flognx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L13_2x |
| bsr.l slogn # operand is a NORM |
| bra.b _L13_6x |
| _L13_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L13_3x # no |
| bsr.l t_dz2 # yes |
| bra.b _L13_6x |
| _L13_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L13_4x # no |
| bsr.l sopr_inf # yes |
| bra.b _L13_6x |
| _L13_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L13_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L13_6x |
| _L13_5x: |
| bsr.l slognd # operand is a DENORM |
| _L13_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _flog10s_ |
| _flog10s_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L14_2s |
| bsr.l slog10 # operand is a NORM |
| bra.b _L14_6s |
| _L14_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L14_3s # no |
| bsr.l t_dz2 # yes |
| bra.b _L14_6s |
| _L14_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L14_4s # no |
| bsr.l sopr_inf # yes |
| bra.b _L14_6s |
| _L14_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L14_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L14_6s |
| _L14_5s: |
| bsr.l slog10d # operand is a DENORM |
| _L14_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flog10d_ |
| _flog10d_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L14_2d |
| bsr.l slog10 # operand is a NORM |
| bra.b _L14_6d |
| _L14_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L14_3d # no |
| bsr.l t_dz2 # yes |
| bra.b _L14_6d |
| _L14_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L14_4d # no |
| bsr.l sopr_inf # yes |
| bra.b _L14_6d |
| _L14_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L14_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L14_6d |
| _L14_5d: |
| bsr.l slog10d # operand is a DENORM |
| _L14_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flog10x_ |
| _flog10x_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L14_2x |
| bsr.l slog10 # operand is a NORM |
| bra.b _L14_6x |
| _L14_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L14_3x # no |
| bsr.l t_dz2 # yes |
| bra.b _L14_6x |
| _L14_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L14_4x # no |
| bsr.l sopr_inf # yes |
| bra.b _L14_6x |
| _L14_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L14_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L14_6x |
| _L14_5x: |
| bsr.l slog10d # operand is a DENORM |
| _L14_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _flog2s_ |
| _flog2s_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L15_2s |
| bsr.l slog2 # operand is a NORM |
| bra.b _L15_6s |
| _L15_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L15_3s # no |
| bsr.l t_dz2 # yes |
| bra.b _L15_6s |
| _L15_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L15_4s # no |
| bsr.l sopr_inf # yes |
| bra.b _L15_6s |
| _L15_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L15_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L15_6s |
| _L15_5s: |
| bsr.l slog2d # operand is a DENORM |
| _L15_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flog2d_ |
| _flog2d_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L15_2d |
| bsr.l slog2 # operand is a NORM |
| bra.b _L15_6d |
| _L15_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L15_3d # no |
| bsr.l t_dz2 # yes |
| bra.b _L15_6d |
| _L15_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L15_4d # no |
| bsr.l sopr_inf # yes |
| bra.b _L15_6d |
| _L15_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L15_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L15_6d |
| _L15_5d: |
| bsr.l slog2d # operand is a DENORM |
| _L15_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _flog2x_ |
| _flog2x_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L15_2x |
| bsr.l slog2 # operand is a NORM |
| bra.b _L15_6x |
| _L15_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L15_3x # no |
| bsr.l t_dz2 # yes |
| bra.b _L15_6x |
| _L15_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L15_4x # no |
| bsr.l sopr_inf # yes |
| bra.b _L15_6x |
| _L15_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L15_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L15_6x |
| _L15_5x: |
| bsr.l slog2d # operand is a DENORM |
| _L15_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fcoshs_ |
| _fcoshs_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L16_2s |
| bsr.l scosh # operand is a NORM |
| bra.b _L16_6s |
| _L16_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L16_3s # no |
| bsr.l ld_pone # yes |
| bra.b _L16_6s |
| _L16_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L16_4s # no |
| bsr.l ld_pinf # yes |
| bra.b _L16_6s |
| _L16_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L16_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L16_6s |
| _L16_5s: |
| bsr.l scoshd # operand is a DENORM |
| _L16_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fcoshd_ |
| _fcoshd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L16_2d |
| bsr.l scosh # operand is a NORM |
| bra.b _L16_6d |
| _L16_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L16_3d # no |
| bsr.l ld_pone # yes |
| bra.b _L16_6d |
| _L16_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L16_4d # no |
| bsr.l ld_pinf # yes |
| bra.b _L16_6d |
| _L16_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L16_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L16_6d |
| _L16_5d: |
| bsr.l scoshd # operand is a DENORM |
| _L16_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fcoshx_ |
| _fcoshx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L16_2x |
| bsr.l scosh # operand is a NORM |
| bra.b _L16_6x |
| _L16_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L16_3x # no |
| bsr.l ld_pone # yes |
| bra.b _L16_6x |
| _L16_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L16_4x # no |
| bsr.l ld_pinf # yes |
| bra.b _L16_6x |
| _L16_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L16_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L16_6x |
| _L16_5x: |
| bsr.l scoshd # operand is a DENORM |
| _L16_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _facoss_ |
| _facoss_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L17_2s |
| bsr.l sacos # operand is a NORM |
| bra.b _L17_6s |
| _L17_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L17_3s # no |
| bsr.l ld_ppi2 # yes |
| bra.b _L17_6s |
| _L17_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L17_4s # no |
| bsr.l t_operr # yes |
| bra.b _L17_6s |
| _L17_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L17_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L17_6s |
| _L17_5s: |
| bsr.l sacosd # operand is a DENORM |
| _L17_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _facosd_ |
| _facosd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L17_2d |
| bsr.l sacos # operand is a NORM |
| bra.b _L17_6d |
| _L17_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L17_3d # no |
| bsr.l ld_ppi2 # yes |
| bra.b _L17_6d |
| _L17_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L17_4d # no |
| bsr.l t_operr # yes |
| bra.b _L17_6d |
| _L17_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L17_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L17_6d |
| _L17_5d: |
| bsr.l sacosd # operand is a DENORM |
| _L17_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _facosx_ |
| _facosx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L17_2x |
| bsr.l sacos # operand is a NORM |
| bra.b _L17_6x |
| _L17_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L17_3x # no |
| bsr.l ld_ppi2 # yes |
| bra.b _L17_6x |
| _L17_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L17_4x # no |
| bsr.l t_operr # yes |
| bra.b _L17_6x |
| _L17_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L17_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L17_6x |
| _L17_5x: |
| bsr.l sacosd # operand is a DENORM |
| _L17_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fgetexps_ |
| _fgetexps_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L18_2s |
| bsr.l sgetexp # operand is a NORM |
| bra.b _L18_6s |
| _L18_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L18_3s # no |
| bsr.l src_zero # yes |
| bra.b _L18_6s |
| _L18_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L18_4s # no |
| bsr.l t_operr # yes |
| bra.b _L18_6s |
| _L18_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L18_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L18_6s |
| _L18_5s: |
| bsr.l sgetexpd # operand is a DENORM |
| _L18_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fgetexpd_ |
| _fgetexpd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L18_2d |
| bsr.l sgetexp # operand is a NORM |
| bra.b _L18_6d |
| _L18_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L18_3d # no |
| bsr.l src_zero # yes |
| bra.b _L18_6d |
| _L18_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L18_4d # no |
| bsr.l t_operr # yes |
| bra.b _L18_6d |
| _L18_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L18_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L18_6d |
| _L18_5d: |
| bsr.l sgetexpd # operand is a DENORM |
| _L18_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fgetexpx_ |
| _fgetexpx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L18_2x |
| bsr.l sgetexp # operand is a NORM |
| bra.b _L18_6x |
| _L18_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L18_3x # no |
| bsr.l src_zero # yes |
| bra.b _L18_6x |
| _L18_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L18_4x # no |
| bsr.l t_operr # yes |
| bra.b _L18_6x |
| _L18_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L18_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L18_6x |
| _L18_5x: |
| bsr.l sgetexpd # operand is a DENORM |
| _L18_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fgetmans_ |
| _fgetmans_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L19_2s |
| bsr.l sgetman # operand is a NORM |
| bra.b _L19_6s |
| _L19_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L19_3s # no |
| bsr.l src_zero # yes |
| bra.b _L19_6s |
| _L19_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L19_4s # no |
| bsr.l t_operr # yes |
| bra.b _L19_6s |
| _L19_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L19_5s # no |
| bsr.l src_qnan # yes |
| bra.b _L19_6s |
| _L19_5s: |
| bsr.l sgetmand # operand is a DENORM |
| _L19_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fgetmand_ |
| _fgetmand_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L19_2d |
| bsr.l sgetman # operand is a NORM |
| bra.b _L19_6d |
| _L19_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L19_3d # no |
| bsr.l src_zero # yes |
| bra.b _L19_6d |
| _L19_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L19_4d # no |
| bsr.l t_operr # yes |
| bra.b _L19_6d |
| _L19_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L19_5d # no |
| bsr.l src_qnan # yes |
| bra.b _L19_6d |
| _L19_5d: |
| bsr.l sgetmand # operand is a DENORM |
| _L19_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fgetmanx_ |
| _fgetmanx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L19_2x |
| bsr.l sgetman # operand is a NORM |
| bra.b _L19_6x |
| _L19_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L19_3x # no |
| bsr.l src_zero # yes |
| bra.b _L19_6x |
| _L19_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L19_4x # no |
| bsr.l t_operr # yes |
| bra.b _L19_6x |
| _L19_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L19_5x # no |
| bsr.l src_qnan # yes |
| bra.b _L19_6x |
| _L19_5x: |
| bsr.l sgetmand # operand is a DENORM |
| _L19_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # MONADIC TEMPLATE # |
| ######################################################################### |
| global _fsincoss_ |
| _fsincoss_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L20_2s |
| bsr.l ssincos # operand is a NORM |
| bra.b _L20_6s |
| _L20_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L20_3s # no |
| bsr.l ssincosz # yes |
| bra.b _L20_6s |
| _L20_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L20_4s # no |
| bsr.l ssincosi # yes |
| bra.b _L20_6s |
| _L20_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L20_5s # no |
| bsr.l ssincosqnan # yes |
| bra.b _L20_6s |
| _L20_5s: |
| bsr.l ssincosd # operand is a DENORM |
| _L20_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x &0x03,-(%sp) # store off fp0/fp1 |
| fmovm.x (%sp)+,&0x40 # fp0 now in fp1 |
| fmovm.x (%sp)+,&0x80 # fp1 now in fp0 |
| unlk %a6 |
| rts |
| |
| global _fsincosd_ |
| _fsincosd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl input |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| mov.b %d1,STAG(%a6) |
| tst.b %d1 |
| bne.b _L20_2d |
| bsr.l ssincos # operand is a NORM |
| bra.b _L20_6d |
| _L20_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L20_3d # no |
| bsr.l ssincosz # yes |
| bra.b _L20_6d |
| _L20_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L20_4d # no |
| bsr.l ssincosi # yes |
| bra.b _L20_6d |
| _L20_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L20_5d # no |
| bsr.l ssincosqnan # yes |
| bra.b _L20_6d |
| _L20_5d: |
| bsr.l ssincosd # operand is a DENORM |
| _L20_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x &0x03,-(%sp) # store off fp0/fp1 |
| fmovm.x (%sp)+,&0x40 # fp0 now in fp1 |
| fmovm.x (%sp)+,&0x80 # fp1 now in fp0 |
| unlk %a6 |
| rts |
| |
| global _fsincosx_ |
| _fsincosx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.b %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| tst.b %d1 |
| bne.b _L20_2x |
| bsr.l ssincos # operand is a NORM |
| bra.b _L20_6x |
| _L20_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L20_3x # no |
| bsr.l ssincosz # yes |
| bra.b _L20_6x |
| _L20_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L20_4x # no |
| bsr.l ssincosi # yes |
| bra.b _L20_6x |
| _L20_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L20_5x # no |
| bsr.l ssincosqnan # yes |
| bra.b _L20_6x |
| _L20_5x: |
| bsr.l ssincosd # operand is a DENORM |
| _L20_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x &0x03,-(%sp) # store off fp0/fp1 |
| fmovm.x (%sp)+,&0x40 # fp0 now in fp1 |
| fmovm.x (%sp)+,&0x80 # fp1 now in fp0 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # DYADIC TEMPLATE # |
| ######################################################################### |
| global _frems_ |
| _frems_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl dst |
| fmov.x %fp0,FP_DST(%a6) |
| lea FP_DST(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| fmov.s 0xc(%a6),%fp0 # load sgl src |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L21_2s |
| bsr.l srem_snorm # operand is a NORM |
| bra.b _L21_6s |
| _L21_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L21_3s # no |
| bsr.l srem_szero # yes |
| bra.b _L21_6s |
| _L21_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L21_4s # no |
| bsr.l srem_sinf # yes |
| bra.b _L21_6s |
| _L21_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L21_5s # no |
| bsr.l sop_sqnan # yes |
| bra.b _L21_6s |
| _L21_5s: |
| bsr.l srem_sdnrm # operand is a DENORM |
| _L21_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fremd_ |
| _fremd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl dst |
| fmov.x %fp0,FP_DST(%a6) |
| lea FP_DST(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| fmov.d 0x10(%a6),%fp0 # load dbl src |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L21_2d |
| bsr.l srem_snorm # operand is a NORM |
| bra.b _L21_6d |
| _L21_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L21_3d # no |
| bsr.l srem_szero # yes |
| bra.b _L21_6d |
| _L21_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L21_4d # no |
| bsr.l srem_sinf # yes |
| bra.b _L21_6d |
| _L21_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L21_5d # no |
| bsr.l sop_sqnan # yes |
| bra.b _L21_6d |
| _L21_5d: |
| bsr.l srem_sdnrm # operand is a DENORM |
| _L21_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fremx_ |
| _fremx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_DST(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src |
| mov.l 0x14+0x4(%a6),0x4(%a0) |
| mov.l 0x14+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L21_2x |
| bsr.l srem_snorm # operand is a NORM |
| bra.b _L21_6x |
| _L21_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L21_3x # no |
| bsr.l srem_szero # yes |
| bra.b _L21_6x |
| _L21_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L21_4x # no |
| bsr.l srem_sinf # yes |
| bra.b _L21_6x |
| _L21_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L21_5x # no |
| bsr.l sop_sqnan # yes |
| bra.b _L21_6x |
| _L21_5x: |
| bsr.l srem_sdnrm # operand is a DENORM |
| _L21_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # DYADIC TEMPLATE # |
| ######################################################################### |
| global _fmods_ |
| _fmods_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl dst |
| fmov.x %fp0,FP_DST(%a6) |
| lea FP_DST(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| fmov.s 0xc(%a6),%fp0 # load sgl src |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L22_2s |
| bsr.l smod_snorm # operand is a NORM |
| bra.b _L22_6s |
| _L22_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L22_3s # no |
| bsr.l smod_szero # yes |
| bra.b _L22_6s |
| _L22_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L22_4s # no |
| bsr.l smod_sinf # yes |
| bra.b _L22_6s |
| _L22_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L22_5s # no |
| bsr.l sop_sqnan # yes |
| bra.b _L22_6s |
| _L22_5s: |
| bsr.l smod_sdnrm # operand is a DENORM |
| _L22_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fmodd_ |
| _fmodd_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl dst |
| fmov.x %fp0,FP_DST(%a6) |
| lea FP_DST(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| fmov.d 0x10(%a6),%fp0 # load dbl src |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L22_2d |
| bsr.l smod_snorm # operand is a NORM |
| bra.b _L22_6d |
| _L22_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L22_3d # no |
| bsr.l smod_szero # yes |
| bra.b _L22_6d |
| _L22_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L22_4d # no |
| bsr.l smod_sinf # yes |
| bra.b _L22_6d |
| _L22_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L22_5d # no |
| bsr.l sop_sqnan # yes |
| bra.b _L22_6d |
| _L22_5d: |
| bsr.l smod_sdnrm # operand is a DENORM |
| _L22_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fmodx_ |
| _fmodx_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_DST(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src |
| mov.l 0x14+0x4(%a6),0x4(%a0) |
| mov.l 0x14+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L22_2x |
| bsr.l smod_snorm # operand is a NORM |
| bra.b _L22_6x |
| _L22_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L22_3x # no |
| bsr.l smod_szero # yes |
| bra.b _L22_6x |
| _L22_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L22_4x # no |
| bsr.l smod_sinf # yes |
| bra.b _L22_6x |
| _L22_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L22_5x # no |
| bsr.l sop_sqnan # yes |
| bra.b _L22_6x |
| _L22_5x: |
| bsr.l smod_sdnrm # operand is a DENORM |
| _L22_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # DYADIC TEMPLATE # |
| ######################################################################### |
| global _fscales_ |
| _fscales_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.s 0x8(%a6),%fp0 # load sgl dst |
| fmov.x %fp0,FP_DST(%a6) |
| lea FP_DST(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| fmov.s 0xc(%a6),%fp0 # load sgl src |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L23_2s |
| bsr.l sscale_snorm # operand is a NORM |
| bra.b _L23_6s |
| _L23_2s: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L23_3s # no |
| bsr.l sscale_szero # yes |
| bra.b _L23_6s |
| _L23_3s: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L23_4s # no |
| bsr.l sscale_sinf # yes |
| bra.b _L23_6s |
| _L23_4s: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L23_5s # no |
| bsr.l sop_sqnan # yes |
| bra.b _L23_6s |
| _L23_5s: |
| bsr.l sscale_sdnrm # operand is a DENORM |
| _L23_6s: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fscaled_ |
| _fscaled_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| fmov.d 0x8(%a6),%fp0 # load dbl dst |
| fmov.x %fp0,FP_DST(%a6) |
| lea FP_DST(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| fmov.d 0x10(%a6),%fp0 # load dbl src |
| fmov.x %fp0,FP_SRC(%a6) |
| lea FP_SRC(%a6),%a0 |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L23_2d |
| bsr.l sscale_snorm # operand is a NORM |
| bra.b _L23_6d |
| _L23_2d: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L23_3d # no |
| bsr.l sscale_szero # yes |
| bra.b _L23_6d |
| _L23_3d: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L23_4d # no |
| bsr.l sscale_sinf # yes |
| bra.b _L23_6d |
| _L23_4d: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L23_5d # no |
| bsr.l sop_sqnan # yes |
| bra.b _L23_6d |
| _L23_5d: |
| bsr.l sscale_sdnrm # operand is a DENORM |
| _L23_6d: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| global _fscalex_ |
| _fscalex_: |
| link %a6,&-LOCAL_SIZE |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| |
| fmov.l &0x0,%fpcr # zero FPCR |
| |
| # |
| # copy, convert, and tag input argument |
| # |
| lea FP_DST(%a6),%a0 |
| mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst |
| mov.l 0x8+0x4(%a6),0x4(%a0) |
| mov.l 0x8+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,DTAG(%a6) |
| |
| lea FP_SRC(%a6),%a0 |
| mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src |
| mov.l 0x14+0x4(%a6),0x4(%a0) |
| mov.l 0x14+0x8(%a6),0x8(%a0) |
| bsr.l tag # fetch operand type |
| mov.b %d0,STAG(%a6) |
| mov.l %d0,%d1 |
| |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| lea FP_DST(%a6),%a1 # pass ptr to dst |
| |
| tst.b %d1 |
| bne.b _L23_2x |
| bsr.l sscale_snorm # operand is a NORM |
| bra.b _L23_6x |
| _L23_2x: |
| cmpi.b %d1,&ZERO # is operand a ZERO? |
| bne.b _L23_3x # no |
| bsr.l sscale_szero # yes |
| bra.b _L23_6x |
| _L23_3x: |
| cmpi.b %d1,&INF # is operand an INF? |
| bne.b _L23_4x # no |
| bsr.l sscale_sinf # yes |
| bra.b _L23_6x |
| _L23_4x: |
| cmpi.b %d1,&QNAN # is operand a QNAN? |
| bne.b _L23_5x # no |
| bsr.l sop_sqnan # yes |
| bra.b _L23_6x |
| _L23_5x: |
| bsr.l sscale_sdnrm # operand is a DENORM |
| _L23_6x: |
| |
| # |
| # Result is now in FP0 |
| # |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| unlk %a6 |
| rts |
| |
| |
| ######################################################################### |
| # ssin(): computes the sine of a normalized input # |
| # ssind(): computes the sine of a denormalized input # |
| # scos(): computes the cosine of a normalized input # |
| # scosd(): computes the cosine of a denormalized input # |
| # ssincos(): computes the sine and cosine of a normalized input # |
| # ssincosd(): computes the sine and cosine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = sin(X) or cos(X) # |
| # # |
| # For ssincos(X): # |
| # fp0 = sin(X) # |
| # fp1 = cos(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 1 ulp in 64 significant bit, i.e. # |
| # within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # SIN and COS: # |
| # 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # |
| # # |
| # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # |
| # # |
| # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| # k = N mod 4, so in particular, k = 0,1,2,or 3. # |
| # Overwrite k by k := k + AdjN. # |
| # # |
| # 4. If k is even, go to 6. # |
| # # |
| # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # |
| # Return sgn*cos(r) where cos(r) is approximated by an # |
| # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # |
| # s = r*r. # |
| # Exit. # |
| # # |
| # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # |
| # where sin(r) is approximated by an odd polynomial in r # |
| # r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # |
| # Exit. # |
| # # |
| # 7. If |X| > 1, go to 9. # |
| # # |
| # 8. (|X|<2**(-40)) If SIN is invoked, return X; # |
| # otherwise return 1. # |
| # # |
| # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # |
| # go back to 3. # |
| # # |
| # SINCOS: # |
| # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # |
| # # |
| # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| # k = N mod 4, so in particular, k = 0,1,2,or 3. # |
| # # |
| # 3. If k is even, go to 5. # |
| # # |
| # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # |
| # j1 exclusive or with the l.s.b. of k. # |
| # sgn1 := (-1)**j1, sgn2 := (-1)**j2. # |
| # SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # |
| # sin(r) and cos(r) are computed as odd and even # |
| # polynomials in r, respectively. Exit # |
| # # |
| # 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # |
| # SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # |
| # sin(r) and cos(r) are computed as odd and even # |
| # polynomials in r, respectively. Exit # |
| # # |
| # 6. If |X| > 1, go to 8. # |
| # # |
| # 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # |
| # # |
| # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # |
| # go back to 2. # |
| # # |
| ######################################################################### |
| |
| SINA7: long 0xBD6AAA77,0xCCC994F5 |
| SINA6: long 0x3DE61209,0x7AAE8DA1 |
| SINA5: long 0xBE5AE645,0x2A118AE4 |
| SINA4: long 0x3EC71DE3,0xA5341531 |
| SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 |
| SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 |
| SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 |
| |
| COSB8: long 0x3D2AC4D0,0xD6011EE3 |
| COSB7: long 0xBDA9396F,0x9F45AC19 |
| COSB6: long 0x3E21EED9,0x0612C972 |
| COSB5: long 0xBE927E4F,0xB79D9FCF |
| COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 |
| COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 |
| COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E |
| COSB1: long 0xBF000000 |
| |
| set INARG,FP_SCR0 |
| |
| set X,FP_SCR0 |
| # set XDCARE,X+2 |
| set XFRAC,X+4 |
| |
| set RPRIME,FP_SCR0 |
| set SPRIME,FP_SCR1 |
| |
| set POSNEG1,L_SCR1 |
| set TWOTO63,L_SCR1 |
| |
| set ENDFLAG,L_SCR2 |
| set INT,L_SCR2 |
| |
| set ADJN,L_SCR3 |
| |
| ############################################ |
| global ssin |
| ssin: |
| mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 |
| bra.b SINBGN |
| |
| ############################################ |
| global scos |
| scos: |
| mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 |
| |
| ############################################ |
| SINBGN: |
| #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE |
| |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| fmov.x %fp0,X(%a6) # save input at X |
| |
| # "COMPACTIFY" X |
| mov.l (%a0),%d1 # put exp in hi word |
| mov.w 4(%a0),%d1 # fetch hi(man) |
| and.l &0x7FFFFFFF,%d1 # strip sign |
| |
| cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? |
| bge.b SOK1 # no |
| bra.w SINSM # yes; input is very small |
| |
| SOK1: |
| cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? |
| blt.b SINMAIN # no |
| bra.w SREDUCEX # yes; input is very large |
| |
| #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| SINMAIN: |
| fmov.x %fp0,%fp1 |
| fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| |
| lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| |
| fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER |
| |
| mov.l INT(%a6),%d1 # make a copy of N |
| asl.l &4,%d1 # N *= 16 |
| add.l %d1,%a1 # tbl_addr = a1 + (N*16) |
| |
| # A1 IS THE ADDRESS OF N*PIBY2 |
| # ...WHICH IS IN TWO PIECES Y1 & Y2 |
| fsub.x (%a1)+,%fp0 # X-Y1 |
| fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 |
| |
| SINCONT: |
| #--continuation from REDUCEX |
| |
| #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED |
| mov.l INT(%a6),%d1 |
| add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN |
| ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE |
| cmp.l %d1,&0 |
| blt.w COSPOLY |
| |
| #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |
| #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY |
| #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE |
| #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS |
| #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) |
| #--WHERE T=S*S. |
| #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION |
| #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. |
| SINPOLY: |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmov.x %fp0,X(%a6) # X IS R |
| fmul.x %fp0,%fp0 # FP0 IS S |
| |
| fmov.d SINA7(%pc),%fp3 |
| fmov.d SINA6(%pc),%fp2 |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS T |
| |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| # ...LEAST SIG. BIT OF D0 IN SIGN POSITION |
| eor.l %d1,X(%a6) # X IS NOW R'= SGN*R |
| |
| fmul.x %fp1,%fp3 # TA7 |
| fmul.x %fp1,%fp2 # TA6 |
| |
| fadd.d SINA5(%pc),%fp3 # A5+TA7 |
| fadd.d SINA4(%pc),%fp2 # A4+TA6 |
| |
| fmul.x %fp1,%fp3 # T(A5+TA7) |
| fmul.x %fp1,%fp2 # T(A4+TA6) |
| |
| fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) |
| fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) |
| |
| fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) |
| |
| fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) |
| fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) |
| fmul.x X(%a6),%fp0 # R'*S |
| |
| fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] |
| |
| fmul.x %fp1,%fp0 # SIN(R')-R' |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fadd.x X(%a6),%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |
| #--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY |
| #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE |
| #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS |
| #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) |
| #--WHERE T=S*S. |
| #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION |
| #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 |
| #--AND IS THEREFORE STORED AS SINGLE PRECISION. |
| COSPOLY: |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmul.x %fp0,%fp0 # FP0 IS S |
| |
| fmov.d COSB8(%pc),%fp2 |
| fmov.d COSB7(%pc),%fp3 |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS T |
| |
| fmov.x %fp0,X(%a6) # X IS S |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| # ...LEAST SIG. BIT OF D0 IN SIGN POSITION |
| |
| fmul.x %fp1,%fp2 # TB8 |
| |
| eor.l %d1,X(%a6) # X IS NOW S'= SGN*S |
| and.l &0x80000000,%d1 |
| |
| fmul.x %fp1,%fp3 # TB7 |
| |
| or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE |
| mov.l %d1,POSNEG1(%a6) |
| |
| fadd.d COSB6(%pc),%fp2 # B6+TB8 |
| fadd.d COSB5(%pc),%fp3 # B5+TB7 |
| |
| fmul.x %fp1,%fp2 # T(B6+TB8) |
| fmul.x %fp1,%fp3 # T(B5+TB7) |
| |
| fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) |
| fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) |
| |
| fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) |
| fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) |
| |
| fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) |
| fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) |
| |
| fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) |
| |
| fadd.x %fp1,%fp0 |
| |
| fmul.x X(%a6),%fp0 |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| ############################################## |
| |
| # SINe: Big OR Small? |
| #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| #--IF |X| < 2**(-40), RETURN X OR 1. |
| SINBORS: |
| cmp.l %d1,&0x3FFF8000 |
| bgt.l SREDUCEX |
| |
| SINSM: |
| mov.l ADJN(%a6),%d1 |
| cmp.l %d1,&0 |
| bgt.b COSTINY |
| |
| # here, the operation may underflow iff the precision is sgl or dbl. |
| # extended denorms are handled through another entry point. |
| SINTINY: |
| # mov.w &0x0000,XDCARE(%a6) # JUST IN CASE |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 # last inst - possible exception set |
| bra t_catch |
| |
| COSTINY: |
| fmov.s &0x3F800000,%fp0 # fp0 = 1.0 |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fadd.s &0x80800000,%fp0 # last inst - possible exception set |
| bra t_pinx2 |
| |
| ################################################ |
| global ssind |
| #--SIN(X) = X FOR DENORMALIZED X |
| ssind: |
| bra t_extdnrm |
| |
| ############################################ |
| global scosd |
| #--COS(X) = 1 FOR DENORMALIZED X |
| scosd: |
| fmov.s &0x3F800000,%fp0 # fp0 = 1.0 |
| bra t_pinx2 |
| |
| ################################################## |
| |
| global ssincos |
| ssincos: |
| #--SET ADJN TO 4 |
| mov.l &4,ADJN(%a6) |
| |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| fmov.x %fp0,X(%a6) |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 # COMPACTIFY X |
| |
| cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? |
| bge.b SCOK1 |
| bra.w SCSM |
| |
| SCOK1: |
| cmp.l %d1,&0x4004BC7E # |X| < 15 PI? |
| blt.b SCMAIN |
| bra.w SREDUCEX |
| |
| |
| #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| SCMAIN: |
| fmov.x %fp0,%fp1 |
| |
| fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| |
| lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| |
| fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER |
| |
| mov.l INT(%a6),%d1 |
| asl.l &4,%d1 |
| add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 |
| |
| fsub.x (%a1)+,%fp0 # X-Y1 |
| fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 |
| |
| SCCONT: |
| #--continuation point from REDUCEX |
| |
| mov.l INT(%a6),%d1 |
| ror.l &1,%d1 |
| cmp.l %d1,&0 # D0 < 0 IFF N IS ODD |
| bge.w NEVEN |
| |
| SNODD: |
| #--REGISTERS SAVED SO FAR: D0, A0, FP2. |
| fmovm.x &0x04,-(%sp) # save fp2 |
| |
| fmov.x %fp0,RPRIME(%a6) |
| fmul.x %fp0,%fp0 # FP0 IS S = R*R |
| fmov.d SINA7(%pc),%fp1 # A7 |
| fmov.d COSB8(%pc),%fp2 # B8 |
| fmul.x %fp0,%fp1 # SA7 |
| fmul.x %fp0,%fp2 # SB8 |
| |
| mov.l %d2,-(%sp) |
| mov.l %d1,%d2 |
| ror.l &1,%d2 |
| and.l &0x80000000,%d2 |
| eor.l %d1,%d2 |
| and.l &0x80000000,%d2 |
| |
| fadd.d SINA6(%pc),%fp1 # A6+SA7 |
| fadd.d COSB7(%pc),%fp2 # B7+SB8 |
| |
| fmul.x %fp0,%fp1 # S(A6+SA7) |
| eor.l %d2,RPRIME(%a6) |
| mov.l (%sp)+,%d2 |
| fmul.x %fp0,%fp2 # S(B7+SB8) |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| mov.l &0x3F800000,POSNEG1(%a6) |
| eor.l %d1,POSNEG1(%a6) |
| |
| fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) |
| fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) |
| |
| fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) |
| fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) |
| fmov.x %fp0,SPRIME(%a6) |
| |
| fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) |
| eor.l %d1,SPRIME(%a6) |
| fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) |
| |
| fmul.x %fp0,%fp1 # S(A4+...) |
| fmul.x %fp0,%fp2 # S(B5+...) |
| |
| fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) |
| fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) |
| |
| fmul.x %fp0,%fp1 # S(A3+...) |
| fmul.x %fp0,%fp2 # S(B4+...) |
| |
| fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) |
| fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) |
| |
| fmul.x %fp0,%fp1 # S(A2+...) |
| fmul.x %fp0,%fp2 # S(B3+...) |
| |
| fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) |
| fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) |
| |
| fmul.x %fp0,%fp1 # S(A1+...) |
| fmul.x %fp2,%fp0 # S(B2+...) |
| |
| fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) |
| fadd.s COSB1(%pc),%fp0 # B1+S(B2...) |
| fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) |
| |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| |
| fmov.l %d0,%fpcr |
| fadd.x RPRIME(%a6),%fp1 # COS(X) |
| bsr sto_cos # store cosine result |
| fadd.s POSNEG1(%a6),%fp0 # SIN(X) |
| bra t_inx2 |
| |
| NEVEN: |
| #--REGISTERS SAVED SO FAR: FP2. |
| fmovm.x &0x04,-(%sp) # save fp2 |
| |
| fmov.x %fp0,RPRIME(%a6) |
| fmul.x %fp0,%fp0 # FP0 IS S = R*R |
| |
| fmov.d COSB8(%pc),%fp1 # B8 |
| fmov.d SINA7(%pc),%fp2 # A7 |
| |
| fmul.x %fp0,%fp1 # SB8 |
| fmov.x %fp0,SPRIME(%a6) |
| fmul.x %fp0,%fp2 # SA7 |
| |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| |
| fadd.d COSB7(%pc),%fp1 # B7+SB8 |
| fadd.d SINA6(%pc),%fp2 # A6+SA7 |
| |
| eor.l %d1,RPRIME(%a6) |
| eor.l %d1,SPRIME(%a6) |
| |
| fmul.x %fp0,%fp1 # S(B7+SB8) |
| |
| or.l &0x3F800000,%d1 |
| mov.l %d1,POSNEG1(%a6) |
| |
| fmul.x %fp0,%fp2 # S(A6+SA7) |
| |
| fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) |
| fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) |
| |
| fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) |
| fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) |
| |
| fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) |
| fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) |
| |
| fmul.x %fp0,%fp1 # S(B5+...) |
| fmul.x %fp0,%fp2 # S(A4+...) |
| |
| fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) |
| fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) |
| |
| fmul.x %fp0,%fp1 # S(B4+...) |
| fmul.x %fp0,%fp2 # S(A3+...) |
| |
| fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) |
| fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) |
| |
| fmul.x %fp0,%fp1 # S(B3+...) |
| fmul.x %fp0,%fp2 # S(A2+...) |
| |
| fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) |
| fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) |
| |
| fmul.x %fp0,%fp1 # S(B2+...) |
| fmul.x %fp2,%fp0 # s(a1+...) |
| |
| |
| fadd.s COSB1(%pc),%fp1 # B1+S(B2...) |
| fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) |
| fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) |
| |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| |
| fmov.l %d0,%fpcr |
| fadd.s POSNEG1(%a6),%fp1 # COS(X) |
| bsr sto_cos # store cosine result |
| fadd.x RPRIME(%a6),%fp0 # SIN(X) |
| bra t_inx2 |
| |
| ################################################ |
| |
| SCBORS: |
| cmp.l %d1,&0x3FFF8000 |
| bgt.w SREDUCEX |
| |
| ################################################ |
| |
| SCSM: |
| # mov.w &0x0000,XDCARE(%a6) |
| fmov.s &0x3F800000,%fp1 |
| |
| fmov.l %d0,%fpcr |
| fsub.s &0x00800000,%fp1 |
| bsr sto_cos # store cosine result |
| fmov.l %fpcr,%d0 # d0 must have fpcr,too |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 |
| bra t_catch |
| |
| ############################################## |
| |
| global ssincosd |
| #--SIN AND COS OF X FOR DENORMALIZED X |
| ssincosd: |
| mov.l %d0,-(%sp) # save d0 |
| fmov.s &0x3F800000,%fp1 |
| bsr sto_cos # store cosine result |
| mov.l (%sp)+,%d0 # restore d0 |
| bra t_extdnrm |
| |
| ############################################ |
| |
| #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| SREDUCEX: |
| fmovm.x &0x3c,-(%sp) # save {fp2-fp5} |
| mov.l %d2,-(%sp) # save d2 |
| fmov.s &0x00000000,%fp1 # fp1 = 0 |
| |
| #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| #--there is a danger of unwanted overflow in first LOOP iteration. In this |
| #--case, reduce argument by one remainder step to make subsequent reduction |
| #--safe. |
| cmp.l %d1,&0x7ffeffff # is arg dangerously large? |
| bne.b SLOOP # no |
| |
| # yes; create 2**16383*PI/2 |
| mov.w &0x7ffe,FP_SCR0_EX(%a6) |
| mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) |
| |
| # create low half of 2**16383*PI/2 at FP_SCR1 |
| mov.w &0x7fdc,FP_SCR1_EX(%a6) |
| mov.l &0x85a308d3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) |
| |
| ftest.x %fp0 # test sign of argument |
| fblt.w sred_neg |
| |
| or.b &0x80,FP_SCR0_EX(%a6) # positive arg |
| or.b &0x80,FP_SCR1_EX(%a6) |
| sred_neg: |
| fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact |
| fmov.x %fp0,%fp1 # save high result in fp1 |
| fadd.x FP_SCR1(%a6),%fp0 # low part of reduction |
| fsub.x %fp0,%fp1 # determine low component of result |
| fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. |
| |
| #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| #--integer quotient will be stored in N |
| #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| SLOOP: |
| fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 |
| mov.w INARG(%a6),%d1 |
| mov.l %d1,%a1 # save a copy of D0 |
| and.l &0x00007FFF,%d1 |
| sub.l &0x00003FFF,%d1 # d0 = K |
| cmp.l %d1,&28 |
| ble.b SLASTLOOP |
| SCONTLOOP: |
| sub.l &27,%d1 # d0 = L := K-27 |
| mov.b &0,ENDFLAG(%a6) |
| bra.b SWORK |
| SLASTLOOP: |
| clr.l %d1 # d0 = L := 0 |
| mov.b &1,ENDFLAG(%a6) |
| |
| SWORK: |
| #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| |
| #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| #--2**L * (PIby2_1), 2**L * (PIby2_2) |
| |
| mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI |
| sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) |
| |
| mov.l &0xA2F9836E,FP_SCR0_HI(%a6) |
| mov.l &0x4E44152A,FP_SCR0_LO(%a6) |
| mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) |
| |
| fmov.x %fp0,%fp2 |
| fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) |
| |
| #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| #--US THE DESIRED VALUE IN FLOATING POINT. |
| mov.l %a1,%d2 |
| swap %d2 |
| and.l &0x80000000,%d2 |
| or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL |
| mov.l %d2,TWOTO63(%a6) |
| fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED |
| fsub.s TWOTO63(%a6),%fp2 # fp2 = N |
| # fint.x %fp2 |
| |
| #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| mov.l %d1,%d2 # d2 = L |
| |
| add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) |
| mov.w %d2,FP_SCR0_EX(%a6) |
| mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 |
| |
| add.l &0x00003FDD,%d1 |
| mov.w %d1,FP_SCR1_EX(%a6) |
| mov.l &0x85A308D3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 |
| |
| mov.b ENDFLAG(%a6),%d1 |
| |
| #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| #--P2 = 2**(L) * Piby2_2 |
| fmov.x %fp2,%fp4 # fp4 = N |
| fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 |
| fmov.x %fp2,%fp5 # fp5 = N |
| fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 |
| fmov.x %fp4,%fp3 # fp3 = W = N*P1 |
| |
| #--we want P+p = W+w but |p| <= half ulp of P |
| #--Then, we need to compute A := R-P and a := r-p |
| fadd.x %fp5,%fp3 # fp3 = P |
| fsub.x %fp3,%fp4 # fp4 = W-P |
| |
| fsub.x %fp3,%fp0 # fp0 = A := R - P |
| fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w |
| |
| fmov.x %fp0,%fp3 # fp3 = A |
| fsub.x %fp4,%fp1 # fp1 = a := r - p |
| |
| #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| #--|r| <= half ulp of R. |
| fadd.x %fp1,%fp0 # fp0 = R := A+a |
| #--No need to calculate r if this is the last loop |
| cmp.b %d1,&0 |
| bgt.w SRESTORE |
| |
| #--Need to calculate r |
| fsub.x %fp0,%fp3 # fp3 = A-R |
| fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a |
| bra.w SLOOP |
| |
| SRESTORE: |
| fmov.l %fp2,INT(%a6) |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} |
| |
| mov.l ADJN(%a6),%d1 |
| cmp.l %d1,&4 |
| |
| blt.w SINCONT |
| bra.w SCCONT |
| |
| ######################################################################### |
| # stan(): computes the tangent of a normalized input # |
| # stand(): computes the tangent of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = tan(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulp in 64 significant bit, i.e. # |
| # within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # |
| # # |
| # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| # k = N mod 2, so in particular, k = 0 or 1. # |
| # # |
| # 3. If k is odd, go to 5. # |
| # # |
| # 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # |
| # rational function U/V where # |
| # U = r + r*s*(P1 + s*(P2 + s*P3)), and # |
| # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # |
| # Exit. # |
| # # |
| # 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # |
| # a rational function U/V where # |
| # U = r + r*s*(P1 + s*(P2 + s*P3)), and # |
| # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # |
| # -Cot(r) = -V/U. Exit. # |
| # # |
| # 6. If |X| > 1, go to 8. # |
| # # |
| # 7. (|X|<2**(-40)) Tan(X) = X. Exit. # |
| # # |
| # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # |
| # to 2. # |
| # # |
| ######################################################################### |
| |
| TANQ4: |
| long 0x3EA0B759,0xF50F8688 |
| TANP3: |
| long 0xBEF2BAA5,0xA8924F04 |
| |
| TANQ3: |
| long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 |
| |
| TANP2: |
| long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 |
| |
| TANQ2: |
| long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 |
| |
| TANP1: |
| long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 |
| |
| TANQ1: |
| long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 |
| |
| INVTWOPI: |
| long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 |
| |
| TWOPI1: |
| long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 |
| TWOPI2: |
| long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 |
| |
| #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING |
| #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT |
| #--MOST 69 BITS LONG. |
| # global PITBL |
| PITBL: |
| long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 |
| long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 |
| long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 |
| long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 |
| long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 |
| long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 |
| long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 |
| long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 |
| long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 |
| long 0xC0040000,0x90836524,0x88034B96,0x20B00000 |
| long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 |
| long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 |
| long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 |
| long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 |
| long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 |
| long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 |
| long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 |
| long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 |
| long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 |
| long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 |
| long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 |
| long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 |
| long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 |
| long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 |
| long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 |
| long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 |
| long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 |
| long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 |
| long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 |
| long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 |
| long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 |
| long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 |
| long 0x00000000,0x00000000,0x00000000,0x00000000 |
| long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 |
| long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 |
| long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 |
| long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 |
| long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 |
| long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 |
| long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 |
| long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 |
| long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 |
| long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 |
| long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 |
| long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 |
| long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 |
| long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 |
| long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 |
| long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 |
| long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 |
| long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 |
| long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 |
| long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 |
| long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 |
| long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 |
| long 0x40040000,0x90836524,0x88034B96,0xA0B00000 |
| long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 |
| long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 |
| long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 |
| long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 |
| long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 |
| long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 |
| long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 |
| long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 |
| long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 |
| |
| set INARG,FP_SCR0 |
| |
| set TWOTO63,L_SCR1 |
| set INT,L_SCR1 |
| set ENDFLAG,L_SCR2 |
| |
| global stan |
| stan: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? |
| bge.b TANOK1 |
| bra.w TANSM |
| TANOK1: |
| cmp.l %d1,&0x4004BC7E # |X| < 15 PI? |
| blt.b TANMAIN |
| bra.w REDUCEX |
| |
| TANMAIN: |
| #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| fmov.x %fp0,%fp1 |
| fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| |
| lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| |
| fmov.l %fp1,%d1 # CONVERT TO INTEGER |
| |
| asl.l &4,%d1 |
| add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 |
| |
| fsub.x (%a1)+,%fp0 # X-Y1 |
| |
| fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 |
| |
| ror.l &5,%d1 |
| and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 |
| |
| TANCONT: |
| fmovm.x &0x0c,-(%sp) # save fp2,fp3 |
| |
| cmp.l %d1,&0 |
| blt.w NODD |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # S = R*R |
| |
| fmov.d TANQ4(%pc),%fp3 |
| fmov.d TANP3(%pc),%fp2 |
| |
| fmul.x %fp1,%fp3 # SQ4 |
| fmul.x %fp1,%fp2 # SP3 |
| |
| fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 |
| fadd.x TANP2(%pc),%fp2 # P2+SP3 |
| |
| fmul.x %fp1,%fp3 # S(Q3+SQ4) |
| fmul.x %fp1,%fp2 # S(P2+SP3) |
| |
| fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) |
| fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) |
| |
| fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) |
| fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) |
| |
| fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) |
| fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) |
| |
| fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) |
| |
| fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) |
| |
| fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2,fp3 |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fdiv.x %fp1,%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| NODD: |
| fmov.x %fp0,%fp1 |
| fmul.x %fp0,%fp0 # S = R*R |
| |
| fmov.d TANQ4(%pc),%fp3 |
| fmov.d TANP3(%pc),%fp2 |
| |
| fmul.x %fp0,%fp3 # SQ4 |
| fmul.x %fp0,%fp2 # SP3 |
| |
| fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 |
| fadd.x TANP2(%pc),%fp2 # P2+SP3 |
| |
| fmul.x %fp0,%fp3 # S(Q3+SQ4) |
| fmul.x %fp0,%fp2 # S(P2+SP3) |
| |
| fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) |
| fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) |
| |
| fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) |
| fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) |
| |
| fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) |
| fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) |
| |
| fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) |
| |
| fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) |
| fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2,fp3 |
| |
| fmov.x %fp1,-(%sp) |
| eor.l &0x80000000,(%sp) |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fdiv.x (%sp)+,%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| TANBORS: |
| #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| #--IF |X| < 2**(-40), RETURN X OR 1. |
| cmp.l %d1,&0x3FFF8000 |
| bgt.b REDUCEX |
| |
| TANSM: |
| fmov.x %fp0,-(%sp) |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x (%sp)+,%fp0 # last inst - posibble exception set |
| bra t_catch |
| |
| global stand |
| #--TAN(X) = X FOR DENORMALIZED X |
| stand: |
| bra t_extdnrm |
| |
| #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| REDUCEX: |
| fmovm.x &0x3c,-(%sp) # save {fp2-fp5} |
| mov.l %d2,-(%sp) # save d2 |
| fmov.s &0x00000000,%fp1 # fp1 = 0 |
| |
| #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| #--there is a danger of unwanted overflow in first LOOP iteration. In this |
| #--case, reduce argument by one remainder step to make subsequent reduction |
| #--safe. |
| cmp.l %d1,&0x7ffeffff # is arg dangerously large? |
| bne.b LOOP # no |
| |
| # yes; create 2**16383*PI/2 |
| mov.w &0x7ffe,FP_SCR0_EX(%a6) |
| mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) |
| |
| # create low half of 2**16383*PI/2 at FP_SCR1 |
| mov.w &0x7fdc,FP_SCR1_EX(%a6) |
| mov.l &0x85a308d3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) |
| |
| ftest.x %fp0 # test sign of argument |
| fblt.w red_neg |
| |
| or.b &0x80,FP_SCR0_EX(%a6) # positive arg |
| or.b &0x80,FP_SCR1_EX(%a6) |
| red_neg: |
| fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact |
| fmov.x %fp0,%fp1 # save high result in fp1 |
| fadd.x FP_SCR1(%a6),%fp0 # low part of reduction |
| fsub.x %fp0,%fp1 # determine low component of result |
| fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. |
| |
| #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| #--integer quotient will be stored in N |
| #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| LOOP: |
| fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 |
| mov.w INARG(%a6),%d1 |
| mov.l %d1,%a1 # save a copy of D0 |
| and.l &0x00007FFF,%d1 |
| sub.l &0x00003FFF,%d1 # d0 = K |
| cmp.l %d1,&28 |
| ble.b LASTLOOP |
| CONTLOOP: |
| sub.l &27,%d1 # d0 = L := K-27 |
| mov.b &0,ENDFLAG(%a6) |
| bra.b WORK |
| LASTLOOP: |
| clr.l %d1 # d0 = L := 0 |
| mov.b &1,ENDFLAG(%a6) |
| |
| WORK: |
| #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| |
| #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| #--2**L * (PIby2_1), 2**L * (PIby2_2) |
| |
| mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI |
| sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) |
| |
| mov.l &0xA2F9836E,FP_SCR0_HI(%a6) |
| mov.l &0x4E44152A,FP_SCR0_LO(%a6) |
| mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) |
| |
| fmov.x %fp0,%fp2 |
| fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) |
| |
| #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| #--US THE DESIRED VALUE IN FLOATING POINT. |
| mov.l %a1,%d2 |
| swap %d2 |
| and.l &0x80000000,%d2 |
| or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL |
| mov.l %d2,TWOTO63(%a6) |
| fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED |
| fsub.s TWOTO63(%a6),%fp2 # fp2 = N |
| # fintrz.x %fp2,%fp2 |
| |
| #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| mov.l %d1,%d2 # d2 = L |
| |
| add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) |
| mov.w %d2,FP_SCR0_EX(%a6) |
| mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 |
| |
| add.l &0x00003FDD,%d1 |
| mov.w %d1,FP_SCR1_EX(%a6) |
| mov.l &0x85A308D3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 |
| |
| mov.b ENDFLAG(%a6),%d1 |
| |
| #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| #--P2 = 2**(L) * Piby2_2 |
| fmov.x %fp2,%fp4 # fp4 = N |
| fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 |
| fmov.x %fp2,%fp5 # fp5 = N |
| fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 |
| fmov.x %fp4,%fp3 # fp3 = W = N*P1 |
| |
| #--we want P+p = W+w but |p| <= half ulp of P |
| #--Then, we need to compute A := R-P and a := r-p |
| fadd.x %fp5,%fp3 # fp3 = P |
| fsub.x %fp3,%fp4 # fp4 = W-P |
| |
| fsub.x %fp3,%fp0 # fp0 = A := R - P |
| fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w |
| |
| fmov.x %fp0,%fp3 # fp3 = A |
| fsub.x %fp4,%fp1 # fp1 = a := r - p |
| |
| #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| #--|r| <= half ulp of R. |
| fadd.x %fp1,%fp0 # fp0 = R := A+a |
| #--No need to calculate r if this is the last loop |
| cmp.b %d1,&0 |
| bgt.w RESTORE |
| |
| #--Need to calculate r |
| fsub.x %fp0,%fp3 # fp3 = A-R |
| fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a |
| bra.w LOOP |
| |
| RESTORE: |
| fmov.l %fp2,INT(%a6) |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} |
| |
| mov.l INT(%a6),%d1 |
| ror.l &1,%d1 |
| |
| bra.w TANCONT |
| |
| ######################################################################### |
| # satan(): computes the arctangent of a normalized number # |
| # satand(): computes the arctangent of a denormalized number # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arctan(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 2 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # |
| # # |
| # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # |
| # Note that k = -4, -3,..., or 3. # |
| # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # |
| # significant bits of X with a bit-1 attached at the 6-th # |
| # bit position. Define u to be u = (X-F) / (1 + X*F). # |
| # # |
| # Step 3. Approximate arctan(u) by a polynomial poly. # |
| # # |
| # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # |
| # table of values calculated beforehand. Exit. # |
| # # |
| # Step 5. If |X| >= 16, go to Step 7. # |
| # # |
| # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # |
| # # |
| # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # |
| # polynomial in X'. # |
| # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # |
| # # |
| ######################################################################### |
| |
| ATANA3: long 0xBFF6687E,0x314987D8 |
| ATANA2: long 0x4002AC69,0x34A26DB3 |
| ATANA1: long 0xBFC2476F,0x4E1DA28E |
| |
| ATANB6: long 0x3FB34444,0x7F876989 |
| ATANB5: long 0xBFB744EE,0x7FAF45DB |
| ATANB4: long 0x3FBC71C6,0x46940220 |
| ATANB3: long 0xBFC24924,0x921872F9 |
| ATANB2: long 0x3FC99999,0x99998FA9 |
| ATANB1: long 0xBFD55555,0x55555555 |
| |
| ATANC5: long 0xBFB70BF3,0x98539E6A |
| ATANC4: long 0x3FBC7187,0x962D1D7D |
| ATANC3: long 0xBFC24924,0x827107B8 |
| ATANC2: long 0x3FC99999,0x9996263E |
| ATANC1: long 0xBFD55555,0x55555536 |
| |
| PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| |
| PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 |
| NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 |
| |
| ATANTBL: |
| long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 |
| long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 |
| long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 |
| long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 |
| long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 |
| long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 |
| long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 |
| long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 |
| long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 |
| long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 |
| long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 |
| long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 |
| long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 |
| long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 |
| long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 |
| long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 |
| long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 |
| long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 |
| long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 |
| long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 |
| long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 |
| long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 |
| long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 |
| long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 |
| long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 |
| long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 |
| long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 |
| long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 |
| long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 |
| long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 |
| long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 |
| long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 |
| long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 |
| long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 |
| long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 |
| long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 |
| long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 |
| long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 |
| long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 |
| long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 |
| long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 |
| long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 |
| long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 |
| long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 |
| long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 |
| long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 |
| long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 |
| long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 |
| long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 |
| long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 |
| long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 |
| long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 |
| long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 |
| long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 |
| long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 |
| long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 |
| long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 |
| long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 |
| long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 |
| long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 |
| long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 |
| long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 |
| long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 |
| long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 |
| long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 |
| long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 |
| long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 |
| long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 |
| long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 |
| long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 |
| long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 |
| long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 |
| long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 |
| long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 |
| long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 |
| long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 |
| long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 |
| long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 |
| long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 |
| long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 |
| long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 |
| long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 |
| long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 |
| long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 |
| long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 |
| long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 |
| long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 |
| long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 |
| long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 |
| long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 |
| long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 |
| long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 |
| long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 |
| long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 |
| long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 |
| long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 |
| long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 |
| long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 |
| long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 |
| long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 |
| long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 |
| long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 |
| long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 |
| long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 |
| long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 |
| long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 |
| long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 |
| long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 |
| long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 |
| long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 |
| long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 |
| long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 |
| long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 |
| long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 |
| long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 |
| long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 |
| long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 |
| long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 |
| long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 |
| long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 |
| long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 |
| long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 |
| long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 |
| long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 |
| long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 |
| long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 |
| long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 |
| long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 |
| |
| set X,FP_SCR0 |
| set XDCARE,X+2 |
| set XFRAC,X+4 |
| set XFRACLO,X+8 |
| |
| set ATANF,FP_SCR1 |
| set ATANFHI,ATANF+4 |
| set ATANFLO,ATANF+8 |
| |
| global satan |
| #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| satan: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| fmov.x %fp0,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? |
| bge.b ATANOK1 |
| bra.w ATANSM |
| |
| ATANOK1: |
| cmp.l %d1,&0x4002FFFF # |X| < 16 ? |
| ble.b ATANMAIN |
| bra.w ATANBIG |
| |
| #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE |
| #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). |
| #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN |
| #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE |
| #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS |
| #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR |
| #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO |
| #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE |
| #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL |
| #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE |
| #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION |
| #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION |
| #--WILL INVOLVE A VERY LONG POLYNOMIAL. |
| |
| #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS |
| #--WE CHOSE F TO BE +-2^K * 1.BBBB1 |
| #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE |
| #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE |
| #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS |
| #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). |
| |
| ATANMAIN: |
| |
| and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS |
| or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 |
| mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F |
| |
| fmov.x %fp0,%fp1 # FP1 IS X |
| fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 |
| fsub.x X(%a6),%fp0 # FP0 IS X-F |
| fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F |
| fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) |
| |
| #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) |
| #--CREATE ATAN(F) AND STORE IT IN ATANF, AND |
| #--SAVE REGISTERS FP2. |
| |
| mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY |
| mov.l %d1,%d2 # THE EXP AND 16 BITS OF X |
| and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION |
| and.l &0x7FFF0000,%d2 # EXPONENT OF F |
| sub.l &0x3FFB0000,%d2 # K+4 |
| asr.l &1,%d2 |
| add.l %d2,%d1 # THE 7 BITS IDENTIFYING F |
| asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) |
| lea ATANTBL(%pc),%a1 |
| add.l %d1,%a1 # ADDRESS OF ATAN(|F|) |
| mov.l (%a1)+,ATANF(%a6) |
| mov.l (%a1)+,ATANFHI(%a6) |
| mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) |
| mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN |
| and.l &0x80000000,%d1 # SIGN(F) |
| or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) |
| mov.l (%sp)+,%d2 # RESTORE d2 |
| |
| #--THAT'S ALL I HAVE TO DO FOR NOW, |
| #--BUT ALAS, THE DIVIDE IS STILL CRANKING! |
| |
| #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS |
| #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U |
| #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. |
| #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) |
| #--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. |
| #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT |
| #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED |
| |
| fmovm.x &0x04,-(%sp) # save fp2 |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 |
| fmov.d ATANA3(%pc),%fp2 |
| fadd.x %fp1,%fp2 # A3+V |
| fmul.x %fp1,%fp2 # V*(A3+V) |
| fmul.x %fp0,%fp1 # U*V |
| fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) |
| fmul.d ATANA1(%pc),%fp1 # A1*U*V |
| fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) |
| fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED |
| |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| fadd.x ATANF(%a6),%fp0 # ATAN(X) |
| bra t_inx2 |
| |
| ATANBORS: |
| #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. |
| #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. |
| cmp.l %d1,&0x3FFF8000 |
| bgt.w ATANBIG # I.E. |X| >= 16 |
| |
| ATANSM: |
| #--|X| <= 1/16 |
| #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE |
| #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) |
| #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) |
| #--WHERE Y = X*X, AND Z = Y*Y. |
| |
| cmp.l %d1,&0x3FD78000 |
| blt.w ATANTINY |
| |
| #--COMPUTE POLYNOMIAL |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmul.x %fp0,%fp0 # FPO IS Y = X*X |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y |
| |
| fmov.d ATANB6(%pc),%fp2 |
| fmov.d ATANB5(%pc),%fp3 |
| |
| fmul.x %fp1,%fp2 # Z*B6 |
| fmul.x %fp1,%fp3 # Z*B5 |
| |
| fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 |
| fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 |
| |
| fmul.x %fp1,%fp2 # Z*(B4+Z*B6) |
| fmul.x %fp3,%fp1 # Z*(B3+Z*B5) |
| |
| fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) |
| fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) |
| |
| fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) |
| fmul.x X(%a6),%fp0 # X*Y |
| |
| fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] |
| |
| fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| fadd.x X(%a6),%fp0 |
| bra t_inx2 |
| |
| ATANTINY: |
| #--|X| < 2^(-40), ATAN(X) = X |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 # last inst - possible exception set |
| |
| bra t_catch |
| |
| ATANBIG: |
| #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, |
| #--RETURN SIGN(X)*PI/2 + ATAN(-1/X). |
| cmp.l %d1,&0x40638000 |
| bgt.w ATANHUGE |
| |
| #--APPROXIMATE ATAN(-1/X) BY |
| #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' |
| #--THIS CAN BE RE-WRITTEN AS |
| #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. |
| |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmov.s &0xBF800000,%fp1 # LOAD -1 |
| fdiv.x %fp0,%fp1 # FP1 IS -1/X |
| |
| #--DIVIDE IS STILL CRANKING |
| |
| fmov.x %fp1,%fp0 # FP0 IS X' |
| fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' |
| fmov.x %fp1,X(%a6) # X IS REALLY X' |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y |
| |
| fmov.d ATANC5(%pc),%fp3 |
| fmov.d ATANC4(%pc),%fp2 |
| |
| fmul.x %fp1,%fp3 # Z*C5 |
| fmul.x %fp1,%fp2 # Z*B4 |
| |
| fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 |
| fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 |
| |
| fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED |
| fmul.x %fp0,%fp2 # Y*(C2+Z*C4) |
| |
| fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) |
| fmul.x X(%a6),%fp0 # X'*Y |
| |
| fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] |
| |
| fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] |
| # ... +[Y*(B2+Z*(B4+Z*B6))]) |
| fadd.x X(%a6),%fp0 |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| tst.b (%a0) |
| bpl.b pos_big |
| |
| neg_big: |
| fadd.x NPIBY2(%pc),%fp0 |
| bra t_minx2 |
| |
| pos_big: |
| fadd.x PPIBY2(%pc),%fp0 |
| bra t_pinx2 |
| |
| ATANHUGE: |
| #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY |
| tst.b (%a0) |
| bpl.b pos_huge |
| |
| neg_huge: |
| fmov.x NPIBY2(%pc),%fp0 |
| fmov.l %d0,%fpcr |
| fadd.x PTINY(%pc),%fp0 |
| bra t_minx2 |
| |
| pos_huge: |
| fmov.x PPIBY2(%pc),%fp0 |
| fmov.l %d0,%fpcr |
| fadd.x NTINY(%pc),%fp0 |
| bra t_pinx2 |
| |
| global satand |
| #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT |
| satand: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # sasin(): computes the inverse sine of a normalized input # |
| # sasind(): computes the inverse sine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arcsin(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # ASIN # |
| # 1. If |X| >= 1, go to 3. # |
| # # |
| # 2. (|X| < 1) Calculate asin(X) by # |
| # z := sqrt( [1-X][1+X] ) # |
| # asin(X) = atan( x / z ). # |
| # Exit. # |
| # # |
| # 3. If |X| > 1, go to 5. # |
| # # |
| # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# |
| # # |
| # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| # Exit. # |
| # # |
| ######################################################################### |
| |
| global sasin |
| sasin: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x3FFF8000 |
| bge.b ASINBIG |
| |
| # This catch is added here for the '060 QSP. Originally, the call to |
| # satan() would handle this case by causing the exception which would |
| # not be caught until gen_except(). Now, with the exceptions being |
| # detected inside of satan(), the exception would have been handled there |
| # instead of inside sasin() as expected. |
| cmp.l %d1,&0x3FD78000 |
| blt.w ASINTINY |
| |
| #--THIS IS THE USUAL CASE, |X| < 1 |
| #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) |
| |
| ASINMAIN: |
| fmov.s &0x3F800000,%fp1 |
| fsub.x %fp0,%fp1 # 1-X |
| fmovm.x &0x4,-(%sp) # {fp2} |
| fmov.s &0x3F800000,%fp2 |
| fadd.x %fp0,%fp2 # 1+X |
| fmul.x %fp2,%fp1 # (1+X)(1-X) |
| fmovm.x (%sp)+,&0x20 # {fp2} |
| fsqrt.x %fp1 # SQRT([1-X][1+X]) |
| fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) |
| fmovm.x &0x01,-(%sp) # save X/SQRT(...) |
| lea (%sp),%a0 # pass ptr to X/SQRT(...) |
| bsr satan |
| add.l &0xc,%sp # clear X/SQRT(...) from stack |
| bra t_inx2 |
| |
| ASINBIG: |
| fabs.x %fp0 # |X| |
| fcmp.s %fp0,&0x3F800000 |
| fbgt t_operr # cause an operr exception |
| |
| #--|X| = 1, ASIN(X) = +- PI/2. |
| ASINONE: |
| fmov.x PIBY2(%pc),%fp0 |
| mov.l (%a0),%d1 |
| and.l &0x80000000,%d1 # SIGN BIT OF X |
| or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT |
| mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT |
| fmov.l %d0,%fpcr |
| fmul.s (%sp)+,%fp0 |
| bra t_inx2 |
| |
| #--|X| < 2^(-40), ATAN(X) = X |
| ASINTINY: |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x (%a0),%fp0 # last inst - possible exception |
| bra t_catch |
| |
| global sasind |
| #--ASIN(X) = X FOR DENORMALIZED X |
| sasind: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # sacos(): computes the inverse cosine of a normalized input # |
| # sacosd(): computes the inverse cosine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arccos(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # ACOS # |
| # 1. If |X| >= 1, go to 3. # |
| # # |
| # 2. (|X| < 1) Calculate acos(X) by # |
| # z := (1-X) / (1+X) # |
| # acos(X) = 2 * atan( sqrt(z) ). # |
| # Exit. # |
| # # |
| # 3. If |X| > 1, go to 5. # |
| # # |
| # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # |
| # # |
| # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| # Exit. # |
| # # |
| ######################################################################### |
| |
| global sacos |
| sacos: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 # pack exp w/ upper 16 fraction |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x3FFF8000 |
| bge.b ACOSBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 1 |
| #--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) |
| |
| ACOSMAIN: |
| fmov.s &0x3F800000,%fp1 |
| fadd.x %fp0,%fp1 # 1+X |
| fneg.x %fp0 # -X |
| fadd.s &0x3F800000,%fp0 # 1-X |
| fdiv.x %fp1,%fp0 # (1-X)/(1+X) |
| fsqrt.x %fp0 # SQRT((1-X)/(1+X)) |
| mov.l %d0,-(%sp) # save original users fpcr |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save SQRT(...) to stack |
| lea (%sp),%a0 # pass ptr to sqrt |
| bsr satan # ATAN(SQRT([1-X]/[1+X])) |
| add.l &0xc,%sp # clear SQRT(...) from stack |
| |
| fmov.l (%sp)+,%fpcr # restore users round prec,mode |
| fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) |
| bra t_pinx2 |
| |
| ACOSBIG: |
| fabs.x %fp0 |
| fcmp.s %fp0,&0x3F800000 |
| fbgt t_operr # cause an operr exception |
| |
| #--|X| = 1, ACOS(X) = 0 OR PI |
| tst.b (%a0) # is X positive or negative? |
| bpl.b ACOSP1 |
| |
| #--X = -1 |
| #Returns PI and inexact exception |
| ACOSM1: |
| fmov.x PI(%pc),%fp0 # load PI |
| fmov.l %d0,%fpcr # load round mode,prec |
| fadd.s &0x00800000,%fp0 # add a small value |
| bra t_pinx2 |
| |
| ACOSP1: |
| bra ld_pzero # answer is positive zero |
| |
| global sacosd |
| #--ACOS(X) = PI/2 FOR DENORMALIZED X |
| sacosd: |
| fmov.l %d0,%fpcr # load user's rnd mode/prec |
| fmov.x PIBY2(%pc),%fp0 |
| bra t_pinx2 |
| |
| ######################################################################### |
| # setox(): computes the exponential for a normalized input # |
| # setoxd(): computes the exponential for a denormalized input # |
| # setoxm1(): computes the exponential minus 1 for a normalized input # |
| # setoxm1d(): computes the exponential minus 1 for a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = exp(X) or exp(X)-1 # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 0.85 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM and IMPLEMENTATION **************************************** # |
| # # |
| # setoxd # |
| # ------ # |
| # Step 1. Set ans := 1.0 # |
| # # |
| # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # |
| # Notes: This will always generate one exception -- inexact. # |
| # # |
| # # |
| # setox # |
| # ----- # |
| # # |
| # Step 1. Filter out extreme cases of input argument. # |
| # 1.1 If |X| >= 2^(-65), go to Step 1.3. # |
| # 1.2 Go to Step 7. # |
| # 1.3 If |X| < 16380 log(2), go to Step 2. # |
| # 1.4 Go to Step 8. # |
| # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# |
| # To avoid the use of floating-point comparisons, a # |
| # compact representation of |X| is used. This format is a # |
| # 32-bit integer, the upper (more significant) 16 bits # |
| # are the sign and biased exponent field of |X|; the # |
| # lower 16 bits are the 16 most significant fraction # |
| # (including the explicit bit) bits of |X|. Consequently, # |
| # the comparisons in Steps 1.1 and 1.3 can be performed # |
| # by integer comparison. Note also that the constant # |
| # 16380 log(2) used in Step 1.3 is also in the compact # |
| # form. Thus taking the branch to Step 2 guarantees # |
| # |X| < 16380 log(2). There is no harm to have a small # |
| # number of cases where |X| is less than, but close to, # |
| # 16380 log(2) and the branch to Step 9 is taken. # |
| # # |
| # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # |
| # 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # |
| # was taken) # |
| # 2.2 N := round-to-nearest-integer( X * 64/log2 ). # |
| # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # |
| # or 63. # |
| # 2.4 Calculate M = (N - J)/64; so N = 64M + J. # |
| # 2.5 Calculate the address of the stored value of # |
| # 2^(J/64). # |
| # 2.6 Create the value Scale = 2^M. # |
| # Notes: The calculation in 2.2 is really performed by # |
| # Z := X * constant # |
| # N := round-to-nearest-integer(Z) # |
| # where # |
| # constant := single-precision( 64/log 2 ). # |
| # # |
| # Using a single-precision constant avoids memory # |
| # access. Another effect of using a single-precision # |
| # "constant" is that the calculated value Z is # |
| # # |
| # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # |
| # # |
| # This error has to be considered later in Steps 3 and 4. # |
| # # |
| # Step 3. Calculate X - N*log2/64. # |
| # 3.1 R := X + N*L1, # |
| # where L1 := single-precision(-log2/64). # |
| # 3.2 R := R + N*L2, # |
| # L2 := extended-precision(-log2/64 - L1).# |
| # Notes: a) The way L1 and L2 are chosen ensures L1+L2 # |
| # approximate the value -log2/64 to 88 bits of accuracy. # |
| # b) N*L1 is exact because N is no longer than 22 bits # |
| # and L1 is no longer than 24 bits. # |
| # c) The calculation X+N*L1 is also exact due to # |
| # cancellation. Thus, R is practically X+N(L1+L2) to full # |
| # 64 bits. # |
| # d) It is important to estimate how large can |R| be # |
| # after Step 3.2. # |
| # # |
| # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # |
| # X*64/log2 (1+eps) = N + f, |f| <= 0.5 # |
| # X*64/log2 - N = f - eps*X 64/log2 # |
| # X - N*log2/64 = f*log2/64 - eps*X # |
| # # |
| # # |
| # Now |X| <= 16446 log2, thus # |
| # # |
| # |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # |
| # <= 0.57 log2/64. # |
| # This bound will be used in Step 4. # |
| # # |
| # Step 4. Approximate exp(R)-1 by a polynomial # |
| # p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # |
| # Notes: a) In order to reduce memory access, the coefficients # |
| # are made as "short" as possible: A1 (which is 1/2), A4 # |
| # and A5 are single precision; A2 and A3 are double # |
| # precision. # |
| # b) Even with the restrictions above, # |
| # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # |
| # Note that 0.0062 is slightly bigger than 0.57 log2/64. # |
| # c) To fully utilize the pipeline, p is separated into # |
| # two independent pieces of roughly equal complexities # |
| # p = [ R + R*S*(A2 + S*A4) ] + # |
| # [ S*(A1 + S*(A3 + S*A5)) ] # |
| # where S = R*R. # |
| # # |
| # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # |
| # ans := T + ( T*p + t) # |
| # where T and t are the stored values for 2^(J/64). # |
| # Notes: 2^(J/64) is stored as T and t where T+t approximates # |
| # 2^(J/64) to roughly 85 bits; T is in extended precision # |
| # and t is in single precision. Note also that T is # |
| # rounded to 62 bits so that the last two bits of T are # |
| # zero. The reason for such a special form is that T-1, # |
| # T-2, and T-8 will all be exact --- a property that will # |
| # give much more accurate computation of the function # |
| # EXPM1. # |
| # # |
| # Step 6. Reconstruction of exp(X) # |
| # exp(X) = 2^M * 2^(J/64) * exp(R). # |
| # 6.1 If AdjFlag = 0, go to 6.3 # |
| # 6.2 ans := ans * AdjScale # |
| # 6.3 Restore the user FPCR # |
| # 6.4 Return ans := ans * Scale. Exit. # |
| # Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # |
| # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # |
| # neither overflow nor underflow. If AdjFlag = 1, that # |
| # means that # |
| # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # |
| # Hence, exp(X) may overflow or underflow or neither. # |
| # When that is the case, AdjScale = 2^(M1) where M1 is # |
| # approximately M. Thus 6.2 will never cause # |
| # over/underflow. Possible exception in 6.4 is overflow # |
| # or underflow. The inexact exception is not generated in # |
| # 6.4. Although one can argue that the inexact flag # |
| # should always be raised, to simulate that exception # |
| # cost to much than the flag is worth in practical uses. # |
| # # |
| # Step 7. Return 1 + X. # |
| # 7.1 ans := X # |
| # 7.2 Restore user FPCR. # |
| # 7.3 Return ans := 1 + ans. Exit # |
| # Notes: For non-zero X, the inexact exception will always be # |
| # raised by 7.3. That is the only exception raised by 7.3.# |
| # Note also that we use the FMOVEM instruction to move X # |
| # in Step 7.1 to avoid unnecessary trapping. (Although # |
| # the FMOVEM may not seem relevant since X is normalized, # |
| # the precaution will be useful in the library version of # |
| # this code where the separate entry for denormalized # |
| # inputs will be done away with.) # |
| # # |
| # Step 8. Handle exp(X) where |X| >= 16380log2. # |
| # 8.1 If |X| > 16480 log2, go to Step 9. # |
| # (mimic 2.2 - 2.6) # |
| # 8.2 N := round-to-integer( X * 64/log2 ) # |
| # 8.3 Calculate J = N mod 64, J = 0,1,...,63 # |
| # 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # |
| # AdjFlag := 1. # |
| # 8.5 Calculate the address of the stored value # |
| # 2^(J/64). # |
| # 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # |
| # 8.7 Go to Step 3. # |
| # Notes: Refer to notes for 2.2 - 2.6. # |
| # # |
| # Step 9. Handle exp(X), |X| > 16480 log2. # |
| # 9.1 If X < 0, go to 9.3 # |
| # 9.2 ans := Huge, go to 9.4 # |
| # 9.3 ans := Tiny. # |
| # 9.4 Restore user FPCR. # |
| # 9.5 Return ans := ans * ans. Exit. # |
| # Notes: Exp(X) will surely overflow or underflow, depending on # |
| # X's sign. "Huge" and "Tiny" are respectively large/tiny # |
| # extended-precision numbers whose square over/underflow # |
| # with an inexact result. Thus, 9.5 always raises the # |
| # inexact together with either overflow or underflow. # |
| # # |
| # setoxm1d # |
| # -------- # |
| # # |
| # Step 1. Set ans := 0 # |
| # # |
| # Step 2. Return ans := X + ans. Exit. # |
| # Notes: This will return X with the appropriate rounding # |
| # precision prescribed by the user FPCR. # |
| # # |
| # setoxm1 # |
| # ------- # |
| # # |
| # Step 1. Check |X| # |
| # 1.1 If |X| >= 1/4, go to Step 1.3. # |
| # 1.2 Go to Step 7. # |
| # 1.3 If |X| < 70 log(2), go to Step 2. # |
| # 1.4 Go to Step 10. # |
| # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# |
| # However, it is conceivable |X| can be small very often # |
| # because EXPM1 is intended to evaluate exp(X)-1 # |
| # accurately when |X| is small. For further details on # |
| # the comparisons, see the notes on Step 1 of setox. # |
| # # |
| # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # |
| # 2.1 N := round-to-nearest-integer( X * 64/log2 ). # |
| # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # |
| # or 63. # |
| # 2.3 Calculate M = (N - J)/64; so N = 64M + J. # |
| # 2.4 Calculate the address of the stored value of # |
| # 2^(J/64). # |
| # 2.5 Create the values Sc = 2^M and # |
| # OnebySc := -2^(-M). # |
| # Notes: See the notes on Step 2 of setox. # |
| # # |
| # Step 3. Calculate X - N*log2/64. # |
| # 3.1 R := X + N*L1, # |
| # where L1 := single-precision(-log2/64). # |
| # 3.2 R := R + N*L2, # |
| # L2 := extended-precision(-log2/64 - L1).# |
| # Notes: Applying the analysis of Step 3 of setox in this case # |
| # shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # |
| # this case). # |
| # # |
| # Step 4. Approximate exp(R)-1 by a polynomial # |
| # p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # |
| # Notes: a) In order to reduce memory access, the coefficients # |
| # are made as "short" as possible: A1 (which is 1/2), A5 # |
| # and A6 are single precision; A2, A3 and A4 are double # |
| # precision. # |
| # b) Even with the restriction above, # |
| # |p - (exp(R)-1)| < |R| * 2^(-72.7) # |
| # for all |R| <= 0.0055. # |
| # c) To fully utilize the pipeline, p is separated into # |
| # two independent pieces of roughly equal complexity # |
| # p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # |
| # [ R + S*(A1 + S*(A3 + S*A5)) ] # |
| # where S = R*R. # |
| # # |
| # Step 5. Compute 2^(J/64)*p by # |
| # p := T*p # |
| # where T and t are the stored values for 2^(J/64). # |
| # Notes: 2^(J/64) is stored as T and t where T+t approximates # |
| # 2^(J/64) to roughly 85 bits; T is in extended precision # |
| # and t is in single precision. Note also that T is # |
| # rounded to 62 bits so that the last two bits of T are # |
| # zero. The reason for such a special form is that T-1, # |
| # T-2, and T-8 will all be exact --- a property that will # |
| # be exploited in Step 6 below. The total relative error # |
| # in p is no bigger than 2^(-67.7) compared to the final # |
| # result. # |
| # # |
| # Step 6. Reconstruction of exp(X)-1 # |
| # exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # |
| # 6.1 If M <= 63, go to Step 6.3. # |
| # 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # |
| # 6.3 If M >= -3, go to 6.5. # |
| # 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # |
| # 6.5 ans := (T + OnebySc) + (p + t). # |
| # 6.6 Restore user FPCR. # |
| # 6.7 Return ans := Sc * ans. Exit. # |
| # Notes: The various arrangements of the expressions give # |
| # accurate evaluations. # |
| # # |
| # Step 7. exp(X)-1 for |X| < 1/4. # |
| # 7.1 If |X| >= 2^(-65), go to Step 9. # |
| # 7.2 Go to Step 8. # |
| # # |
| # Step 8. Calculate exp(X)-1, |X| < 2^(-65). # |
| # 8.1 If |X| < 2^(-16312), goto 8.3 # |
| # 8.2 Restore FPCR; return ans := X - 2^(-16382). # |
| # Exit. # |
| # 8.3 X := X * 2^(140). # |
| # 8.4 Restore FPCR; ans := ans - 2^(-16382). # |
| # Return ans := ans*2^(140). Exit # |
| # Notes: The idea is to return "X - tiny" under the user # |
| # precision and rounding modes. To avoid unnecessary # |
| # inefficiency, we stay away from denormalized numbers # |
| # the best we can. For |X| >= 2^(-16312), the # |
| # straightforward 8.2 generates the inexact exception as # |
| # the case warrants. # |
| # # |
| # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # |
| # p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # |
| # Notes: a) In order to reduce memory access, the coefficients # |
| # are made as "short" as possible: B1 (which is 1/2), B9 # |
| # to B12 are single precision; B3 to B8 are double # |
| # precision; and B2 is double extended. # |
| # b) Even with the restriction above, # |
| # |p - (exp(X)-1)| < |X| 2^(-70.6) # |
| # for all |X| <= 0.251. # |
| # Note that 0.251 is slightly bigger than 1/4. # |
| # c) To fully preserve accuracy, the polynomial is # |
| # computed as # |
| # X + ( S*B1 + Q ) where S = X*X and # |
| # Q = X*S*(B2 + X*(B3 + ... + X*B12)) # |
| # d) To fully utilize the pipeline, Q is separated into # |
| # two independent pieces of roughly equal complexity # |
| # Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # |
| # [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # |
| # # |
| # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # |
| # 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # |
| # practical purposes. Therefore, go to Step 1 of setox. # |
| # 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # |
| # purposes. # |
| # ans := -1 # |
| # Restore user FPCR # |
| # Return ans := ans + 2^(-126). Exit. # |
| # Notes: 10.2 will always create an inexact and return -1 + tiny # |
| # in the user rounding precision and mode. # |
| # # |
| ######################################################################### |
| |
| L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 |
| |
| EEXPA3: long 0x3FA55555,0x55554CC1 |
| EEXPA2: long 0x3FC55555,0x55554A54 |
| |
| EM1A4: long 0x3F811111,0x11174385 |
| EM1A3: long 0x3FA55555,0x55554F5A |
| |
| EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 |
| |
| EM1B8: long 0x3EC71DE3,0xA5774682 |
| EM1B7: long 0x3EFA01A0,0x19D7CB68 |
| |
| EM1B6: long 0x3F2A01A0,0x1A019DF3 |
| EM1B5: long 0x3F56C16C,0x16C170E2 |
| |
| EM1B4: long 0x3F811111,0x11111111 |
| EM1B3: long 0x3FA55555,0x55555555 |
| |
| EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB |
| long 0x00000000 |
| |
| TWO140: long 0x48B00000,0x00000000 |
| TWON140: |
| long 0x37300000,0x00000000 |
| |
| EEXPTBL: |
| long 0x3FFF0000,0x80000000,0x00000000,0x00000000 |
| long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B |
| long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 |
| long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 |
| long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C |
| long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F |
| long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 |
| long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF |
| long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF |
| long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA |
| long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 |
| long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 |
| long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 |
| long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 |
| long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D |
| long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 |
| long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD |
| long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 |
| long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 |
| long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D |
| long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 |
| long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C |
| long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 |
| long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 |
| long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 |
| long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA |
| long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A |
| long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC |
| long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC |
| long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 |
| long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 |
| long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A |
| long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 |
| long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 |
| long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC |
| long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 |
| long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 |
| long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 |
| long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 |
| long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B |
| long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 |
| long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E |
| long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 |
| long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D |
| long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 |
| long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C |
| long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 |
| long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 |
| long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F |
| long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F |
| long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 |
| long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 |
| long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B |
| long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 |
| long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A |
| long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 |
| long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 |
| long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B |
| long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 |
| long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 |
| long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 |
| long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 |
| long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 |
| long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A |
| |
| set ADJFLAG,L_SCR2 |
| set SCALE,FP_SCR0 |
| set ADJSCALE,FP_SCR1 |
| set SC,FP_SCR0 |
| set ONEBYSC,FP_SCR1 |
| |
| global setox |
| setox: |
| #--entry point for EXP(X), here X is finite, non-zero, and not NaN's |
| |
| #--Step 1. |
| mov.l (%a0),%d1 # load part of input X |
| and.l &0x7FFF0000,%d1 # biased expo. of X |
| cmp.l %d1,&0x3FBE0000 # 2^(-65) |
| bge.b EXPC1 # normal case |
| bra EXPSM |
| |
| EXPC1: |
| #--The case |X| >= 2^(-65) |
| mov.w 4(%a0),%d1 # expo. and partial sig. of |X| |
| cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits |
| blt.b EXPMAIN # normal case |
| bra EEXPBIG |
| |
| EXPMAIN: |
| #--Step 2. |
| #--This is the normal branch: 2^(-65) <= |X| < 16380 log2. |
| fmov.x (%a0),%fp0 # load input from (a0) |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| mov.l &0,ADJFLAG(%a6) |
| fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| lea EEXPTBL(%pc),%a1 |
| fmov.l %d1,%fp0 # convert to floating-format |
| |
| mov.l %d1,L_SCR1(%a6) # save N temporarily |
| and.l &0x3F,%d1 # D0 is J = N mod 64 |
| lsl.l &4,%d1 |
| add.l %d1,%a1 # address of 2^(J/64) |
| mov.l L_SCR1(%a6),%d1 |
| asr.l &6,%d1 # D0 is M |
| add.w &0x3FFF,%d1 # biased expo. of 2^(M) |
| mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB |
| |
| EXPCONT1: |
| #--Step 3. |
| #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, |
| #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) |
| fmov.x %fp0,%fp2 |
| fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) |
| fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 |
| fadd.x %fp1,%fp0 # X + N*L1 |
| fadd.x %fp2,%fp0 # fp0 is R, reduced arg. |
| |
| #--Step 4. |
| #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL |
| #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) |
| #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R |
| #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # fp1 IS S = R*R |
| |
| fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*A5 |
| fmov.x %fp1,%fp3 |
| fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 |
| |
| fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 |
| fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) |
| mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended |
| mov.l &0x80000000,SCALE+4(%a6) |
| clr.l SCALE+8(%a6) |
| |
| fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) |
| |
| fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) |
| fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) |
| fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), |
| |
| fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) |
| fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 |
| |
| #--Step 5 |
| #--final reconstruction process |
| #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) |
| |
| fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) |
| fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| fadd.s (%a1),%fp0 # accurate 2^(J/64) |
| |
| fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... |
| mov.l ADJFLAG(%a6),%d1 |
| |
| #--Step 6 |
| tst.l %d1 |
| beq.b NORMAL |
| ADJUST: |
| fmul.x ADJSCALE(%a6),%fp0 |
| NORMAL: |
| fmov.l %d0,%fpcr # restore user FPCR |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x SCALE(%a6),%fp0 # multiply 2^(M) |
| bra t_catch |
| |
| EXPSM: |
| #--Step 7 |
| fmovm.x (%a0),&0x80 # load X |
| fmov.l %d0,%fpcr |
| fadd.s &0x3F800000,%fp0 # 1+X in user mode |
| bra t_pinx2 |
| |
| EEXPBIG: |
| #--Step 8 |
| cmp.l %d1,&0x400CB27C # 16480 log2 |
| bgt.b EXP2BIG |
| #--Steps 8.2 -- 8.6 |
| fmov.x (%a0),%fp0 # load input from (a0) |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| mov.l &1,ADJFLAG(%a6) |
| fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| lea EEXPTBL(%pc),%a1 |
| fmov.l %d1,%fp0 # convert to floating-format |
| mov.l %d1,L_SCR1(%a6) # save N temporarily |
| and.l &0x3F,%d1 # D0 is J = N mod 64 |
| lsl.l &4,%d1 |
| add.l %d1,%a1 # address of 2^(J/64) |
| mov.l L_SCR1(%a6),%d1 |
| asr.l &6,%d1 # D0 is K |
| mov.l %d1,L_SCR1(%a6) # save K temporarily |
| asr.l &1,%d1 # D0 is M1 |
| sub.l %d1,L_SCR1(%a6) # a1 is M |
| add.w &0x3FFF,%d1 # biased expo. of 2^(M1) |
| mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) |
| mov.l &0x80000000,ADJSCALE+4(%a6) |
| clr.l ADJSCALE+8(%a6) |
| mov.l L_SCR1(%a6),%d1 # D0 is M |
| add.w &0x3FFF,%d1 # biased expo. of 2^(M) |
| bra.w EXPCONT1 # go back to Step 3 |
| |
| EXP2BIG: |
| #--Step 9 |
| tst.b (%a0) # is X positive or negative? |
| bmi t_unfl2 |
| bra t_ovfl2 |
| |
| global setoxd |
| setoxd: |
| #--entry point for EXP(X), X is denormalized |
| mov.l (%a0),-(%sp) |
| andi.l &0x80000000,(%sp) |
| ori.l &0x00800000,(%sp) # sign(X)*2^(-126) |
| |
| fmov.s &0x3F800000,%fp0 |
| |
| fmov.l %d0,%fpcr |
| fadd.s (%sp)+,%fp0 |
| bra t_pinx2 |
| |
| global setoxm1 |
| setoxm1: |
| #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN |
| |
| #--Step 1. |
| #--Step 1.1 |
| mov.l (%a0),%d1 # load part of input X |
| and.l &0x7FFF0000,%d1 # biased expo. of X |
| cmp.l %d1,&0x3FFD0000 # 1/4 |
| bge.b EM1CON1 # |X| >= 1/4 |
| bra EM1SM |
| |
| EM1CON1: |
| #--Step 1.3 |
| #--The case |X| >= 1/4 |
| mov.w 4(%a0),%d1 # expo. and partial sig. of |X| |
| cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits |
| ble.b EM1MAIN # 1/4 <= |X| <= 70log2 |
| bra EM1BIG |
| |
| EM1MAIN: |
| #--Step 2. |
| #--This is the case: 1/4 <= |X| <= 70 log2. |
| fmov.x (%a0),%fp0 # load input from (a0) |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| lea EEXPTBL(%pc),%a1 |
| fmov.l %d1,%fp0 # convert to floating-format |
| |
| mov.l %d1,L_SCR1(%a6) # save N temporarily |
| and.l &0x3F,%d1 # D0 is J = N mod 64 |
| lsl.l &4,%d1 |
| add.l %d1,%a1 # address of 2^(J/64) |
| mov.l L_SCR1(%a6),%d1 |
| asr.l &6,%d1 # D0 is M |
| mov.l %d1,L_SCR1(%a6) # save a copy of M |
| |
| #--Step 3. |
| #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, |
| #--a0 points to 2^(J/64), D0 and a1 both contain M |
| fmov.x %fp0,%fp2 |
| fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) |
| fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 |
| fadd.x %fp1,%fp0 # X + N*L1 |
| fadd.x %fp2,%fp0 # fp0 is R, reduced arg. |
| add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M |
| |
| #--Step 4. |
| #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL |
| #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) |
| #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R |
| #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # fp1 IS S = R*R |
| |
| fmov.s &0x3950097B,%fp2 # fp2 IS a6 |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*A6 |
| fmov.x %fp1,%fp3 |
| fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 |
| |
| fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 |
| fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 |
| mov.w %d1,SC(%a6) # SC is 2^(M) in extended |
| mov.l &0x80000000,SC+4(%a6) |
| clr.l SC+8(%a6) |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) |
| mov.l L_SCR1(%a6),%d1 # D0 is M |
| neg.w %d1 # D0 is -M |
| fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) |
| add.w &0x3FFF,%d1 # biased expo. of 2^(-M) |
| fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) |
| fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) |
| or.w &0x8000,%d1 # signed/expo. of -2^(-M) |
| mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) |
| mov.l &0x80000000,ONEBYSC+4(%a6) |
| clr.l ONEBYSC+8(%a6) |
| fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) |
| |
| fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) |
| fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) |
| |
| fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 |
| |
| fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| |
| #--Step 5 |
| #--Compute 2^(J/64)*p |
| |
| fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) |
| |
| #--Step 6 |
| #--Step 6.1 |
| mov.l L_SCR1(%a6),%d1 # retrieve M |
| cmp.l %d1,&63 |
| ble.b MLE63 |
| #--Step 6.2 M >= 64 |
| fmov.s 12(%a1),%fp1 # fp1 is t |
| fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc |
| fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released |
| fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) |
| bra EM1SCALE |
| MLE63: |
| #--Step 6.3 M <= 63 |
| cmp.l %d1,&-3 |
| bge.b MGEN3 |
| MLTN3: |
| #--Step 6.4 M <= -4 |
| fadd.s 12(%a1),%fp0 # p+t |
| fadd.x (%a1),%fp0 # T+(p+t) |
| fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) |
| bra EM1SCALE |
| MGEN3: |
| #--Step 6.5 -3 <= M <= 63 |
| fmov.x (%a1)+,%fp1 # fp1 is T |
| fadd.s (%a1),%fp0 # fp0 is p+t |
| fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc |
| fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) |
| |
| EM1SCALE: |
| #--Step 6.6 |
| fmov.l %d0,%fpcr |
| fmul.x SC(%a6),%fp0 |
| bra t_inx2 |
| |
| EM1SM: |
| #--Step 7 |X| < 1/4. |
| cmp.l %d1,&0x3FBE0000 # 2^(-65) |
| bge.b EM1POLY |
| |
| EM1TINY: |
| #--Step 8 |X| < 2^(-65) |
| cmp.l %d1,&0x00330000 # 2^(-16312) |
| blt.b EM12TINY |
| #--Step 8.2 |
| mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) |
| mov.l &0x80000000,SC+4(%a6) |
| clr.l SC+8(%a6) |
| fmov.x (%a0),%fp0 |
| fmov.l %d0,%fpcr |
| mov.b &FADD_OP,%d1 # last inst is ADD |
| fadd.x SC(%a6),%fp0 |
| bra t_catch |
| |
| EM12TINY: |
| #--Step 8.3 |
| fmov.x (%a0),%fp0 |
| fmul.d TWO140(%pc),%fp0 |
| mov.l &0x80010000,SC(%a6) |
| mov.l &0x80000000,SC+4(%a6) |
| clr.l SC+8(%a6) |
| fadd.x SC(%a6),%fp0 |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.d TWON140(%pc),%fp0 |
| bra t_catch |
| |
| EM1POLY: |
| #--Step 9 exp(X)-1 by a simple polynomial |
| fmov.x (%a0),%fp0 # fp0 is X |
| fmul.x %fp0,%fp0 # fp0 is S := X*X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 |
| fmul.x %fp0,%fp1 # fp1 is S*B12 |
| fmov.s &0x310F8290,%fp2 # fp2 is B11 |
| fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 |
| |
| fmul.x %fp0,%fp2 # fp2 is S*B11 |
| fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... |
| |
| fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... |
| fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B9+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B8+... |
| |
| fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... |
| fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B7+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B6+... |
| |
| fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... |
| fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B5+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B4+... |
| |
| fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... |
| fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B3+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B2+... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) |
| fmul.x (%a0),%fp1 # fp1 is X*S*(B2... |
| |
| fmul.s &0x3F000000,%fp0 # fp0 is S*B1 |
| fadd.x %fp2,%fp1 # fp1 is Q |
| |
| fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| |
| fadd.x %fp1,%fp0 # fp0 is S*B1+Q |
| |
| fmov.l %d0,%fpcr |
| fadd.x (%a0),%fp0 |
| bra t_inx2 |
| |
| EM1BIG: |
| #--Step 10 |X| > 70 log2 |
| mov.l (%a0),%d1 |
| cmp.l %d1,&0 |
| bgt.w EXPC1 |
| #--Step 10.2 |
| fmov.s &0xBF800000,%fp0 # fp0 is -1 |
| fmov.l %d0,%fpcr |
| fadd.s &0x00800000,%fp0 # -1 + 2^(-126) |
| bra t_minx2 |
| |
| global setoxm1d |
| setoxm1d: |
| #--entry point for EXPM1(X), here X is denormalized |
| #--Step 0. |
| bra t_extdnrm |
| |
| ######################################################################### |
| # sgetexp(): returns the exponent portion of the input argument. # |
| # The exponent bias is removed and the exponent value is # |
| # returned as an extended precision number in fp0. # |
| # sgetexpd(): handles denormalized numbers. # |
| # # |
| # sgetman(): extracts the mantissa of the input argument. The # |
| # mantissa is converted to an extended precision number w/ # |
| # an exponent of $3fff and is returned in fp0. The range of # |
| # the result is [1.0 - 2.0). # |
| # sgetmand(): handles denormalized numbers. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = exponent(X) or mantissa(X) # |
| # # |
| ######################################################################### |
| |
| global sgetexp |
| sgetexp: |
| mov.w SRC_EX(%a0),%d0 # get the exponent |
| bclr &0xf,%d0 # clear the sign bit |
| subi.w &0x3fff,%d0 # subtract off the bias |
| fmov.w %d0,%fp0 # return exp in fp0 |
| blt.b sgetexpn # it's negative |
| rts |
| |
| sgetexpn: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| global sgetexpd |
| sgetexpd: |
| bsr.l norm # normalize |
| neg.w %d0 # new exp = -(shft amt) |
| subi.w &0x3fff,%d0 # subtract off the bias |
| fmov.w %d0,%fp0 # return exp in fp0 |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| global sgetman |
| sgetman: |
| mov.w SRC_EX(%a0),%d0 # get the exp |
| ori.w &0x7fff,%d0 # clear old exp |
| bclr &0xe,%d0 # make it the new exp +-3fff |
| |
| # here, we build the result in a tmp location so as not to disturb the input |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc |
| mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 |
| bmi.b sgetmann # it's negative |
| rts |
| |
| sgetmann: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| # |
| # For denormalized numbers, shift the mantissa until the j-bit = 1, |
| # then load the exponent with +/1 $3fff. |
| # |
| global sgetmand |
| sgetmand: |
| bsr.l norm # normalize exponent |
| bra.b sgetman |
| |
| ######################################################################### |
| # scosh(): computes the hyperbolic cosine of a normalized input # |
| # scoshd(): computes the hyperbolic cosine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = cosh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # COSH # |
| # 1. If |X| > 16380 log2, go to 3. # |
| # # |
| # 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # |
| # y = |X|, z = exp(Y), and # |
| # cosh(X) = (1/2)*( z + 1/z ). # |
| # Exit. # |
| # # |
| # 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # |
| # # |
| # 4. (16380 log2 < |X| <= 16480 log2) # |
| # cosh(X) = sign(X) * exp(|X|)/2. # |
| # However, invoking exp(|X|) may cause premature # |
| # overflow. Thus, we calculate sinh(X) as follows: # |
| # Y := |X| # |
| # Fact := 2**(16380) # |
| # Y' := Y - 16381 log2 # |
| # cosh(X) := Fact * exp(Y'). # |
| # Exit. # |
| # # |
| # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # |
| # Huge*Huge to generate overflow and an infinity with # |
| # the appropriate sign. Huge is the largest finite number # |
| # in extended format. Exit. # |
| # # |
| ######################################################################### |
| |
| TWO16380: |
| long 0x7FFB0000,0x80000000,0x00000000,0x00000000 |
| |
| global scosh |
| scosh: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x400CB167 |
| bgt.b COSHBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 |
| #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) |
| |
| fabs.x %fp0 # |X| |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save |X| to stack |
| lea (%sp),%a0 # pass ptr to |X| |
| bsr setox # FP0 IS EXP(|X|) |
| add.l &0xc,%sp # erase |X| from stack |
| fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) |
| mov.l (%sp)+,%d0 |
| |
| fmov.s &0x3E800000,%fp1 # (1/4) |
| fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) |
| |
| fmov.l %d0,%fpcr |
| mov.b &FADD_OP,%d1 # last inst is ADD |
| fadd.x %fp1,%fp0 |
| bra t_catch |
| |
| COSHBIG: |
| cmp.l %d1,&0x400CB2B3 |
| bgt.b COSHHUGE |
| |
| fabs.x %fp0 |
| fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) |
| fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save fp0 to stack |
| lea (%sp),%a0 # pass ptr to fp0 |
| bsr setox |
| add.l &0xc,%sp # clear fp0 from stack |
| mov.l (%sp)+,%d0 |
| |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x TWO16380(%pc),%fp0 |
| bra t_catch |
| |
| COSHHUGE: |
| bra t_ovfl2 |
| |
| global scoshd |
| #--COSH(X) = 1 FOR DENORMALIZED X |
| scoshd: |
| fmov.s &0x3F800000,%fp0 |
| |
| fmov.l %d0,%fpcr |
| fadd.s &0x00800000,%fp0 |
| bra t_pinx2 |
| |
| ######################################################################### |
| # ssinh(): computes the hyperbolic sine of a normalized input # |
| # ssinhd(): computes the hyperbolic sine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = sinh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # SINH # |
| # 1. If |X| > 16380 log2, go to 3. # |
| # # |
| # 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # |
| # y = |X|, sgn = sign(X), and z = expm1(Y), # |
| # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # |
| # Exit. # |
| # # |
| # 3. If |X| > 16480 log2, go to 5. # |
| # # |
| # 4. (16380 log2 < |X| <= 16480 log2) # |
| # sinh(X) = sign(X) * exp(|X|)/2. # |
| # However, invoking exp(|X|) may cause premature overflow. # |
| # Thus, we calculate sinh(X) as follows: # |
| # Y := |X| # |
| # sgn := sign(X) # |
| # sgnFact := sgn * 2**(16380) # |
| # Y' := Y - 16381 log2 # |
| # sinh(X) := sgnFact * exp(Y'). # |
| # Exit. # |
| # # |
| # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # |
| # sign(X)*Huge*Huge to generate overflow and an infinity with # |
| # the appropriate sign. Huge is the largest finite number in # |
| # extended format. Exit. # |
| # # |
| ######################################################################### |
| |
| global ssinh |
| ssinh: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| mov.l %d1,%a1 # save (compacted) operand |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x400CB167 |
| bgt.b SINHBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 |
| #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) |
| |
| fabs.x %fp0 # Y = |X| |
| |
| movm.l &0x8040,-(%sp) # {a1/d0} |
| fmovm.x &0x01,-(%sp) # save Y on stack |
| lea (%sp),%a0 # pass ptr to Y |
| clr.l %d0 |
| bsr setoxm1 # FP0 IS Z = EXPM1(Y) |
| add.l &0xc,%sp # clear Y from stack |
| fmov.l &0,%fpcr |
| movm.l (%sp)+,&0x0201 # {a1/d0} |
| |
| fmov.x %fp0,%fp1 |
| fadd.s &0x3F800000,%fp1 # 1+Z |
| fmov.x %fp0,-(%sp) |
| fdiv.x %fp1,%fp0 # Z/(1+Z) |
| mov.l %a1,%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x3F000000,%d1 |
| fadd.x (%sp)+,%fp0 |
| mov.l %d1,-(%sp) |
| |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set |
| bra t_catch |
| |
| SINHBIG: |
| cmp.l %d1,&0x400CB2B3 |
| bgt t_ovfl |
| fabs.x %fp0 |
| fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) |
| mov.l &0,-(%sp) |
| mov.l &0x80000000,-(%sp) |
| mov.l %a1,%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x7FFB0000,%d1 |
| mov.l %d1,-(%sp) # EXTENDED FMT |
| fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save fp0 on stack |
| lea (%sp),%a0 # pass ptr to fp0 |
| bsr setox |
| add.l &0xc,%sp # clear fp0 from stack |
| |
| mov.l (%sp)+,%d0 |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x (%sp)+,%fp0 # possible exception |
| bra t_catch |
| |
| global ssinhd |
| #--SINH(X) = X FOR DENORMALIZED X |
| ssinhd: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # stanh(): computes the hyperbolic tangent of a normalized input # |
| # stanhd(): computes the hyperbolic tangent of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = tanh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # TANH # |
| # 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # |
| # # |
| # 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # |
| # sgn := sign(X), y := 2|X|, z := expm1(Y), and # |
| # tanh(X) = sgn*( z/(2+z) ). # |
| # Exit. # |
| # # |
| # 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # |
| # go to 7. # |
| # # |
| # 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # |
| # # |
| # 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # |
| # sgn := sign(X), y := 2|X|, z := exp(Y), # |
| # tanh(X) = sgn - [ sgn*2/(1+z) ]. # |
| # Exit. # |
| # # |
| # 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # |
| # calculate Tanh(X) by # |
| # sgn := sign(X), Tiny := 2**(-126), # |
| # tanh(X) := sgn - sgn*Tiny. # |
| # Exit. # |
| # # |
| # 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # |
| # # |
| ######################################################################### |
| |
| set X,FP_SCR0 |
| set XFRAC,X+4 |
| |
| set SGN,L_SCR3 |
| |
| set V,FP_SCR0 |
| |
| global stanh |
| stanh: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| fmov.x %fp0,X(%a6) |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| mov.l %d1,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? |
| blt.w TANHBORS # yes |
| cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? |
| bgt.w TANHBORS # yes |
| |
| #--THIS IS THE USUAL CASE |
| #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). |
| |
| mov.l X(%a6),%d1 |
| mov.l %d1,SGN(%a6) |
| and.l &0x7FFF0000,%d1 |
| add.l &0x00010000,%d1 # EXPONENT OF 2|X| |
| mov.l %d1,X(%a6) |
| and.l &0x80000000,SGN(%a6) |
| fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x1,-(%sp) # save Y on stack |
| lea (%sp),%a0 # pass ptr to Y |
| bsr setoxm1 # FP0 IS Z = EXPM1(Y) |
| add.l &0xc,%sp # clear Y from stack |
| mov.l (%sp)+,%d0 |
| |
| fmov.x %fp0,%fp1 |
| fadd.s &0x40000000,%fp1 # Z+2 |
| mov.l SGN(%a6),%d1 |
| fmov.x %fp1,V(%a6) |
| eor.l %d1,V(%a6) |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| fdiv.x V(%a6),%fp0 |
| bra t_inx2 |
| |
| TANHBORS: |
| cmp.l %d1,&0x3FFF8000 |
| blt.w TANHSM |
| |
| cmp.l %d1,&0x40048AA1 |
| bgt.w TANHHUGE |
| |
| #-- (5/2) LOG2 < |X| < 50 LOG2, |
| #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), |
| #--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. |
| |
| mov.l X(%a6),%d1 |
| mov.l %d1,SGN(%a6) |
| and.l &0x7FFF0000,%d1 |
| add.l &0x00010000,%d1 # EXPO OF 2|X| |
| mov.l %d1,X(%a6) # Y = 2|X| |
| and.l &0x80000000,SGN(%a6) |
| mov.l SGN(%a6),%d1 |
| fmov.x X(%a6),%fp0 # Y = 2|X| |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save Y on stack |
| lea (%sp),%a0 # pass ptr to Y |
| bsr setox # FP0 IS EXP(Y) |
| add.l &0xc,%sp # clear Y from stack |
| mov.l (%sp)+,%d0 |
| mov.l SGN(%a6),%d1 |
| fadd.s &0x3F800000,%fp0 # EXP(Y)+1 |
| |
| eor.l &0xC0000000,%d1 # -SIGN(X)*2 |
| fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT |
| fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] |
| |
| mov.l SGN(%a6),%d1 |
| or.l &0x3F800000,%d1 # SGN |
| fmov.s %d1,%fp0 # SGN IN SGL FMT |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| mov.b &FADD_OP,%d1 # last inst is ADD |
| fadd.x %fp1,%fp0 |
| bra t_inx2 |
| |
| TANHSM: |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 # last inst - possible exception set |
| bra t_catch |
| |
| #---RETURN SGN(X) - SGN(X)EPS |
| TANHHUGE: |
| mov.l X(%a6),%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x3F800000,%d1 |
| fmov.s %d1,%fp0 |
| and.l &0x80000000,%d1 |
| eor.l &0x80800000,%d1 # -SIGN(X)*EPS |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| fadd.s %d1,%fp0 |
| bra t_inx2 |
| |
| global stanhd |
| #--TANH(X) = X FOR DENORMALIZED X |
| stanhd: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # slogn(): computes the natural logarithm of a normalized input # |
| # slognd(): computes the natural logarithm of a denormalized input # |
| # slognp1(): computes the log(1+X) of a normalized input # |
| # slognp1d(): computes the log(1+X) of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = log(X) or log(1+X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 2 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # LOGN: # |
| # Step 1. If |X-1| < 1/16, approximate log(X) by an odd # |
| # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # |
| # move on to Step 2. # |
| # # |
| # Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # |
| # seven significant bits of Y plus 2**(-7), i.e. # |
| # F = 1.xxxxxx1 in base 2 where the six "x" match those # |
| # of Y. Note that |Y-F| <= 2**(-7). # |
| # # |
| # Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # |
| # polynomial in u, log(1+u) = poly. # |
| # # |
| # Step 4. Reconstruct # |
| # log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # |
| # by k*log(2) + (log(F) + poly). The values of log(F) are # |
| # calculated beforehand and stored in the program. # |
| # # |
| # lognp1: # |
| # Step 1: If |X| < 1/16, approximate log(1+X) by an odd # |
| # polynomial in u where u = 2X/(2+X). Otherwise, move on # |
| # to Step 2. # |
| # # |
| # Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # |
| # in Step 2 of the algorithm for LOGN and compute # |
| # log(1+X) as k*log(2) + log(F) + poly where poly # |
| # approximates log(1+u), u = (Y-F)/F. # |
| # # |
| # Implementation Notes: # |
| # Note 1. There are 64 different possible values for F, thus 64 # |
| # log(F)'s need to be tabulated. Moreover, the values of # |
| # 1/F are also tabulated so that the division in (Y-F)/F # |
| # can be performed by a multiplication. # |
| # # |
| # Note 2. In Step 2 of lognp1, in order to preserved accuracy, # |
| # the value Y-F has to be calculated carefully when # |
| # 1/2 <= X < 3/2. # |
| # # |
| # Note 3. To fully exploit the pipeline, polynomials are usually # |
| # separated into two parts evaluated independently before # |
| # being added up. # |
| # # |
| ######################################################################### |
| LOGOF2: |
| long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 |
| |
| one: |
| long 0x3F800000 |
| zero: |
| long 0x00000000 |
| infty: |
| long 0x7F800000 |
| negone: |
| long 0xBF800000 |
| |
| LOGA6: |
| long 0x3FC2499A,0xB5E4040B |
| LOGA5: |
| long 0xBFC555B5,0x848CB7DB |
| |
| LOGA4: |
| long 0x3FC99999,0x987D8730 |
| LOGA3: |
| long 0xBFCFFFFF,0xFF6F7E97 |
| |
| LOGA2: |
| long 0x3FD55555,0x555555A4 |
| LOGA1: |
| long 0xBFE00000,0x00000008 |
| |
| LOGB5: |
| long 0x3F175496,0xADD7DAD6 |
| LOGB4: |
| long 0x3F3C71C2,0xFE80C7E0 |
| |
| LOGB3: |
| long 0x3F624924,0x928BCCFF |
| LOGB2: |
| long 0x3F899999,0x999995EC |
| |
| LOGB1: |
| long 0x3FB55555,0x55555555 |
| TWO: |
| long 0x40000000,0x00000000 |
| |
| LTHOLD: |
| long 0x3f990000,0x80000000,0x00000000,0x00000000 |
| |
| LOGTBL: |
| long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 |
| long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 |
| long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 |
| long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 |
| long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 |
| long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 |
| long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 |
| long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 |
| long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 |
| long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 |
| long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 |
| long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 |
| long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 |
| long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 |
| long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 |
| long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 |
| long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 |
| long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 |
| long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 |
| long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 |
| long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 |
| long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 |
| long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 |
| long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 |
| long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 |
| long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 |
| long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 |
| long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 |
| long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 |
| long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 |
| long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 |
| long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 |
| long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 |
| long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 |
| long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 |
| long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 |
| long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 |
| long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 |
| long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 |
| long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 |
| long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 |
| long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 |
| long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 |
| long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 |
| long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 |
| long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 |
| long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 |
| long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 |
| long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 |
| long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 |
| long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 |
| long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 |
| long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 |
| long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 |
| long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 |
| long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 |
| long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 |
| long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 |
| long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 |
| long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 |
| long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 |
| long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 |
| long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 |
| long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 |
| long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 |
| long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 |
| long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 |
| long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 |
| long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 |
| long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 |
| long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 |
| long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 |
| long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 |
| long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 |
| long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 |
| long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 |
| long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 |
| long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 |
| long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 |
| long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 |
| long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 |
| long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 |
| long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 |
| long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 |
| long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 |
| long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 |
| long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 |
| long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 |
| long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 |
| long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 |
| long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 |
| long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 |
| long 0x3FFE0000,0x94458094,0x45809446,0x00000000 |
| long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 |
| long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 |
| long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 |
| long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 |
| long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 |
| long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 |
| long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 |
| long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 |
| long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 |
| long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 |
| long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 |
| long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 |
| long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 |
| long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 |
| long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 |
| long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 |
| long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 |
| long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 |
| long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 |
| long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 |
| long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 |
| long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 |
| long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 |
| long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 |
| long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 |
| long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 |
| long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 |
| long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 |
| long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 |
| long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 |
| long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 |
| long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 |
| long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 |
| long 0x3FFE0000,0x80808080,0x80808081,0x00000000 |
| long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 |
| |
| set ADJK,L_SCR1 |
| |
| set X,FP_SCR0 |
| set XDCARE,X+2 |
| set XFRAC,X+4 |
| |
| set F,FP_SCR1 |
| set FFRAC,F+4 |
| |
| set KLOG2,FP_SCR0 |
| |
| set SAVEU,FP_SCR0 |
| |
| global slogn |
| #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S |
| slogn: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| mov.l &0x00000000,ADJK(%a6) |
| |
| LOGBGN: |
| #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS |
| #--A FINITE, NON-ZERO, NORMALIZED NUMBER. |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| |
| mov.l (%a0),X(%a6) |
| mov.l 4(%a0),X+4(%a6) |
| mov.l 8(%a0),X+8(%a6) |
| |
| cmp.l %d1,&0 # CHECK IF X IS NEGATIVE |
| blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID |
| # X IS POSITIVE, CHECK IF X IS NEAR 1 |
| cmp.l %d1,&0x3ffef07d # IS X < 15/16? |
| blt.b LOGMAIN # YES |
| cmp.l %d1,&0x3fff8841 # IS X > 17/16? |
| ble.w LOGNEAR1 # NO |
| |
| LOGMAIN: |
| #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 |
| |
| #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. |
| #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. |
| #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) |
| #-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). |
| #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING |
| #--LOG(1+U) CAN BE VERY EFFICIENT. |
| #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO |
| #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. |
| |
| #--GET K, Y, F, AND ADDRESS OF 1/F. |
| asr.l &8,%d1 |
| asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X |
| sub.l &0x3FFF,%d1 # THIS IS K |
| add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. |
| lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) |
| fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT |
| |
| #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F |
| mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X |
| mov.l XFRAC(%a6),FFRAC(%a6) |
| and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y |
| or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT |
| mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F |
| and.l &0x7E000000,%d1 |
| asr.l &8,%d1 |
| asr.l &8,%d1 |
| asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT |
| add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F |
| |
| fmov.x X(%a6),%fp0 |
| mov.l &0x3fff0000,F(%a6) |
| clr.l F+8(%a6) |
| fsub.x F(%a6),%fp0 # Y-F |
| fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY |
| #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K |
| #--REGISTERS SAVED: FPCR, FP1, FP2 |
| |
| LP1CONT1: |
| #--AN RE-ENTRY POINT FOR LOGNP1 |
| fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F |
| fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY |
| fmov.x %fp0,%fp2 |
| fmul.x %fp2,%fp2 # FP2 IS V=U*U |
| fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 |
| |
| #--LOG(1+U) IS APPROXIMATED BY |
| #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS |
| #--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] |
| |
| fmov.x %fp2,%fp3 |
| fmov.x %fp2,%fp1 |
| |
| fmul.d LOGA6(%pc),%fp1 # V*A6 |
| fmul.d LOGA5(%pc),%fp2 # V*A5 |
| |
| fadd.d LOGA4(%pc),%fp1 # A4+V*A6 |
| fadd.d LOGA3(%pc),%fp2 # A3+V*A5 |
| |
| fmul.x %fp3,%fp1 # V*(A4+V*A6) |
| fmul.x %fp3,%fp2 # V*(A3+V*A5) |
| |
| fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) |
| fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) |
| |
| fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) |
| add.l &16,%a0 # ADDRESS OF LOG(F) |
| fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) |
| |
| fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) |
| fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) |
| |
| fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) |
| fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 |
| fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) |
| |
| fmov.l %d0,%fpcr |
| fadd.x KLOG2(%a6),%fp0 # FINAL ADD |
| bra t_inx2 |
| |
| |
| LOGNEAR1: |
| |
| # if the input is exactly equal to one, then exit through ld_pzero. |
| # if these 2 lines weren't here, the correct answer would be returned |
| # but the INEX2 bit would be set. |
| fcmp.b %fp0,&0x1 # is it equal to one? |
| fbeq.l ld_pzero # yes |
| |
| #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. |
| fmov.x %fp0,%fp1 |
| fsub.s one(%pc),%fp1 # FP1 IS X-1 |
| fadd.s one(%pc),%fp0 # FP0 IS X+1 |
| fadd.x %fp1,%fp1 # FP1 IS 2(X-1) |
| #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL |
| #--IN U, U = 2(X-1)/(X+1) = FP1/FP0 |
| |
| LP1CONT2: |
| #--THIS IS AN RE-ENTRY POINT FOR LOGNP1 |
| fdiv.x %fp0,%fp1 # FP1 IS U |
| fmovm.x &0xc,-(%sp) # SAVE FP2-3 |
| #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 |
| #--LET V=U*U, W=V*V, CALCULATE |
| #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY |
| #--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) |
| fmov.x %fp1,%fp0 |
| fmul.x %fp0,%fp0 # FP0 IS V |
| fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS W |
| |
| fmov.d LOGB5(%pc),%fp3 |
| fmov.d LOGB4(%pc),%fp2 |
| |
| fmul.x %fp1,%fp3 # W*B5 |
| fmul.x %fp1,%fp2 # W*B4 |
| |
| fadd.d LOGB3(%pc),%fp3 # B3+W*B5 |
| fadd.d LOGB2(%pc),%fp2 # B2+W*B4 |
| |
| fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED |
| |
| fmul.x %fp0,%fp2 # V*(B2+W*B4) |
| |
| fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) |
| fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V |
| |
| fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED |
| fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED |
| |
| fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) |
| |
| fmov.l %d0,%fpcr |
| fadd.x SAVEU(%a6),%fp0 |
| bra t_inx2 |
| |
| #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID |
| LOGNEG: |
| bra t_operr |
| |
| global slognd |
| slognd: |
| #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT |
| |
| mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 |
| |
| #----normalize the input value by left shifting k bits (k to be determined |
| #----below), adjusting exponent and storing -k to ADJK |
| #----the value TWOTO100 is no longer needed. |
| #----Note that this code assumes the denormalized input is NON-ZERO. |
| |
| movm.l &0x3f00,-(%sp) # save some registers {d2-d7} |
| mov.l (%a0),%d3 # D3 is exponent of smallest norm. # |
| mov.l 4(%a0),%d4 |
| mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) |
| clr.l %d2 # D2 used for holding K |
| |
| tst.l %d4 |
| bne.b Hi_not0 |
| |
| Hi_0: |
| mov.l %d5,%d4 |
| clr.l %d5 |
| mov.l &32,%d2 |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 |
| lsl.l %d6,%d4 |
| add.l %d6,%d2 # (D3,D4,D5) is normalized |
| |
| mov.l %d3,X(%a6) |
| mov.l %d4,XFRAC(%a6) |
| mov.l %d5,XFRAC+4(%a6) |
| neg.l %d2 |
| mov.l %d2,ADJK(%a6) |
| fmov.x X(%a6),%fp0 |
| movm.l (%sp)+,&0xfc # restore registers {d2-d7} |
| lea X(%a6),%a0 |
| bra.w LOGBGN # begin regular log(X) |
| |
| Hi_not0: |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 # find first 1 |
| mov.l %d6,%d2 # get k |
| lsl.l %d6,%d4 |
| mov.l %d5,%d7 # a copy of D5 |
| lsl.l %d6,%d5 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d4 # (D3,D4,D5) normalized |
| |
| mov.l %d3,X(%a6) |
| mov.l %d4,XFRAC(%a6) |
| mov.l %d5,XFRAC+4(%a6) |
| neg.l %d2 |
| mov.l %d2,ADJK(%a6) |
| fmov.x X(%a6),%fp0 |
| movm.l (%sp)+,&0xfc # restore registers {d2-d7} |
| lea X(%a6),%a0 |
| bra.w LOGBGN # begin regular log(X) |
| |
| global slognp1 |
| #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S |
| slognp1: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| fabs.x %fp0 # test magnitude |
| fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold |
| fbgt.w LP1REAL # if greater, continue |
| fmov.l %d0,%fpcr |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x (%a0),%fp0 # return signed argument |
| bra t_catch |
| |
| LP1REAL: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| mov.l &0x00000000,ADJK(%a6) |
| fmov.x %fp0,%fp1 # FP1 IS INPUT Z |
| fadd.s one(%pc),%fp0 # X := ROUND(1+Z) |
| fmov.x %fp0,X(%a6) |
| mov.w XFRAC(%a6),XDCARE(%a6) |
| mov.l X(%a6),%d1 |
| cmp.l %d1,&0 |
| ble.w LP1NEG0 # LOG OF ZERO OR -VE |
| cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? |
| blt.w LOGMAIN |
| cmp.l %d1,&0x3fffc000 |
| bgt.w LOGMAIN |
| #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, |
| #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, |
| #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). |
| |
| LP1NEAR1: |
| #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) |
| cmp.l %d1,&0x3ffef07d |
| blt.w LP1CARE |
| cmp.l %d1,&0x3fff8841 |
| bgt.w LP1CARE |
| |
| LP1ONE16: |
| #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) |
| #--WHERE U = 2Z/(2+Z) = 2Z/(1+X). |
| fadd.x %fp1,%fp1 # FP1 IS 2Z |
| fadd.s one(%pc),%fp0 # FP0 IS 1+X |
| #--U = FP1/FP0 |
| bra.w LP1CONT2 |
| |
| LP1CARE: |
| #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE |
| #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST |
| #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], |
| #--THERE ARE ONLY TWO CASES. |
| #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z |
| #--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z |
| #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF |
| #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. |
| |
| mov.l XFRAC(%a6),FFRAC(%a6) |
| and.l &0xFE000000,FFRAC(%a6) |
| or.l &0x01000000,FFRAC(%a6) # F OBTAINED |
| cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 |
| bge.b KISZERO |
| |
| KISNEG1: |
| fmov.s TWO(%pc),%fp0 |
| mov.l &0x3fff0000,F(%a6) |
| clr.l F+8(%a6) |
| fsub.x F(%a6),%fp0 # 2-F |
| mov.l FFRAC(%a6),%d1 |
| and.l &0x7E000000,%d1 |
| asr.l &8,%d1 |
| asr.l &8,%d1 |
| asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F |
| fadd.x %fp1,%fp1 # GET 2Z |
| fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} |
| fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z |
| lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F |
| add.l %d1,%a0 |
| fmov.s negone(%pc),%fp1 # FP1 IS K = -1 |
| bra.w LP1CONT1 |
| |
| KISZERO: |
| fmov.s one(%pc),%fp0 |
| mov.l &0x3fff0000,F(%a6) |
| clr.l F+8(%a6) |
| fsub.x F(%a6),%fp0 # 1-F |
| mov.l FFRAC(%a6),%d1 |
| and.l &0x7E000000,%d1 |
| asr.l &8,%d1 |
| asr.l &8,%d1 |
| asr.l &4,%d1 |
| fadd.x %fp1,%fp0 # FP0 IS Y-F |
| fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} |
| lea LOGTBL(%pc),%a0 |
| add.l %d1,%a0 # A0 IS ADDRESS OF 1/F |
| fmov.s zero(%pc),%fp1 # FP1 IS K = 0 |
| bra.w LP1CONT1 |
| |
| LP1NEG0: |
| #--FPCR SAVED. D0 IS X IN COMPACT FORM. |
| cmp.l %d1,&0 |
| blt.b LP1NEG |
| LP1ZERO: |
| fmov.s negone(%pc),%fp0 |
| |
| fmov.l %d0,%fpcr |
| bra t_dz |
| |
| LP1NEG: |
| fmov.s zero(%pc),%fp0 |
| |
| fmov.l %d0,%fpcr |
| bra t_operr |
| |
| global slognp1d |
| #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT |
| # Simply return the denorm |
| slognp1d: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # satanh(): computes the inverse hyperbolic tangent of a norm input # |
| # satanhd(): computes the inverse hyperbolic tangent of a denorm input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arctanh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # ATANH # |
| # 1. If |X| >= 1, go to 3. # |
| # # |
| # 2. (|X| < 1) Calculate atanh(X) by # |
| # sgn := sign(X) # |
| # y := |X| # |
| # z := 2y/(1-y) # |
| # atanh(X) := sgn * (1/2) * logp1(z) # |
| # Exit. # |
| # # |
| # 3. If |X| > 1, go to 5. # |
| # # |
| # 4. (|X| = 1) Generate infinity with an appropriate sign and # |
| # divide-by-zero by # |
| # sgn := sign(X) # |
| # atan(X) := sgn / (+0). # |
| # Exit. # |
| # # |
| # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| # Exit. # |
| # # |
| ######################################################################### |
| |
| global satanh |
| satanh: |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x3FFF8000 |
| bge.b ATANHBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 1 |
| #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). |
| |
| fabs.x (%a0),%fp0 # Y = |X| |
| fmov.x %fp0,%fp1 |
| fneg.x %fp1 # -Y |
| fadd.x %fp0,%fp0 # 2Y |
| fadd.s &0x3F800000,%fp1 # 1-Y |
| fdiv.x %fp1,%fp0 # 2Y/(1-Y) |
| mov.l (%a0),%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x3F000000,%d1 # SIGN(X)*HALF |
| mov.l %d1,-(%sp) |
| |
| mov.l %d0,-(%sp) # save rnd prec,mode |
| clr.l %d0 # pass ext prec,RN |
| fmovm.x &0x01,-(%sp) # save Z on stack |
| lea (%sp),%a0 # pass ptr to Z |
| bsr slognp1 # LOG1P(Z) |
| add.l &0xc,%sp # clear Z from stack |
| |
| mov.l (%sp)+,%d0 # fetch old prec,mode |
| fmov.l %d0,%fpcr # load it |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.s (%sp)+,%fp0 |
| bra t_catch |
| |
| ATANHBIG: |
| fabs.x (%a0),%fp0 # |X| |
| fcmp.s %fp0,&0x3F800000 |
| fbgt t_operr |
| bra t_dz |
| |
| global satanhd |
| #--ATANH(X) = X FOR DENORMALIZED X |
| satanhd: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # slog10(): computes the base-10 logarithm of a normalized input # |
| # slog10d(): computes the base-10 logarithm of a denormalized input # |
| # slog2(): computes the base-2 logarithm of a normalized input # |
| # slog2d(): computes the base-2 logarithm of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = log_10(X) or log_2(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 1.7 ulps in 64 significant bit, # |
| # i.e. within 0.5003 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # slog10d: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # |
| # Notes: Even if X is denormalized, log(X) is always normalized. # |
| # # |
| # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # |
| # 2.1 Restore the user FPCR # |
| # 2.2 Return ans := Y * INV_L10. # |
| # # |
| # slog10: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # |
| # # |
| # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # |
| # 2.1 Restore the user FPCR # |
| # 2.2 Return ans := Y * INV_L10. # |
| # # |
| # sLog2d: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # |
| # Notes: Even if X is denormalized, log(X) is always normalized. # |
| # # |
| # Step 2. Compute log_10(X) = log(X) * (1/log(2)). # |
| # 2.1 Restore the user FPCR # |
| # 2.2 Return ans := Y * INV_L2. # |
| # # |
| # sLog2: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. If X is not an integer power of two, i.e., X != 2^k, # |
| # go to Step 3. # |
| # # |
| # Step 2. Return k. # |
| # 2.1 Get integer k, X = 2^k. # |
| # 2.2 Restore the user FPCR. # |
| # 2.3 Return ans := convert-to-double-extended(k). # |
| # # |
| # Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # |
| # # |
| # Step 4. Compute log_2(X) = log(X) * (1/log(2)). # |
| # 4.1 Restore the user FPCR # |
| # 4.2 Return ans := Y * INV_L2. # |
| # # |
| ######################################################################### |
| |
| INV_L10: |
| long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 |
| |
| INV_L2: |
| long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 |
| |
| global slog10 |
| #--entry point for Log10(X), X is normalized |
| slog10: |
| fmov.b &0x1,%fp0 |
| fcmp.x %fp0,(%a0) # if operand == 1, |
| fbeq.l ld_pzero # return an EXACT zero |
| |
| mov.l (%a0),%d1 |
| blt.w invalid |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slogn # log(X), X normal. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L10(%pc),%fp0 |
| bra t_inx2 |
| |
| global slog10d |
| #--entry point for Log10(X), X is denormalized |
| slog10d: |
| mov.l (%a0),%d1 |
| blt.w invalid |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slognd # log(X), X denorm. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L10(%pc),%fp0 |
| bra t_minx2 |
| |
| global slog2 |
| #--entry point for Log2(X), X is normalized |
| slog2: |
| mov.l (%a0),%d1 |
| blt.w invalid |
| |
| mov.l 8(%a0),%d1 |
| bne.b continue # X is not 2^k |
| |
| mov.l 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| bne.b continue |
| |
| #--X = 2^k. |
| mov.w (%a0),%d1 |
| and.l &0x00007FFF,%d1 |
| sub.l &0x3FFF,%d1 |
| beq.l ld_pzero |
| fmov.l %d0,%fpcr |
| fmov.l %d1,%fp0 |
| bra t_inx2 |
| |
| continue: |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slogn # log(X), X normal. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L2(%pc),%fp0 |
| bra t_inx2 |
| |
| invalid: |
| bra t_operr |
| |
| global slog2d |
| #--entry point for Log2(X), X is denormalized |
| slog2d: |
| mov.l (%a0),%d1 |
| blt.w invalid |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slognd # log(X), X denorm. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L2(%pc),%fp0 |
| bra t_minx2 |
| |
| ######################################################################### |
| # stwotox(): computes 2**X for a normalized input # |
| # stwotoxd(): computes 2**X for a denormalized input # |
| # stentox(): computes 10**X for a normalized input # |
| # stentoxd(): computes 10**X for a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = 2**X or 10**X # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 2 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # twotox # |
| # 1. If |X| > 16480, go to ExpBig. # |
| # # |
| # 2. If |X| < 2**(-70), go to ExpSm. # |
| # # |
| # 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # |
| # decompose N as # |
| # N = 64(M + M') + j, j = 0,1,2,...,63. # |
| # # |
| # 4. Overwrite r := r * log2. Then # |
| # 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # |
| # Go to expr to compute that expression. # |
| # # |
| # tentox # |
| # 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # |
| # # |
| # 2. If |X| < 2**(-70), go to ExpSm. # |
| # # |
| # 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # |
| # N := round-to-int(y). Decompose N as # |
| # N = 64(M + M') + j, j = 0,1,2,...,63. # |
| # # |
| # 4. Define r as # |
| # r := ((X - N*L1)-N*L2) * L10 # |
| # where L1, L2 are the leading and trailing parts of # |
| # log_10(2)/64 and L10 is the natural log of 10. Then # |
| # 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # |
| # Go to expr to compute that expression. # |
| # # |
| # expr # |
| # 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # |
| # # |
| # 2. Overwrite Fact1 and Fact2 by # |
| # Fact1 := 2**(M) * Fact1 # |
| # Fact2 := 2**(M) * Fact2 # |
| # Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # |
| # # |
| # 3. Calculate P where 1 + P approximates exp(r): # |
| # P = r + r*r*(A1+r*(A2+...+r*A5)). # |
| # # |
| # 4. Let AdjFact := 2**(M'). Return # |
| # AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # |
| # Exit. # |
| # # |
| # ExpBig # |
| # 1. Generate overflow by Huge * Huge if X > 0; otherwise, # |
| # generate underflow by Tiny * Tiny. # |
| # # |
| # ExpSm # |
| # 1. Return 1 + X. # |
| # # |
| ######################################################################### |
| |
| L2TEN64: |
| long 0x406A934F,0x0979A371 # 64LOG10/LOG2 |
| L10TWO1: |
| long 0x3F734413,0x509F8000 # LOG2/64LOG10 |
| |
| L10TWO2: |
| long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 |
| |
| LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 |
| |
| LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 |
| |
| EXPA5: long 0x3F56C16D,0x6F7BD0B2 |
| EXPA4: long 0x3F811112,0x302C712C |
| EXPA3: long 0x3FA55555,0x55554CC1 |
| EXPA2: long 0x3FC55555,0x55554A54 |
| EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 |
| |
| TEXPTBL: |
| long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 |
| long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA |
| long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 |
| long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 |
| long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA |
| long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C |
| long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 |
| long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA |
| long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 |
| long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 |
| long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 |
| long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 |
| long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D |
| long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 |
| long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B |
| long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 |
| long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A |
| long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B |
| long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF |
| long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA |
| long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD |
| long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E |
| long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B |
| long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB |
| long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB |
| long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 |
| long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C |
| long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 |
| long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 |
| long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 |
| long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F |
| long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C |
| long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB |
| long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB |
| long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C |
| long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA |
| long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD |
| long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 |
| long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A |
| long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 |
| long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB |
| long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 |
| long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C |
| long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 |
| long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 |
| long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE |
| long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 |
| long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 |
| long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A |
| long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 |
| long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 |
| long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 |
| long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 |
| long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE |
| long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 |
| long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F |
| long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A |
| long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A |
| long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC |
| long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F |
| long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A |
| long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 |
| long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B |
| long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 |
| |
| set INT,L_SCR1 |
| |
| set X,FP_SCR0 |
| set XDCARE,X+2 |
| set XFRAC,X+4 |
| |
| set ADJFACT,FP_SCR0 |
| |
| set FACT1,FP_SCR0 |
| set FACT1HI,FACT1+4 |
| set FACT1LOW,FACT1+8 |
| |
| set FACT2,FP_SCR1 |
| set FACT2HI,FACT2+4 |
| set FACT2LOW,FACT2+8 |
| |
| global stwotox |
| #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| stwotox: |
| fmovm.x (%a0),&0x80 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| fmov.x %fp0,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? |
| bge.b TWOOK1 |
| bra.w EXPBORS |
| |
| TWOOK1: |
| cmp.l %d1,&0x400D80C0 # |X| > 16480? |
| ble.b TWOMAIN |
| bra.w EXPBORS |
| |
| TWOMAIN: |
| #--USUAL CASE, 2^(-70) <= |X| <= 16480 |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42800000,%fp1 # 64 * X |
| fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) |
| mov.l %d2,-(%sp) |
| lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) |
| fmov.l INT(%a6),%fp1 # N --> FLOATING FMT |
| mov.l INT(%a6),%d1 |
| mov.l %d1,%d2 |
| and.l &0x3F,%d1 # D0 IS J |
| asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) |
| add.l %d1,%a1 # ADDRESS FOR 2^(J/64) |
| asr.l &6,%d2 # d2 IS L, N = 64L + J |
| mov.l %d2,%d1 |
| asr.l &1,%d1 # D0 IS M |
| sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J |
| add.l &0x3FFF,%d2 |
| |
| #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), |
| #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. |
| #--ADJFACT = 2^(M'). |
| #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. |
| |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmul.s &0x3C800000,%fp1 # (1/64)*N |
| mov.l (%a1)+,FACT1(%a6) |
| mov.l (%a1)+,FACT1HI(%a6) |
| mov.l (%a1)+,FACT1LOW(%a6) |
| mov.w (%a1)+,FACT2(%a6) |
| |
| fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) |
| |
| mov.w (%a1)+,FACT2HI(%a6) |
| clr.w FACT2HI+2(%a6) |
| clr.l FACT2LOW(%a6) |
| add.w %d1,FACT1(%a6) |
| fmul.x LOG2(%pc),%fp0 # FP0 IS R |
| add.w %d1,FACT2(%a6) |
| |
| bra.w expr |
| |
| EXPBORS: |
| #--FPCR, D0 SAVED |
| cmp.l %d1,&0x3FFF8000 |
| bgt.b TEXPBIG |
| |
| #--|X| IS SMALL, RETURN 1 + X |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| fadd.s &0x3F800000,%fp0 # RETURN 1 + X |
| bra t_pinx2 |
| |
| TEXPBIG: |
| #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW |
| #--REGISTERS SAVE SO FAR ARE FPCR AND D0 |
| mov.l X(%a6),%d1 |
| cmp.l %d1,&0 |
| blt.b EXPNEG |
| |
| bra t_ovfl2 # t_ovfl expects positive value |
| |
| EXPNEG: |
| bra t_unfl2 # t_unfl expects positive value |
| |
| global stwotoxd |
| stwotoxd: |
| #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT |
| |
| fmov.l %d0,%fpcr # set user's rounding mode/precision |
| fmov.s &0x3F800000,%fp0 # RETURN 1 + X |
| mov.l (%a0),%d1 |
| or.l &0x00800001,%d1 |
| fadd.s %d1,%fp0 |
| bra t_pinx2 |
| |
| global stentox |
| #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| stentox: |
| fmovm.x (%a0),&0x80 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| fmov.x %fp0,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? |
| bge.b TENOK1 |
| bra.w EXPBORS |
| |
| TENOK1: |
| cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? |
| ble.b TENMAIN |
| bra.w EXPBORS |
| |
| TENMAIN: |
| #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 |
| |
| fmov.x %fp0,%fp1 |
| fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 |
| fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) |
| mov.l %d2,-(%sp) |
| lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) |
| fmov.l INT(%a6),%fp1 # N --> FLOATING FMT |
| mov.l INT(%a6),%d1 |
| mov.l %d1,%d2 |
| and.l &0x3F,%d1 # D0 IS J |
| asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) |
| add.l %d1,%a1 # ADDRESS FOR 2^(J/64) |
| asr.l &6,%d2 # d2 IS L, N = 64L + J |
| mov.l %d2,%d1 |
| asr.l &1,%d1 # D0 IS M |
| sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J |
| add.l &0x3FFF,%d2 |
| |
| #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), |
| #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. |
| #--ADJFACT = 2^(M'). |
| #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmov.x %fp1,%fp2 |
| |
| fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD |
| mov.l (%a1)+,FACT1(%a6) |
| |
| fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL |
| |
| mov.l (%a1)+,FACT1HI(%a6) |
| mov.l (%a1)+,FACT1LOW(%a6) |
| fsub.x %fp1,%fp0 # X - N L_LEAD |
| mov.w (%a1)+,FACT2(%a6) |
| |
| fsub.x %fp2,%fp0 # X - N L_TRAIL |
| |
| mov.w (%a1)+,FACT2HI(%a6) |
| clr.w FACT2HI+2(%a6) |
| clr.l FACT2LOW(%a6) |
| |
| fmul.x LOG10(%pc),%fp0 # FP0 IS R |
| add.w %d1,FACT1(%a6) |
| add.w %d1,FACT2(%a6) |
| |
| expr: |
| #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. |
| #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). |
| #--FP0 IS R. THE FOLLOWING CODE COMPUTES |
| #-- 2**(M'+M) * 2**(J/64) * EXP(R) |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS S = R*R |
| |
| fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 |
| fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 |
| |
| fmul.x %fp1,%fp2 # FP2 IS S*A5 |
| fmul.x %fp1,%fp3 # FP3 IS S*A4 |
| |
| fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 |
| fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 |
| |
| fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) |
| fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) |
| |
| fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) |
| fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) |
| |
| fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) |
| fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) |
| fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| #--FINAL RECONSTRUCTION PROCESS |
| #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) |
| |
| fmul.x FACT1(%a6),%fp0 |
| fadd.x FACT2(%a6),%fp0 |
| fadd.x FACT1(%a6),%fp0 |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT |
| mov.l (%sp)+,%d2 |
| mov.l &0x80000000,ADJFACT+4(%a6) |
| clr.l ADJFACT+8(%a6) |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT |
| bra t_catch |
| |
| global stentoxd |
| stentoxd: |
| #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT |
| |
| fmov.l %d0,%fpcr # set user's rounding mode/precision |
| fmov.s &0x3F800000,%fp0 # RETURN 1 + X |
| mov.l (%a0),%d1 |
| or.l &0x00800001,%d1 |
| fadd.s %d1,%fp0 |
| bra t_pinx2 |
| |
| ######################################################################### |
| # sscale(): computes the destination operand scaled by the source # |
| # operand. If the absoulute value of the source operand is # |
| # >= 2^14, an overflow or underflow is returned. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to double-extended source operand X # |
| # a1 = pointer to double-extended destination operand Y # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = scale(X,Y) # |
| # # |
| ######################################################################### |
| |
| set SIGN, L_SCR1 |
| |
| global sscale |
| sscale: |
| mov.l %d0,-(%sp) # store off ctrl bits for now |
| |
| mov.w DST_EX(%a1),%d1 # get dst exponent |
| smi.b SIGN(%a6) # use SIGN to hold dst sign |
| andi.l &0x00007fff,%d1 # strip sign from dst exp |
| |
| mov.w SRC_EX(%a0),%d0 # check src bounds |
| andi.w &0x7fff,%d0 # clr src sign bit |
| cmpi.w %d0,&0x3fff # is src ~ ZERO? |
| blt.w src_small # yes |
| cmpi.w %d0,&0x400c # no; is src too big? |
| bgt.w src_out # yes |
| |
| # |
| # Source is within 2^14 range. |
| # |
| src_ok: |
| fintrz.x SRC(%a0),%fp0 # calc int of src |
| fmov.l %fp0,%d0 # int src to d0 |
| # don't want any accrued bits from the fintrz showing up later since |
| # we may need to read the fpsr for the last fp op in t_catch2(). |
| fmov.l &0x0,%fpsr |
| |
| tst.b DST_HI(%a1) # is dst denormalized? |
| bmi.b sok_norm |
| |
| # the dst is a DENORM. normalize the DENORM and add the adjustment to |
| # the src value. then, jump to the norm part of the routine. |
| sok_dnrm: |
| mov.l %d0,-(%sp) # save src for now |
| |
| mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy |
| mov.l DST_HI(%a1),FP_SCR0_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR0_LO(%a6) |
| |
| lea FP_SCR0(%a6),%a0 # pass ptr to DENORM |
| bsr.l norm # normalize the DENORM |
| neg.l %d0 |
| add.l (%sp)+,%d0 # add adjustment to src |
| |
| fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM |
| |
| cmpi.w %d0,&-0x3fff # is the shft amt really low? |
| bge.b sok_norm2 # thank goodness no |
| |
| # the multiply factor that we're trying to create should be a denorm |
| # for the multiply to work. therefore, we're going to actually do a |
| # multiply with a denorm which will cause an unimplemented data type |
| # exception to be put into the machine which will be caught and corrected |
| # later. we don't do this with the DENORMs above because this method |
| # is slower. but, don't fret, I don't see it being used much either. |
| fmov.l (%sp)+,%fpcr # restore user fpcr |
| mov.l &0x80000000,%d1 # load normalized mantissa |
| subi.l &-0x3fff,%d0 # how many should we shift? |
| neg.l %d0 # make it positive |
| cmpi.b %d0,&0x20 # is it > 32? |
| bge.b sok_dnrm_32 # yes |
| lsr.l %d0,%d1 # no; bit stays in upper lw |
| clr.l -(%sp) # insert zero low mantissa |
| mov.l %d1,-(%sp) # insert new high mantissa |
| clr.l -(%sp) # make zero exponent |
| bra.b sok_norm_cont |
| sok_dnrm_32: |
| subi.b &0x20,%d0 # get shift count |
| lsr.l %d0,%d1 # make low mantissa longword |
| mov.l %d1,-(%sp) # insert new low mantissa |
| clr.l -(%sp) # insert zero high mantissa |
| clr.l -(%sp) # make zero exponent |
| bra.b sok_norm_cont |
| |
| # the src will force the dst to a DENORM value or worse. so, let's |
| # create an fp multiply that will create the result. |
| sok_norm: |
| fmovm.x DST(%a1),&0x80 # load fp0 with normalized src |
| sok_norm2: |
| fmov.l (%sp)+,%fpcr # restore user fpcr |
| |
| addi.w &0x3fff,%d0 # turn src amt into exp value |
| swap %d0 # put exponent in high word |
| clr.l -(%sp) # insert new exponent |
| mov.l &0x80000000,-(%sp) # insert new high mantissa |
| mov.l %d0,-(%sp) # insert new lo mantissa |
| |
| sok_norm_cont: |
| fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x (%sp)+,%fp0 # do the multiply |
| bra t_catch2 # catch any exceptions |
| |
| # |
| # Source is outside of 2^14 range. Test the sign and branch |
| # to the appropriate exception handler. |
| # |
| src_out: |
| mov.l (%sp)+,%d0 # restore ctrl bits |
| exg %a0,%a1 # swap src,dst ptrs |
| tst.b SRC_EX(%a1) # is src negative? |
| bmi t_unfl # yes; underflow |
| bra t_ovfl_sc # no; overflow |
| |
| # |
| # The source input is below 1, so we check for denormalized numbers |
| # and set unfl. |
| # |
| src_small: |
| tst.b DST_HI(%a1) # is dst denormalized? |
| bpl.b ssmall_done # yes |
| |
| mov.l (%sp)+,%d0 |
| fmov.l %d0,%fpcr # no; load control bits |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x DST(%a1),%fp0 # simply return dest |
| bra t_catch2 |
| ssmall_done: |
| mov.l (%sp)+,%d0 # load control bits into d1 |
| mov.l %a1,%a0 # pass ptr to dst |
| bra t_resdnrm |
| |
| ######################################################################### |
| # smod(): computes the fp MOD of the input values X,Y. # |
| # srem(): computes the fp (IEEE) REM of the input values X,Y. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input X # |
| # a1 = pointer to extended precision input Y # |
| # d0 = round precision,mode # |
| # # |
| # The input operands X and Y can be either normalized or # |
| # denormalized. # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = FREM(X,Y) or FMOD(X,Y) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # Step 1. Save and strip signs of X and Y: signX := sign(X), # |
| # signY := sign(Y), X := |X|, Y := |Y|, # |
| # signQ := signX EOR signY. Record whether MOD or REM # |
| # is requested. # |
| # # |
| # Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # |
| # If (L < 0) then # |
| # R := X, go to Step 4. # |
| # else # |
| # R := 2^(-L)X, j := L. # |
| # endif # |
| # # |
| # Step 3. Perform MOD(X,Y) # |
| # 3.1 If R = Y, go to Step 9. # |
| # 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # |
| # 3.3 If j = 0, go to Step 4. # |
| # 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # |
| # Step 3.1. # |
| # # |
| # Step 4. At this point, R = X - QY = MOD(X,Y). Set # |
| # Last_Subtract := false (used in Step 7 below). If # |
| # MOD is requested, go to Step 6. # |
| # # |
| # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # |
| # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # |
| # Step 6. # |
| # 5.2 If R > Y/2, then { set Last_Subtract := true, # |
| # Q := Q + 1, Y := signY*Y }. Go to Step 6. # |
| # 5.3 This is the tricky case of R = Y/2. If Q is odd, # |
| # then { Q := Q + 1, signX := -signX }. # |
| # # |
| # Step 6. R := signX*R. # |
| # # |
| # Step 7. If Last_Subtract = true, R := R - Y. # |
| # # |
| # Step 8. Return signQ, last 7 bits of Q, and R as required. # |
| # # |
| # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # |
| # X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # |
| # R := 0. Return signQ, last 7 bits of Q, and R. # |
| # # |
| ######################################################################### |
| |
| set Mod_Flag,L_SCR3 |
| set Sc_Flag,L_SCR3+1 |
| |
| set SignY,L_SCR2 |
| set SignX,L_SCR2+2 |
| set SignQ,L_SCR3+2 |
| |
| set Y,FP_SCR0 |
| set Y_Hi,Y+4 |
| set Y_Lo,Y+8 |
| |
| set R,FP_SCR1 |
| set R_Hi,R+4 |
| set R_Lo,R+8 |
| |
| Scale: |
| long 0x00010000,0x80000000,0x00000000,0x00000000 |
| |
| global smod |
| smod: |
| clr.b FPSR_QBYTE(%a6) |
| mov.l %d0,-(%sp) # save ctrl bits |
| clr.b Mod_Flag(%a6) |
| bra.b Mod_Rem |
| |
| global srem |
| srem: |
| clr.b FPSR_QBYTE(%a6) |
| mov.l %d0,-(%sp) # save ctrl bits |
| mov.b &0x1,Mod_Flag(%a6) |
| |
| Mod_Rem: |
| #..Save sign of X and Y |
| movm.l &0x3f00,-(%sp) # save data registers |
| mov.w SRC_EX(%a0),%d3 |
| mov.w %d3,SignY(%a6) |
| and.l &0x00007FFF,%d3 # Y := |Y| |
| |
| # |
| mov.l SRC_HI(%a0),%d4 |
| mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| |
| |
| tst.l %d3 |
| bne.b Y_Normal |
| |
| mov.l &0x00003FFE,%d3 # $3FFD + 1 |
| tst.l %d4 |
| bne.b HiY_not0 |
| |
| HiY_0: |
| mov.l %d5,%d4 |
| clr.l %d5 |
| sub.l &32,%d3 |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 |
| lsl.l %d6,%d4 |
| sub.l %d6,%d3 # (D3,D4,D5) is normalized |
| # ...with bias $7FFD |
| bra.b Chk_X |
| |
| HiY_not0: |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 |
| sub.l %d6,%d3 |
| lsl.l %d6,%d4 |
| mov.l %d5,%d7 # a copy of D5 |
| lsl.l %d6,%d5 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d4 # (D3,D4,D5) normalized |
| # ...with bias $7FFD |
| bra.b Chk_X |
| |
| Y_Normal: |
| add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized |
| # ...with bias $7FFD |
| |
| Chk_X: |
| mov.w DST_EX(%a1),%d0 |
| mov.w %d0,SignX(%a6) |
| mov.w SignY(%a6),%d1 |
| eor.l %d0,%d1 |
| and.l &0x00008000,%d1 |
| mov.w %d1,SignQ(%a6) # sign(Q) obtained |
| and.l &0x00007FFF,%d0 |
| mov.l DST_HI(%a1),%d1 |
| mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| |
| tst.l %d0 |
| bne.b X_Normal |
| mov.l &0x00003FFE,%d0 |
| tst.l %d1 |
| bne.b HiX_not0 |
| |
| HiX_0: |
| mov.l %d2,%d1 |
| clr.l %d2 |
| sub.l &32,%d0 |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| lsl.l %d6,%d1 |
| sub.l %d6,%d0 # (D0,D1,D2) is normalized |
| # ...with bias $7FFD |
| bra.b Init |
| |
| HiX_not0: |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| sub.l %d6,%d0 |
| lsl.l %d6,%d1 |
| mov.l %d2,%d7 # a copy of D2 |
| lsl.l %d6,%d2 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d1 # (D0,D1,D2) normalized |
| # ...with bias $7FFD |
| bra.b Init |
| |
| X_Normal: |
| add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized |
| # ...with bias $7FFD |
| |
| Init: |
| # |
| mov.l %d3,L_SCR1(%a6) # save biased exp(Y) |
| mov.l %d0,-(%sp) # save biased exp(X) |
| sub.l %d3,%d0 # L := expo(X)-expo(Y) |
| |
| clr.l %d6 # D6 := carry <- 0 |
| clr.l %d3 # D3 is Q |
| mov.l &0,%a1 # A1 is k; j+k=L, Q=0 |
| |
| #..(Carry,D1,D2) is R |
| tst.l %d0 |
| bge.b Mod_Loop_pre |
| |
| #..expo(X) < expo(Y). Thus X = mod(X,Y) |
| # |
| mov.l (%sp)+,%d0 # restore d0 |
| bra.w Get_Mod |
| |
| Mod_Loop_pre: |
| addq.l &0x4,%sp # erase exp(X) |
| #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L |
| Mod_Loop: |
| tst.l %d6 # test carry bit |
| bgt.b R_GT_Y |
| |
| #..At this point carry = 0, R = (D1,D2), Y = (D4,D5) |
| cmp.l %d1,%d4 # compare hi(R) and hi(Y) |
| bne.b R_NE_Y |
| cmp.l %d2,%d5 # compare lo(R) and lo(Y) |
| bne.b R_NE_Y |
| |
| #..At this point, R = Y |
| bra.w Rem_is_0 |
| |
| R_NE_Y: |
| #..use the borrow of the previous compare |
| bcs.b R_LT_Y # borrow is set iff R < Y |
| |
| R_GT_Y: |
| #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 |
| #..and Y < (D1,D2) < 2Y. Either way, perform R - Y |
| sub.l %d5,%d2 # lo(R) - lo(Y) |
| subx.l %d4,%d1 # hi(R) - hi(Y) |
| clr.l %d6 # clear carry |
| addq.l &1,%d3 # Q := Q + 1 |
| |
| R_LT_Y: |
| #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. |
| tst.l %d0 # see if j = 0. |
| beq.b PostLoop |
| |
| add.l %d3,%d3 # Q := 2Q |
| add.l %d2,%d2 # lo(R) = 2lo(R) |
| roxl.l &1,%d1 # hi(R) = 2hi(R) + carry |
| scs %d6 # set Carry if 2(R) overflows |
| addq.l &1,%a1 # k := k+1 |
| subq.l &1,%d0 # j := j - 1 |
| #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. |
| |
| bra.b Mod_Loop |
| |
| PostLoop: |
| #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. |
| |
| #..normalize R. |
| mov.l L_SCR1(%a6),%d0 # new biased expo of R |
| tst.l %d1 |
| bne.b HiR_not0 |
| |
| HiR_0: |
| mov.l %d2,%d1 |
| clr.l %d2 |
| sub.l &32,%d0 |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| lsl.l %d6,%d1 |
| sub.l %d6,%d0 # (D0,D1,D2) is normalized |
| # ...with bias $7FFD |
| bra.b Get_Mod |
| |
| HiR_not0: |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| bmi.b Get_Mod # already normalized |
| sub.l %d6,%d0 |
| lsl.l %d6,%d1 |
| mov.l %d2,%d7 # a copy of D2 |
| lsl.l %d6,%d2 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d1 # (D0,D1,D2) normalized |
| |
| # |
| Get_Mod: |
| cmp.l %d0,&0x000041FE |
| bge.b No_Scale |
| Do_Scale: |
| mov.w %d0,R(%a6) |
| mov.l %d1,R_Hi(%a6) |
| mov.l %d2,R_Lo(%a6) |
| mov.l L_SCR1(%a6),%d6 |
| mov.w %d6,Y(%a6) |
| mov.l %d4,Y_Hi(%a6) |
| mov.l %d5,Y_Lo(%a6) |
| fmov.x R(%a6),%fp0 # no exception |
| mov.b &1,Sc_Flag(%a6) |
| bra.b ModOrRem |
| No_Scale: |
| mov.l %d1,R_Hi(%a6) |
| mov.l %d2,R_Lo(%a6) |
| sub.l &0x3FFE,%d0 |
| mov.w %d0,R(%a6) |
| mov.l L_SCR1(%a6),%d6 |
| sub.l &0x3FFE,%d6 |
| mov.l %d6,L_SCR1(%a6) |
| fmov.x R(%a6),%fp0 |
| mov.w %d6,Y(%a6) |
| mov.l %d4,Y_Hi(%a6) |
| mov.l %d5,Y_Lo(%a6) |
| clr.b Sc_Flag(%a6) |
| |
| # |
| ModOrRem: |
| tst.b Mod_Flag(%a6) |
| beq.b Fix_Sign |
| |
| mov.l L_SCR1(%a6),%d6 # new biased expo(Y) |
| subq.l &1,%d6 # biased expo(Y/2) |
| cmp.l %d0,%d6 |
| blt.b Fix_Sign |
| bgt.b Last_Sub |
| |
| cmp.l %d1,%d4 |
| bne.b Not_EQ |
| cmp.l %d2,%d5 |
| bne.b Not_EQ |
| bra.w Tie_Case |
| |
| Not_EQ: |
| bcs.b Fix_Sign |
| |
| Last_Sub: |
| # |
| fsub.x Y(%a6),%fp0 # no exceptions |
| addq.l &1,%d3 # Q := Q + 1 |
| |
| # |
| Fix_Sign: |
| #..Get sign of X |
| mov.w SignX(%a6),%d6 |
| bge.b Get_Q |
| fneg.x %fp0 |
| |
| #..Get Q |
| # |
| Get_Q: |
| clr.l %d6 |
| mov.w SignQ(%a6),%d6 # D6 is sign(Q) |
| mov.l &8,%d7 |
| lsr.l %d7,%d6 |
| and.l &0x0000007F,%d3 # 7 bits of Q |
| or.l %d6,%d3 # sign and bits of Q |
| # swap %d3 |
| # fmov.l %fpsr,%d6 |
| # and.l &0xFF00FFFF,%d6 |
| # or.l %d3,%d6 |
| # fmov.l %d6,%fpsr # put Q in fpsr |
| mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr |
| |
| # |
| Restore: |
| movm.l (%sp)+,&0xfc # {%d2-%d7} |
| mov.l (%sp)+,%d0 |
| fmov.l %d0,%fpcr |
| tst.b Sc_Flag(%a6) |
| beq.b Finish |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x Scale(%pc),%fp0 # may cause underflow |
| bra t_catch2 |
| # the '040 package did this apparently to see if the dst operand for the |
| # preceding fmul was a denorm. but, it better not have been since the |
| # algorithm just got done playing with fp0 and expected no exceptions |
| # as a result. trust me... |
| # bra t_avoid_unsupp # check for denorm as a |
| # ;result of the scaling |
| |
| Finish: |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x %fp0,%fp0 # capture exceptions & round |
| bra t_catch2 |
| |
| Rem_is_0: |
| #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) |
| addq.l &1,%d3 |
| cmp.l %d0,&8 # D0 is j |
| bge.b Q_Big |
| |
| lsl.l %d0,%d3 |
| bra.b Set_R_0 |
| |
| Q_Big: |
| clr.l %d3 |
| |
| Set_R_0: |
| fmov.s &0x00000000,%fp0 |
| clr.b Sc_Flag(%a6) |
| bra.w Fix_Sign |
| |
| Tie_Case: |
| #..Check parity of Q |
| mov.l %d3,%d6 |
| and.l &0x00000001,%d6 |
| tst.l %d6 |
| beq.w Fix_Sign # Q is even |
| |
| #..Q is odd, Q := Q + 1, signX := -signX |
| addq.l &1,%d3 |
| mov.w SignX(%a6),%d6 |
| eor.l &0x00008000,%d6 |
| mov.w %d6,SignX(%a6) |
| bra.w Fix_Sign |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # tag(): return the optype of the input ext fp number # |
| # # |
| # This routine is used by the 060FPLSP. # |
| # # |
| # XREF **************************************************************** # |
| # None # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # d0 = value of type tag # |
| # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Simply test the exponent, j-bit, and mantissa values to # |
| # determine the type of operand. # |
| # If it's an unnormalized zero, alter the operand and force it # |
| # to be a normal zero. # |
| # # |
| ######################################################################### |
| |
| global tag |
| tag: |
| mov.w FTEMP_EX(%a0), %d0 # extract exponent |
| andi.w &0x7fff, %d0 # strip off sign |
| cmpi.w %d0, &0x7fff # is (EXP == MAX)? |
| beq.b inf_or_nan_x |
| not_inf_or_nan_x: |
| btst &0x7,FTEMP_HI(%a0) |
| beq.b not_norm_x |
| is_norm_x: |
| mov.b &NORM, %d0 |
| rts |
| not_norm_x: |
| tst.w %d0 # is exponent = 0? |
| bne.b is_unnorm_x |
| not_unnorm_x: |
| tst.l FTEMP_HI(%a0) |
| bne.b is_denorm_x |
| tst.l FTEMP_LO(%a0) |
| bne.b is_denorm_x |
| is_zero_x: |
| mov.b &ZERO, %d0 |
| rts |
| is_denorm_x: |
| mov.b &DENORM, %d0 |
| rts |
| is_unnorm_x: |
| bsr.l unnorm_fix # convert to norm,denorm,or zero |
| rts |
| is_unnorm_reg_x: |
| mov.b &UNNORM, %d0 |
| rts |
| inf_or_nan_x: |
| tst.l FTEMP_LO(%a0) |
| bne.b is_nan_x |
| mov.l FTEMP_HI(%a0), %d0 |
| and.l &0x7fffffff, %d0 # msb is a don't care! |
| bne.b is_nan_x |
| is_inf_x: |
| mov.b &INF, %d0 |
| rts |
| is_nan_x: |
| mov.b &QNAN, %d0 |
| rts |
| |
| ############################################################# |
| |
| qnan: long 0x7fff0000, 0xffffffff, 0xffffffff |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. # |
| # t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. # |
| # # |
| # These rouitnes are used by the 060FPLSP package. # |
| # # |
| # XREF **************************************************************** # |
| # None # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand. # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default DZ result. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Transcendental emulation for the 060FPLSP has detected that # |
| # a DZ exception should occur for the instruction. If DZ is disabled, # |
| # return the default result. # |
| # If DZ is enabled, the dst operand should be returned unscathed # |
| # in fp0 while fp1 is used to create a DZ exception so that the # |
| # operating system can log that such an event occurred. # |
| # # |
| ######################################################################### |
| |
| global t_dz |
| t_dz: |
| tst.b SRC_EX(%a0) # check sign for neg or pos |
| bpl.b dz_pinf # branch if pos sign |
| |
| global t_dz2 |
| t_dz2: |
| ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ |
| |
| btst &dz_bit,FPCR_ENABLE(%a6) |
| bne.b dz_minf_ena |
| |
| # dz is disabled. return a -INF. |
| fmov.s &0xff800000,%fp0 # return -INF |
| rts |
| |
| # dz is enabled. create a dz exception so the user can record it |
| # but use fp1 instead. return the dst operand unscathed in fp0. |
| dz_minf_ena: |
| fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmov.s &0xbf800000,%fp1 # load -1 |
| fdiv.s &0x00000000,%fp1 # -1 / 0 |
| rts |
| |
| dz_pinf: |
| ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ |
| |
| btst &dz_bit,FPCR_ENABLE(%a6) |
| bne.b dz_pinf_ena |
| |
| # dz is disabled. return a +INF. |
| fmov.s &0x7f800000,%fp0 # return +INF |
| rts |
| |
| # dz is enabled. create a dz exception so the user can record it |
| # but use fp1 instead. return the dst operand unscathed in fp0. |
| dz_pinf_ena: |
| fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmov.s &0x3f800000,%fp1 # load +1 |
| fdiv.s &0x00000000,%fp1 # +1 / 0 |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_operr(): Handle 060FPLSP OPERR exception during emulation. # |
| # # |
| # This routine is used by the 060FPLSP package. # |
| # # |
| # XREF **************************************************************** # |
| # None. # |
| # # |
| # INPUT *************************************************************** # |
| # fp1 = source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default result # |
| # fp1 = unchanged # |
| # # |
| # ALGORITHM *********************************************************** # |
| # An operand error should occur as the result of transcendental # |
| # emulation in the 060FPLSP. If OPERR is disabled, just return a NAN # |
| # in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 # |
| # and the source operand in fp1. Use fp2 to create an OPERR exception # |
| # so that the operating system can log the event. # |
| # # |
| ######################################################################### |
| |
| global t_operr |
| t_operr: |
| ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP |
| |
| btst &operr_bit,FPCR_ENABLE(%a6) |
| bne.b operr_ena |
| |
| # operr is disabled. return a QNAN in fp0 |
| fmovm.x qnan(%pc),&0x80 # return QNAN |
| rts |
| |
| # operr is enabled. create an operr exception so the user can record it |
| # but use fp2 instead. return the dst operand unscathed in fp0. |
| operr_ena: |
| fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmovm.x &0x04,-(%sp) # save fp2 |
| fmov.s &0x7f800000,%fp2 # load +INF |
| fmul.s &0x00000000,%fp2 # +INF x 0 |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| rts |
| |
| pls_huge: |
| long 0x7ffe0000,0xffffffff,0xffffffff |
| mns_huge: |
| long 0xfffe0000,0xffffffff,0xffffffff |
| pls_tiny: |
| long 0x00000000,0x80000000,0x00000000 |
| mns_tiny: |
| long 0x80000000,0x80000000,0x00000000 |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_unfl(): Handle 060FPLSP underflow exception during emulation. # |
| # t_unfl2(): Handle 060FPLSP underflow exception during # |
| # emulation. result always positive. # |
| # # |
| # This routine is used by the 060FPLSP package. # |
| # # |
| # XREF **************************************************************** # |
| # None. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default underflow result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # An underflow should occur as the result of transcendental # |
| # emulation in the 060FPLSP. Create an underflow by using "fmul" # |
| # and two very small numbers of appropriate sign so the operating # |
| # system can log the event. # |
| # # |
| ######################################################################### |
| |
| global t_unfl |
| t_unfl: |
| tst.b SRC_EX(%a0) |
| bpl.b unf_pos |
| |
| global t_unfl2 |
| t_unfl2: |
| ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX |
| |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmovm.x mns_tiny(%pc),&0x80 |
| fmul.x pls_tiny(%pc),%fp0 |
| |
| fmov.l %fpsr,%d0 |
| rol.l &0x8,%d0 |
| mov.b %d0,FPSR_CC(%a6) |
| rts |
| unf_pos: |
| ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX |
| |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmovm.x pls_tiny(%pc),&0x80 |
| fmul.x %fp0,%fp0 |
| |
| fmov.l %fpsr,%d0 |
| rol.l &0x8,%d0 |
| mov.b %d0,FPSR_CC(%a6) |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_ovfl(): Handle 060FPLSP overflow exception during emulation. # |
| # (monadic) # |
| # t_ovfl2(): Handle 060FPLSP overflow exception during # |
| # emulation. result always positive. (dyadic) # |
| # t_ovfl_sc(): Handle 060FPLSP overflow exception during # |
| # emulation for "fscale". # |
| # # |
| # This routine is used by the 060FPLSP package. # |
| # # |
| # XREF **************************************************************** # |
| # None. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default underflow result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # An overflow should occur as the result of transcendental # |
| # emulation in the 060FPLSP. Create an overflow by using "fmul" # |
| # and two very lareg numbers of appropriate sign so the operating # |
| # system can log the event. # |
| # For t_ovfl_sc() we take special care not to lose the INEX2 bit. # |
| # # |
| ######################################################################### |
| |
| global t_ovfl_sc |
| t_ovfl_sc: |
| ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX |
| |
| mov.b %d0,%d1 # fetch rnd prec,mode |
| andi.b &0xc0,%d1 # extract prec |
| beq.w ovfl_work |
| |
| # dst op is a DENORM. we have to normalize the mantissa to see if the |
| # result would be inexact for the given precision. make a copy of the |
| # dst so we don't screw up the version passed to us. |
| mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) |
| lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 |
| movm.l &0xc080,-(%sp) # save d0-d1/a0 |
| bsr.l norm # normalize mantissa |
| movm.l (%sp)+,&0x0103 # restore d0-d1/a0 |
| |
| cmpi.b %d1,&0x40 # is precision sgl? |
| bne.b ovfl_sc_dbl # no; dbl |
| ovfl_sc_sgl: |
| tst.l LOCAL_LO(%a0) # is lo lw of sgl set? |
| bne.b ovfl_sc_inx # yes |
| tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? |
| bne.b ovfl_sc_inx # yes |
| bra.w ovfl_work # don't set INEX2 |
| ovfl_sc_dbl: |
| mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of |
| andi.l &0x7ff,%d1 # dbl mantissa set? |
| beq.w ovfl_work # no; don't set INEX2 |
| ovfl_sc_inx: |
| ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 |
| bra.b ovfl_work # continue |
| |
| global t_ovfl |
| t_ovfl: |
| ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX |
| ovfl_work: |
| tst.b SRC_EX(%a0) |
| bpl.b ovfl_p |
| ovfl_m: |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmovm.x mns_huge(%pc),&0x80 |
| fmul.x pls_huge(%pc),%fp0 |
| |
| fmov.l %fpsr,%d0 |
| rol.l &0x8,%d0 |
| ori.b &neg_mask,%d0 |
| mov.b %d0,FPSR_CC(%a6) |
| rts |
| ovfl_p: |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmovm.x pls_huge(%pc),&0x80 |
| fmul.x pls_huge(%pc),%fp0 |
| |
| fmov.l %fpsr,%d0 |
| rol.l &0x8,%d0 |
| mov.b %d0,FPSR_CC(%a6) |
| rts |
| |
| global t_ovfl2 |
| t_ovfl2: |
| ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmovm.x pls_huge(%pc),&0x80 |
| fmul.x pls_huge(%pc),%fp0 |
| |
| fmov.l %fpsr,%d0 |
| rol.l &0x8,%d0 |
| mov.b %d0,FPSR_CC(%a6) |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # |
| # emulation. # |
| # t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # |
| # emulation. # |
| # # |
| # These routines are used by the 060FPLSP package. # |
| # # |
| # XREF **************************************************************** # |
| # None. # |
| # # |
| # INPUT *************************************************************** # |
| # fp0 = default underflow or overflow result # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # If an overflow or underflow occurred during the last # |
| # instruction of transcendental 060FPLSP emulation, then it has already # |
| # occurred and has been logged. Now we need to see if an inexact # |
| # exception should occur. # |
| # # |
| ######################################################################### |
| |
| global t_catch2 |
| t_catch2: |
| fmov.l %fpsr,%d0 |
| or.l %d0,USER_FPSR(%a6) |
| bra.b inx2_work |
| |
| global t_catch |
| t_catch: |
| fmov.l %fpsr,%d0 |
| or.l %d0,USER_FPSR(%a6) |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_inx2(): Handle inexact 060FPLSP exception during emulation. # |
| # t_pinx2(): Handle inexact 060FPLSP exception for "+" results. # |
| # t_minx2(): Handle inexact 060FPLSP exception for "-" results. # |
| # # |
| # XREF **************************************************************** # |
| # None. # |
| # # |
| # INPUT *************************************************************** # |
| # fp0 = default result # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # The last instruction of transcendental emulation for the # |
| # 060FPLSP should be inexact. So, if inexact is enabled, then we create # |
| # the event here by adding a large and very small number together # |
| # so that the operating system can log the event. # |
| # Must check, too, if the result was zero, in which case we just # |
| # set the FPSR bits and return. # |
| # # |
| ######################################################################### |
| |
| global t_inx2 |
| t_inx2: |
| fblt.w t_minx2 |
| fbeq.w inx2_zero |
| |
| global t_pinx2 |
| t_pinx2: |
| ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX |
| bra.b inx2_work |
| |
| global t_minx2 |
| t_minx2: |
| ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) |
| |
| inx2_work: |
| btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? |
| bne.b inx2_work_ena # yes |
| rts |
| inx2_work_ena: |
| fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions |
| fmov.s &0x3f800000,%fp1 # load +1 |
| fadd.x pls_tiny(%pc),%fp1 # cause exception |
| rts |
| |
| inx2_zero: |
| mov.b &z_bmask,FPSR_CC(%a6) |
| ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_extdnrm(): Handle DENORM inputs in 060FPLSP. # |
| # t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". # |
| # # |
| # This routine is used by the 060FPLSP package. # |
| # # |
| # XREF **************************************************************** # |
| # None. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # For all functions that have a denormalized input and that # |
| # f(x)=x, this is the entry point. # |
| # DENORM value is moved using "fmove" which triggers an exception # |
| # if enabled so the operating system can log the event. # |
| # # |
| ######################################################################### |
| |
| global t_extdnrm |
| t_extdnrm: |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmov.x SRC_EX(%a0),%fp0 |
| fmov.l %fpsr,%d0 |
| ori.l &unfinx_mask,%d0 |
| or.l %d0,USER_FPSR(%a6) |
| rts |
| |
| global t_resdnrm |
| t_resdnrm: |
| fmov.l USER_FPCR(%a6),%fpcr |
| fmov.x SRC_EX(%a0),%fp0 |
| fmov.l %fpsr,%d0 |
| or.l %d0,USER_FPSR(%a6) |
| rts |
| |
| ########################################## |
| |
| # |
| # sto_cos: |
| # This is used by fsincos library emulation. The correct |
| # values are already in fp0 and fp1 so we do nothing here. |
| # |
| global sto_cos |
| sto_cos: |
| rts |
| |
| ########################################## |
| |
| # |
| # dst_qnan --- force result when destination is a NaN |
| # |
| global dst_qnan |
| dst_qnan: |
| fmov.x DST(%a1),%fp0 |
| tst.b DST_EX(%a1) |
| bmi.b dst_qnan_m |
| dst_qnan_p: |
| mov.b &nan_bmask,FPSR_CC(%a6) |
| rts |
| dst_qnan_m: |
| mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) |
| rts |
| |
| # |
| # src_qnan --- force result when source is a NaN |
| # |
| global src_qnan |
| src_qnan: |
| fmov.x SRC(%a0),%fp0 |
| tst.b SRC_EX(%a0) |
| bmi.b src_qnan_m |
| src_qnan_p: |
| mov.b &nan_bmask,FPSR_CC(%a6) |
| rts |
| src_qnan_m: |
| mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) |
| rts |
| |
| ########################################## |
| |
| # |
| # Native instruction support |
| # |
| # Some systems may need entry points even for 68060 native |
| # instructions. These routines are provided for |
| # convenience. |
| # |
| global _fadds_ |
| _fadds_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.s 0x8(%sp),%fp0 # load sgl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src |
| rts |
| |
| global _faddd_ |
| _faddd_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.d 0x8(%sp),%fp0 # load dbl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src |
| rts |
| |
| global _faddx_ |
| _faddx_: |
| fmovm.x 0x4(%sp),&0x80 # load ext dst |
| fadd.x 0x10(%sp),%fp0 # fadd w/ ext src |
| rts |
| |
| global _fsubs_ |
| _fsubs_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.s 0x8(%sp),%fp0 # load sgl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src |
| rts |
| |
| global _fsubd_ |
| _fsubd_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.d 0x8(%sp),%fp0 # load dbl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src |
| rts |
| |
| global _fsubx_ |
| _fsubx_: |
| fmovm.x 0x4(%sp),&0x80 # load ext dst |
| fsub.x 0x10(%sp),%fp0 # fsub w/ ext src |
| rts |
| |
| global _fmuls_ |
| _fmuls_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.s 0x8(%sp),%fp0 # load sgl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src |
| rts |
| |
| global _fmuld_ |
| _fmuld_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.d 0x8(%sp),%fp0 # load dbl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src |
| rts |
| |
| global _fmulx_ |
| _fmulx_: |
| fmovm.x 0x4(%sp),&0x80 # load ext dst |
| fmul.x 0x10(%sp),%fp0 # fmul w/ ext src |
| rts |
| |
| global _fdivs_ |
| _fdivs_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.s 0x8(%sp),%fp0 # load sgl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src |
| rts |
| |
| global _fdivd_ |
| _fdivd_: |
| fmov.l %fpcr,-(%sp) # save fpcr |
| fmov.l &0x00000000,%fpcr # clear fpcr for load |
| fmov.d 0x8(%sp),%fp0 # load dbl dst |
| fmov.l (%sp)+,%fpcr # restore fpcr |
| fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src |
| rts |
| |
| global _fdivx_ |
| _fdivx_: |
| fmovm.x 0x4(%sp),&0x80 # load ext dst |
| fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src |
| rts |
| |
| global _fabss_ |
| _fabss_: |
| fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src |
| rts |
| |
| global _fabsd_ |
| _fabsd_: |
| fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src |
| rts |
| |
| global _fabsx_ |
| _fabsx_: |
| fabs.x 0x4(%sp),%fp0 # fabs w/ ext src |
| rts |
| |
| global _fnegs_ |
| _fnegs_: |
| fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src |
| rts |
| |
| global _fnegd_ |
| _fnegd_: |
| fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src |
| rts |
| |
| global _fnegx_ |
| _fnegx_: |
| fneg.x 0x4(%sp),%fp0 # fneg w/ ext src |
| rts |
| |
| global _fsqrts_ |
| _fsqrts_: |
| fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src |
| rts |
| |
| global _fsqrtd_ |
| _fsqrtd_: |
| fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src |
| rts |
| |
| global _fsqrtx_ |
| _fsqrtx_: |
| fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src |
| rts |
| |
| global _fints_ |
| _fints_: |
| fint.s 0x4(%sp),%fp0 # fint w/ sgl src |
| rts |
| |
| global _fintd_ |
| _fintd_: |
| fint.d 0x4(%sp),%fp0 # fint w/ dbl src |
| rts |
| |
| global _fintx_ |
| _fintx_: |
| fint.x 0x4(%sp),%fp0 # fint w/ ext src |
| rts |
| |
| global _fintrzs_ |
| _fintrzs_: |
| fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src |
| rts |
| |
| global _fintrzd_ |
| _fintrzd_: |
| fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src |
| rts |
| |
| global _fintrzx_ |
| _fintrzx_: |
| fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src |
| rts |
| |
| ######################################################################## |
| |
| ######################################################################### |
| # src_zero(): Return signed zero according to sign of src operand. # |
| ######################################################################### |
| global src_zero |
| src_zero: |
| tst.b SRC_EX(%a0) # get sign of src operand |
| bmi.b ld_mzero # if neg, load neg zero |
| |
| # |
| # ld_pzero(): return a positive zero. |
| # |
| global ld_pzero |
| ld_pzero: |
| fmov.s &0x00000000,%fp0 # load +0 |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| |
| # ld_mzero(): return a negative zero. |
| global ld_mzero |
| ld_mzero: |
| fmov.s &0x80000000,%fp0 # load -0 |
| mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits |
| rts |
| |
| ######################################################################### |
| # dst_zero(): Return signed zero according to sign of dst operand. # |
| ######################################################################### |
| global dst_zero |
| dst_zero: |
| tst.b DST_EX(%a1) # get sign of dst operand |
| bmi.b ld_mzero # if neg, load neg zero |
| bra.b ld_pzero # load positive zero |
| |
| ######################################################################### |
| # src_inf(): Return signed inf according to sign of src operand. # |
| ######################################################################### |
| global src_inf |
| src_inf: |
| tst.b SRC_EX(%a0) # get sign of src operand |
| bmi.b ld_minf # if negative branch |
| |
| # |
| # ld_pinf(): return a positive infinity. |
| # |
| global ld_pinf |
| ld_pinf: |
| fmov.s &0x7f800000,%fp0 # load +INF |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit |
| rts |
| |
| # |
| # ld_minf():return a negative infinity. |
| # |
| global ld_minf |
| ld_minf: |
| fmov.s &0xff800000,%fp0 # load -INF |
| mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| rts |
| |
| ######################################################################### |
| # dst_inf(): Return signed inf according to sign of dst operand. # |
| ######################################################################### |
| global dst_inf |
| dst_inf: |
| tst.b DST_EX(%a1) # get sign of dst operand |
| bmi.b ld_minf # if negative branch |
| bra.b ld_pinf |
| |
| global szr_inf |
| ################################################################# |
| # szr_inf(): Return +ZERO for a negative src operand or # |
| # +INF for a positive src operand. # |
| # Routine used for fetox, ftwotox, and ftentox. # |
| ################################################################# |
| szr_inf: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_pzero |
| bra.b ld_pinf |
| |
| ######################################################################### |
| # sopr_inf(): Return +INF for a positive src operand or # |
| # jump to operand error routine for a negative src operand. # |
| # Routine used for flogn, flognp1, flog10, and flog2. # |
| ######################################################################### |
| global sopr_inf |
| sopr_inf: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.w t_operr |
| bra.b ld_pinf |
| |
| ################################################################# |
| # setoxm1i(): Return minus one for a negative src operand or # |
| # positive infinity for a positive src operand. # |
| # Routine used for fetoxm1. # |
| ################################################################# |
| global setoxm1i |
| setoxm1i: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_mone |
| bra.b ld_pinf |
| |
| ######################################################################### |
| # src_one(): Return signed one according to sign of src operand. # |
| ######################################################################### |
| global src_one |
| src_one: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_mone |
| |
| # |
| # ld_pone(): return positive one. |
| # |
| global ld_pone |
| ld_pone: |
| fmov.s &0x3f800000,%fp0 # load +1 |
| clr.b FPSR_CC(%a6) |
| rts |
| |
| # |
| # ld_mone(): return negative one. |
| # |
| global ld_mone |
| ld_mone: |
| fmov.s &0xbf800000,%fp0 # load -1 |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 |
| mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 |
| |
| ################################################################# |
| # spi_2(): Return signed PI/2 according to sign of src operand. # |
| ################################################################# |
| global spi_2 |
| spi_2: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_mpi2 |
| |
| # |
| # ld_ppi2(): return positive PI/2. |
| # |
| global ld_ppi2 |
| ld_ppi2: |
| fmov.l %d0,%fpcr |
| fmov.x ppiby2(%pc),%fp0 # load +pi/2 |
| bra.w t_pinx2 # set INEX2 |
| |
| # |
| # ld_mpi2(): return negative PI/2. |
| # |
| global ld_mpi2 |
| ld_mpi2: |
| fmov.l %d0,%fpcr |
| fmov.x mpiby2(%pc),%fp0 # load -pi/2 |
| bra.w t_minx2 # set INEX2 |
| |
| #################################################### |
| # The following routines give support for fsincos. # |
| #################################################### |
| |
| # |
| # ssincosz(): When the src operand is ZERO, store a one in the |
| # cosine register and return a ZERO in fp0 w/ the same sign |
| # as the src operand. |
| # |
| global ssincosz |
| ssincosz: |
| fmov.s &0x3f800000,%fp1 |
| tst.b SRC_EX(%a0) # test sign |
| bpl.b sincoszp |
| fmov.s &0x80000000,%fp0 # return sin result in fp0 |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) |
| rts |
| sincoszp: |
| fmov.s &0x00000000,%fp0 # return sin result in fp0 |
| mov.b &z_bmask,FPSR_CC(%a6) |
| rts |
| |
| # |
| # ssincosi(): When the src operand is INF, store a QNAN in the cosine |
| # register and jump to the operand error routine for negative |
| # src operands. |
| # |
| global ssincosi |
| ssincosi: |
| fmov.x qnan(%pc),%fp1 # load NAN |
| bra.w t_operr |
| |
| # |
| # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine |
| # register and branch to the src QNAN routine. |
| # |
| global ssincosqnan |
| ssincosqnan: |
| fmov.x LOCAL_EX(%a0),%fp1 |
| bra.w src_qnan |
| |
| ######################################################################## |
| |
| global smod_sdnrm |
| global smod_snorm |
| smod_sdnrm: |
| smod_snorm: |
| mov.b DTAG(%a6),%d1 |
| beq.l smod |
| cmpi.b %d1,&ZERO |
| beq.w smod_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l smod |
| bra.l dst_qnan |
| |
| global smod_szero |
| smod_szero: |
| mov.b DTAG(%a6),%d1 |
| beq.l t_operr |
| cmpi.b %d1,&ZERO |
| beq.l t_operr |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l t_operr |
| bra.l dst_qnan |
| |
| global smod_sinf |
| smod_sinf: |
| mov.b DTAG(%a6),%d1 |
| beq.l smod_fpn |
| cmpi.b %d1,&ZERO |
| beq.l smod_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l smod_fpn |
| bra.l dst_qnan |
| |
| smod_zro: |
| srem_zro: |
| mov.b SRC_EX(%a0),%d1 # get src sign |
| mov.b DST_EX(%a1),%d0 # get dst sign |
| eor.b %d0,%d1 # get qbyte sign |
| andi.b &0x80,%d1 |
| mov.b %d1,FPSR_QBYTE(%a6) |
| tst.b %d0 |
| bpl.w ld_pzero |
| bra.w ld_mzero |
| |
| smod_fpn: |
| srem_fpn: |
| clr.b FPSR_QBYTE(%a6) |
| mov.l %d0,-(%sp) |
| mov.b SRC_EX(%a0),%d1 # get src sign |
| mov.b DST_EX(%a1),%d0 # get dst sign |
| eor.b %d0,%d1 # get qbyte sign |
| andi.b &0x80,%d1 |
| mov.b %d1,FPSR_QBYTE(%a6) |
| cmpi.b DTAG(%a6),&DENORM |
| bne.b smod_nrm |
| lea DST(%a1),%a0 |
| mov.l (%sp)+,%d0 |
| bra t_resdnrm |
| smod_nrm: |
| fmov.l (%sp)+,%fpcr |
| fmov.x DST(%a1),%fp0 |
| tst.b DST_EX(%a1) |
| bmi.b smod_nrm_neg |
| rts |
| |
| smod_nrm_neg: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code |
| rts |
| |
| ######################################################################### |
| global srem_snorm |
| global srem_sdnrm |
| srem_sdnrm: |
| srem_snorm: |
| mov.b DTAG(%a6),%d1 |
| beq.l srem |
| cmpi.b %d1,&ZERO |
| beq.w srem_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l srem |
| bra.l dst_qnan |
| |
| global srem_szero |
| srem_szero: |
| mov.b DTAG(%a6),%d1 |
| beq.l t_operr |
| cmpi.b %d1,&ZERO |
| beq.l t_operr |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l t_operr |
| bra.l dst_qnan |
| |
| global srem_sinf |
| srem_sinf: |
| mov.b DTAG(%a6),%d1 |
| beq.w srem_fpn |
| cmpi.b %d1,&ZERO |
| beq.w srem_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l srem_fpn |
| bra.l dst_qnan |
| |
| ######################################################################### |
| |
| global sscale_snorm |
| global sscale_sdnrm |
| sscale_snorm: |
| sscale_sdnrm: |
| mov.b DTAG(%a6),%d1 |
| beq.l sscale |
| cmpi.b %d1,&ZERO |
| beq.l dst_zero |
| cmpi.b %d1,&INF |
| beq.l dst_inf |
| cmpi.b %d1,&DENORM |
| beq.l sscale |
| bra.l dst_qnan |
| |
| global sscale_szero |
| sscale_szero: |
| mov.b DTAG(%a6),%d1 |
| beq.l sscale |
| cmpi.b %d1,&ZERO |
| beq.l dst_zero |
| cmpi.b %d1,&INF |
| beq.l dst_inf |
| cmpi.b %d1,&DENORM |
| beq.l sscale |
| bra.l dst_qnan |
| |
| global sscale_sinf |
| sscale_sinf: |
| mov.b DTAG(%a6),%d1 |
| beq.l t_operr |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l t_operr |
| |
| ######################################################################## |
| |
| global sop_sqnan |
| sop_sqnan: |
| mov.b DTAG(%a6),%d1 |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l src_qnan |
| |
| ######################################################################### |
| # norm(): normalize the mantissa of an extended precision input. the # |
| # input operand should not be normalized already. # |
| # # |
| # XDEF **************************************************************** # |
| # norm() # |
| # # |
| # XREF **************************************************************** # |
| # none # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer fp extended precision operand to normalize # |
| # # |
| # OUTPUT ************************************************************** # |
| # d0 = number of bit positions the mantissa was shifted # |
| # a0 = the input operand's mantissa is normalized; the exponent # |
| # is unchanged. # |
| # # |
| ######################################################################### |
| global norm |
| norm: |
| mov.l %d2, -(%sp) # create some temp regs |
| mov.l %d3, -(%sp) |
| |
| mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) |
| mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) |
| |
| bfffo %d0{&0:&32}, %d2 # how many places to shift? |
| beq.b norm_lo # hi(man) is all zeroes! |
| |
| norm_hi: |
| lsl.l %d2, %d0 # left shift hi(man) |
| bfextu %d1{&0:%d2}, %d3 # extract lo bits |
| |
| or.l %d3, %d0 # create hi(man) |
| lsl.l %d2, %d1 # create lo(man) |
| |
| mov.l %d0, FTEMP_HI(%a0) # store new hi(man) |
| mov.l %d1, FTEMP_LO(%a0) # store new lo(man) |
| |
| mov.l %d2, %d0 # return shift amount |
| |
| mov.l (%sp)+, %d3 # restore temp regs |
| mov.l (%sp)+, %d2 |
| |
| rts |
| |
| norm_lo: |
| bfffo %d1{&0:&32}, %d2 # how many places to shift? |
| lsl.l %d2, %d1 # shift lo(man) |
| add.l &32, %d2 # add 32 to shft amount |
| |
| mov.l %d1, FTEMP_HI(%a0) # store hi(man) |
| clr.l FTEMP_LO(%a0) # lo(man) is now zero |
| |
| mov.l %d2, %d0 # return shift amount |
| |
| mov.l (%sp)+, %d3 # restore temp regs |
| mov.l (%sp)+, %d2 |
| |
| rts |
| |
| ######################################################################### |
| # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # |
| # - returns corresponding optype tag # |
| # # |
| # XDEF **************************************************************** # |
| # unnorm_fix() # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize the mantissa # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to unnormalized extended precision number # |
| # # |
| # OUTPUT ************************************************************** # |
| # d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # |
| # a0 = input operand has been converted to a norm, denorm, or # |
| # zero; both the exponent and mantissa are changed. # |
| # # |
| ######################################################################### |
| |
| global unnorm_fix |
| unnorm_fix: |
| bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? |
| bne.b unnorm_shift # hi(man) is not all zeroes |
| |
| # |
| # hi(man) is all zeroes so see if any bits in lo(man) are set |
| # |
| unnorm_chk_lo: |
| bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? |
| beq.w unnorm_zero # yes |
| |
| add.w &32, %d0 # no; fix shift distance |
| |
| # |
| # d0 = # shifts needed for complete normalization |
| # |
| unnorm_shift: |
| clr.l %d1 # clear top word |
| mov.w FTEMP_EX(%a0), %d1 # extract exponent |
| and.w &0x7fff, %d1 # strip off sgn |
| |
| cmp.w %d0, %d1 # will denorm push exp < 0? |
| bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 |
| |
| # |
| # exponent would not go < 0. therefore, number stays normalized |
| # |
| sub.w %d0, %d1 # shift exponent value |
| mov.w FTEMP_EX(%a0), %d0 # load old exponent |
| and.w &0x8000, %d0 # save old sign |
| or.w %d0, %d1 # {sgn,new exp} |
| mov.w %d1, FTEMP_EX(%a0) # insert new exponent |
| |
| bsr.l norm # normalize UNNORM |
| |
| mov.b &NORM, %d0 # return new optype tag |
| rts |
| |
| # |
| # exponent would go < 0, so only denormalize until exp = 0 |
| # |
| unnorm_nrm_zero: |
| cmp.b %d1, &32 # is exp <= 32? |
| bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent |
| |
| bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) |
| mov.l %d0, FTEMP_HI(%a0) # save new hi(man) |
| |
| mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) |
| lsl.l %d1, %d0 # extract new lo(man) |
| mov.l %d0, FTEMP_LO(%a0) # save new lo(man) |
| |
| and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 |
| |
| mov.b &DENORM, %d0 # return new optype tag |
| rts |
| |
| # |
| # only mantissa bits set are in lo(man) |
| # |
| unnorm_nrm_zero_lrg: |
| sub.w &32, %d1 # adjust shft amt by 32 |
| |
| mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) |
| lsl.l %d1, %d0 # left shift lo(man) |
| |
| mov.l %d0, FTEMP_HI(%a0) # store new hi(man) |
| clr.l FTEMP_LO(%a0) # lo(man) = 0 |
| |
| and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 |
| |
| mov.b &DENORM, %d0 # return new optype tag |
| rts |
| |
| # |
| # whole mantissa is zero so this UNNORM is actually a zero |
| # |
| unnorm_zero: |
| and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero |
| |
| mov.b &ZERO, %d0 # fix optype tag |
| rts |