| /* |
| * Copyright (c) 2013 Intel Corporation. All rights reserved. |
| * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. |
| * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| /* |
| * This file contains all of the code that is specific to the SerDes |
| * on the QLogic_IB 7220 chip. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/firmware.h> |
| |
| #include "qib.h" |
| #include "qib_7220.h" |
| |
| #define SD7220_FW_NAME "qlogic/sd7220.fw" |
| MODULE_FIRMWARE(SD7220_FW_NAME); |
| |
| /* |
| * Same as in qib_iba7220.c, but just the registers needed here. |
| * Could move whole set to qib_7220.h, but decided better to keep |
| * local. |
| */ |
| #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64)) |
| #define kr_hwerrclear KREG_IDX(HwErrClear) |
| #define kr_hwerrmask KREG_IDX(HwErrMask) |
| #define kr_hwerrstatus KREG_IDX(HwErrStatus) |
| #define kr_ibcstatus KREG_IDX(IBCStatus) |
| #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl) |
| #define kr_scratch KREG_IDX(Scratch) |
| #define kr_xgxs_cfg KREG_IDX(XGXSCfg) |
| /* these are used only here, not in qib_iba7220.c */ |
| #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl) |
| #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg) |
| #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg) |
| #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl) |
| #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0) |
| |
| /* |
| * The IBSerDesMappTable is a memory that holds values to be stored in |
| * various SerDes registers by IBC. |
| */ |
| #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable) |
| |
| /* |
| * Below used for sdnum parameter, selecting one of the two sections |
| * used for PCIe, or the single SerDes used for IB. |
| */ |
| #define PCIE_SERDES0 0 |
| #define PCIE_SERDES1 1 |
| |
| /* |
| * The EPB requires addressing in a particular form. EPB_LOC() is intended |
| * to make #definitions a little more readable. |
| */ |
| #define EPB_ADDR_SHF 8 |
| #define EPB_LOC(chn, elt, reg) \ |
| (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \ |
| EPB_ADDR_SHF) |
| #define EPB_IB_QUAD0_CS_SHF (25) |
| #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF) |
| #define EPB_IB_UC_CS_SHF (26) |
| #define EPB_PCIE_UC_CS_SHF (27) |
| #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8)) |
| |
| /* Forward declarations. */ |
| static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, |
| u32 data, u32 mask); |
| static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, |
| int mask); |
| static int qib_sd_trimdone_poll(struct qib_devdata *dd); |
| static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where); |
| static int qib_sd_setvals(struct qib_devdata *dd); |
| static int qib_sd_early(struct qib_devdata *dd); |
| static int qib_sd_dactrim(struct qib_devdata *dd); |
| static int qib_internal_presets(struct qib_devdata *dd); |
| /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */ |
| static int qib_sd_trimself(struct qib_devdata *dd, int val); |
| static int epb_access(struct qib_devdata *dd, int sdnum, int claim); |
| static int qib_sd7220_ib_load(struct qib_devdata *dd, |
| const struct firmware *fw); |
| static int qib_sd7220_ib_vfy(struct qib_devdata *dd, |
| const struct firmware *fw); |
| |
| /* |
| * Below keeps track of whether the "once per power-on" initialization has |
| * been done, because uC code Version 1.32.17 or higher allows the uC to |
| * be reset at will, and Automatic Equalization may require it. So the |
| * state of the reset "pin", is no longer valid. Instead, we check for the |
| * actual uC code having been loaded. |
| */ |
| static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd, |
| const struct firmware *fw) |
| { |
| struct qib_devdata *dd = ppd->dd; |
| |
| if (!dd->cspec->serdes_first_init_done && |
| qib_sd7220_ib_vfy(dd, fw) > 0) |
| dd->cspec->serdes_first_init_done = 1; |
| return dd->cspec->serdes_first_init_done; |
| } |
| |
| /* repeat #define for local use. "Real" #define is in qib_iba7220.c */ |
| #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL |
| #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF)) |
| #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF)) |
| #define UC_PAR_CLR_D 8 |
| #define UC_PAR_CLR_M 0xC |
| #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS) |
| #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27) |
| |
| void qib_sd7220_clr_ibpar(struct qib_devdata *dd) |
| { |
| int ret; |
| |
| /* clear, then re-enable parity errs */ |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, |
| UC_PAR_CLR_D, UC_PAR_CLR_M); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n"); |
| goto bail; |
| } |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0, |
| UC_PAR_CLR_M); |
| |
| qib_read_kreg32(dd, kr_scratch); |
| udelay(4); |
| qib_write_kreg(dd, kr_hwerrclear, |
| QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); |
| qib_read_kreg32(dd, kr_scratch); |
| bail: |
| return; |
| } |
| |
| /* |
| * After a reset or other unusual event, the epb interface may need |
| * to be re-synchronized, between the host and the uC. |
| * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected) |
| */ |
| #define IBSD_RESYNC_TRIES 3 |
| #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS) |
| #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS) |
| |
| static int qib_resync_ibepb(struct qib_devdata *dd) |
| { |
| int ret, pat, tries, chn; |
| u32 loc; |
| |
| ret = -1; |
| chn = 0; |
| for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) { |
| loc = IB_PGUDP(chn); |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed read in resync\n"); |
| continue; |
| } |
| if (ret != 0xF0 && ret != 0x55 && tries == 0) |
| qib_dev_err(dd, "unexpected pattern in resync\n"); |
| pat = ret ^ 0xA5; /* alternate F0 and 55 */ |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed write in resync\n"); |
| continue; |
| } |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed re-read in resync\n"); |
| continue; |
| } |
| if (ret != pat) { |
| qib_dev_err(dd, "Failed compare1 in resync\n"); |
| continue; |
| } |
| loc = IB_CMUDONE(chn); |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed CMUDONE rd in resync\n"); |
| continue; |
| } |
| if ((ret & 0x70) != ((chn << 4) | 0x40)) { |
| qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n", |
| ret, chn); |
| continue; |
| } |
| if (++chn == 4) |
| break; /* Success */ |
| } |
| return (ret > 0) ? 0 : ret; |
| } |
| |
| /* |
| * Localize the stuff that should be done to change IB uC reset |
| * returns <0 for errors. |
| */ |
| static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst) |
| { |
| u64 rst_val; |
| int ret = 0; |
| unsigned long flags; |
| |
| rst_val = qib_read_kreg64(dd, kr_ibserdesctrl); |
| if (assert_rst) { |
| /* |
| * Vendor recommends "interrupting" uC before reset, to |
| * minimize possible glitches. |
| */ |
| spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); |
| epb_access(dd, IB_7220_SERDES, 1); |
| rst_val |= 1ULL; |
| /* Squelch possible parity error from _asserting_ reset */ |
| qib_write_kreg(dd, kr_hwerrmask, |
| dd->cspec->hwerrmask & |
| ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); |
| qib_write_kreg(dd, kr_ibserdesctrl, rst_val); |
| /* flush write, delay to ensure it took effect */ |
| qib_read_kreg32(dd, kr_scratch); |
| udelay(2); |
| /* once it's reset, can remove interrupt */ |
| epb_access(dd, IB_7220_SERDES, -1); |
| spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); |
| } else { |
| /* |
| * Before we de-assert reset, we need to deal with |
| * possible glitch on the Parity-error line. |
| * Suppress it around the reset, both in chip-level |
| * hwerrmask and in IB uC control reg. uC will allow |
| * it again during startup. |
| */ |
| u64 val; |
| rst_val &= ~(1ULL); |
| qib_write_kreg(dd, kr_hwerrmask, |
| dd->cspec->hwerrmask & |
| ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); |
| |
| ret = qib_resync_ibepb(dd); |
| if (ret < 0) |
| qib_dev_err(dd, "unable to re-sync IB EPB\n"); |
| |
| /* set uC control regs to suppress parity errs */ |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1); |
| if (ret < 0) |
| goto bail; |
| /* IB uC code past Version 1.32.17 allow suppression of wdog */ |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, |
| 0x80); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed to set WDOG disable\n"); |
| goto bail; |
| } |
| qib_write_kreg(dd, kr_ibserdesctrl, rst_val); |
| /* flush write, delay for startup */ |
| qib_read_kreg32(dd, kr_scratch); |
| udelay(1); |
| /* clear, then re-enable parity errs */ |
| qib_sd7220_clr_ibpar(dd); |
| val = qib_read_kreg64(dd, kr_hwerrstatus); |
| if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) { |
| qib_dev_err(dd, "IBUC Parity still set after RST\n"); |
| dd->cspec->hwerrmask &= |
| ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR; |
| } |
| qib_write_kreg(dd, kr_hwerrmask, |
| dd->cspec->hwerrmask); |
| } |
| |
| bail: |
| return ret; |
| } |
| |
| static void qib_sd_trimdone_monitor(struct qib_devdata *dd, |
| const char *where) |
| { |
| int ret, chn, baduns; |
| u64 val; |
| |
| if (!where) |
| where = "?"; |
| |
| /* give time for reset to settle out in EPB */ |
| udelay(2); |
| |
| ret = qib_resync_ibepb(dd); |
| if (ret < 0) |
| qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where); |
| |
| /* Do "sacrificial read" to get EPB in sane state after reset */ |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0); |
| if (ret < 0) |
| qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where); |
| |
| /* Check/show "summary" Trim-done bit in IBCStatus */ |
| val = qib_read_kreg64(dd, kr_ibcstatus); |
| if (!(val & (1ULL << 11))) |
| qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where); |
| /* |
| * Do "dummy read/mod/wr" to get EPB in sane state after reset |
| * The default value for MPREG6 is 0. |
| */ |
| udelay(2); |
| |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80); |
| if (ret < 0) |
| qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where); |
| udelay(10); |
| |
| baduns = 0; |
| |
| for (chn = 3; chn >= 0; --chn) { |
| /* Read CTRL reg for each channel to check TRIMDONE */ |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, |
| IB_CTRL2(chn), 0, 0); |
| if (ret < 0) |
| qib_dev_err(dd, |
| "Failed checking TRIMDONE, chn %d (%s)\n", |
| chn, where); |
| |
| if (!(ret & 0x10)) { |
| int probe; |
| |
| baduns |= (1 << chn); |
| qib_dev_err(dd, |
| "TRIMDONE cleared on chn %d (%02X). (%s)\n", |
| chn, ret, where); |
| probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, |
| IB_PGUDP(0), 0, 0); |
| qib_dev_err(dd, "probe is %d (%02X)\n", |
| probe, probe); |
| probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, |
| IB_CTRL2(chn), 0, 0); |
| qib_dev_err(dd, "re-read: %d (%02X)\n", |
| probe, probe); |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, |
| IB_CTRL2(chn), 0x10, 0x10); |
| if (ret < 0) |
| qib_dev_err(dd, |
| "Err on TRIMDONE rewrite1\n"); |
| } |
| } |
| for (chn = 3; chn >= 0; --chn) { |
| /* Read CTRL reg for each channel to check TRIMDONE */ |
| if (baduns & (1 << chn)) { |
| qib_dev_err(dd, |
| "Resetting TRIMDONE on chn %d (%s)\n", |
| chn, where); |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, |
| IB_CTRL2(chn), 0x10, 0x10); |
| if (ret < 0) |
| qib_dev_err(dd, |
| "Failed re-setting TRIMDONE, chn %d (%s)\n", |
| chn, where); |
| } |
| } |
| } |
| |
| /* |
| * Below is portion of IBA7220-specific bringup_serdes() that actually |
| * deals with registers and memory within the SerDes itself. |
| * Post IB uC code version 1.32.17, was_reset being 1 is not really |
| * informative, so we double-check. |
| */ |
| int qib_sd7220_init(struct qib_devdata *dd) |
| { |
| const struct firmware *fw; |
| int ret = 1; /* default to failure */ |
| int first_reset, was_reset; |
| |
| /* SERDES MPU reset recorded in D0 */ |
| was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1); |
| if (!was_reset) { |
| /* entered with reset not asserted, we need to do it */ |
| qib_ibsd_reset(dd, 1); |
| qib_sd_trimdone_monitor(dd, "Driver-reload"); |
| } |
| |
| ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev); |
| if (ret) { |
| qib_dev_err(dd, "Failed to load IB SERDES image\n"); |
| goto done; |
| } |
| |
| /* Substitute our deduced value for was_reset */ |
| ret = qib_ibsd_ucode_loaded(dd->pport, fw); |
| if (ret < 0) |
| goto bail; |
| |
| first_reset = !ret; /* First reset if IBSD uCode not yet loaded */ |
| /* |
| * Alter some regs per vendor latest doc, reset-defaults |
| * are not right for IB. |
| */ |
| ret = qib_sd_early(dd); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed to set IB SERDES early defaults\n"); |
| goto bail; |
| } |
| /* |
| * Set DAC manual trim IB. |
| * We only do this once after chip has been reset (usually |
| * same as once per system boot). |
| */ |
| if (first_reset) { |
| ret = qib_sd_dactrim(dd); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed IB SERDES DAC trim\n"); |
| goto bail; |
| } |
| } |
| /* |
| * Set various registers (DDS and RXEQ) that will be |
| * controlled by IBC (in 1.2 mode) to reasonable preset values |
| * Calling the "internal" version avoids the "check for needed" |
| * and "trimdone monitor" that might be counter-productive. |
| */ |
| ret = qib_internal_presets(dd); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed to set IB SERDES presets\n"); |
| goto bail; |
| } |
| ret = qib_sd_trimself(dd, 0x80); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n"); |
| goto bail; |
| } |
| |
| /* Load image, then try to verify */ |
| ret = 0; /* Assume success */ |
| if (first_reset) { |
| int vfy; |
| int trim_done; |
| |
| ret = qib_sd7220_ib_load(dd, fw); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed to load IB SERDES image\n"); |
| goto bail; |
| } else { |
| /* Loaded image, try to verify */ |
| vfy = qib_sd7220_ib_vfy(dd, fw); |
| if (vfy != ret) { |
| qib_dev_err(dd, "SERDES PRAM VFY failed\n"); |
| goto bail; |
| } /* end if verified */ |
| } /* end if loaded */ |
| |
| /* |
| * Loaded and verified. Almost good... |
| * hold "success" in ret |
| */ |
| ret = 0; |
| /* |
| * Prev steps all worked, continue bringup |
| * De-assert RESET to uC, only in first reset, to allow |
| * trimming. |
| * |
| * Since our default setup sets START_EQ1 to |
| * PRESET, we need to clear that for this very first run. |
| */ |
| ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38); |
| if (ret < 0) { |
| qib_dev_err(dd, "Failed clearing START_EQ1\n"); |
| goto bail; |
| } |
| |
| qib_ibsd_reset(dd, 0); |
| /* |
| * If this is not the first reset, trimdone should be set |
| * already. We may need to check about this. |
| */ |
| trim_done = qib_sd_trimdone_poll(dd); |
| /* |
| * Whether or not trimdone succeeded, we need to put the |
| * uC back into reset to avoid a possible fight with the |
| * IBC state-machine. |
| */ |
| qib_ibsd_reset(dd, 1); |
| |
| if (!trim_done) { |
| qib_dev_err(dd, "No TRIMDONE seen\n"); |
| goto bail; |
| } |
| /* |
| * DEBUG: check each time we reset if trimdone bits have |
| * gotten cleared, and re-set them. |
| */ |
| qib_sd_trimdone_monitor(dd, "First-reset"); |
| /* Remember so we do not re-do the load, dactrim, etc. */ |
| dd->cspec->serdes_first_init_done = 1; |
| } |
| /* |
| * setup for channel training and load values for |
| * RxEq and DDS in tables used by IBC in IB1.2 mode |
| */ |
| ret = 0; |
| if (qib_sd_setvals(dd) >= 0) |
| goto done; |
| bail: |
| ret = 1; |
| done: |
| /* start relock timer regardless, but start at 1 second */ |
| set_7220_relock_poll(dd, -1); |
| |
| release_firmware(fw); |
| return ret; |
| } |
| |
| #define EPB_ACC_REQ 1 |
| #define EPB_ACC_GNT 0x100 |
| #define EPB_DATA_MASK 0xFF |
| #define EPB_RD (1ULL << 24) |
| #define EPB_TRANS_RDY (1ULL << 31) |
| #define EPB_TRANS_ERR (1ULL << 30) |
| #define EPB_TRANS_TRIES 5 |
| |
| /* |
| * query, claim, release ownership of the EPB (External Parallel Bus) |
| * for a specified SERDES. |
| * the "claim" parameter is >0 to claim, <0 to release, 0 to query. |
| * Returns <0 for errors, >0 if we had ownership, else 0. |
| */ |
| static int epb_access(struct qib_devdata *dd, int sdnum, int claim) |
| { |
| u16 acc; |
| u64 accval; |
| int owned = 0; |
| u64 oct_sel = 0; |
| |
| switch (sdnum) { |
| case IB_7220_SERDES: |
| /* |
| * The IB SERDES "ownership" is fairly simple. A single each |
| * request/grant. |
| */ |
| acc = kr_ibsd_epb_access_ctrl; |
| break; |
| |
| case PCIE_SERDES0: |
| case PCIE_SERDES1: |
| /* PCIe SERDES has two "octants", need to select which */ |
| acc = kr_pciesd_epb_access_ctrl; |
| oct_sel = (2 << (sdnum - PCIE_SERDES0)); |
| break; |
| |
| default: |
| return 0; |
| } |
| |
| /* Make sure any outstanding transaction was seen */ |
| qib_read_kreg32(dd, kr_scratch); |
| udelay(15); |
| |
| accval = qib_read_kreg32(dd, acc); |
| |
| owned = !!(accval & EPB_ACC_GNT); |
| if (claim < 0) { |
| /* Need to release */ |
| u64 pollval; |
| /* |
| * The only writeable bits are the request and CS. |
| * Both should be clear |
| */ |
| u64 newval = 0; |
| qib_write_kreg(dd, acc, newval); |
| /* First read after write is not trustworthy */ |
| pollval = qib_read_kreg32(dd, acc); |
| udelay(5); |
| pollval = qib_read_kreg32(dd, acc); |
| if (pollval & EPB_ACC_GNT) |
| owned = -1; |
| } else if (claim > 0) { |
| /* Need to claim */ |
| u64 pollval; |
| u64 newval = EPB_ACC_REQ | oct_sel; |
| qib_write_kreg(dd, acc, newval); |
| /* First read after write is not trustworthy */ |
| pollval = qib_read_kreg32(dd, acc); |
| udelay(5); |
| pollval = qib_read_kreg32(dd, acc); |
| if (!(pollval & EPB_ACC_GNT)) |
| owned = -1; |
| } |
| return owned; |
| } |
| |
| /* |
| * Lemma to deal with race condition of write..read to epb regs |
| */ |
| static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp) |
| { |
| int tries; |
| u64 transval; |
| |
| qib_write_kreg(dd, reg, i_val); |
| /* Throw away first read, as RDY bit may be stale */ |
| transval = qib_read_kreg64(dd, reg); |
| |
| for (tries = EPB_TRANS_TRIES; tries; --tries) { |
| transval = qib_read_kreg32(dd, reg); |
| if (transval & EPB_TRANS_RDY) |
| break; |
| udelay(5); |
| } |
| if (transval & EPB_TRANS_ERR) |
| return -1; |
| if (tries > 0 && o_vp) |
| *o_vp = transval; |
| return tries; |
| } |
| |
| /** |
| * qib_sd7220_reg_mod - modify SERDES register |
| * @dd: the qlogic_ib device |
| * @sdnum: which SERDES to access |
| * @loc: location - channel, element, register, as packed by EPB_LOC() macro. |
| * @wd: Write Data - value to set in register |
| * @mask: ones where data should be spliced into reg. |
| * |
| * Basic register read/modify/write, with un-needed acesses elided. That is, |
| * a mask of zero will prevent write, while a mask of 0xFF will prevent read. |
| * returns current (presumed, if a write was done) contents of selected |
| * register, or <0 if errors. |
| */ |
| static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, |
| u32 wd, u32 mask) |
| { |
| u16 trans; |
| u64 transval; |
| int owned; |
| int tries, ret; |
| unsigned long flags; |
| |
| switch (sdnum) { |
| case IB_7220_SERDES: |
| trans = kr_ibsd_epb_transaction_reg; |
| break; |
| |
| case PCIE_SERDES0: |
| case PCIE_SERDES1: |
| trans = kr_pciesd_epb_transaction_reg; |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| /* |
| * All access is locked in software (vs other host threads) and |
| * hardware (vs uC access). |
| */ |
| spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); |
| |
| owned = epb_access(dd, sdnum, 1); |
| if (owned < 0) { |
| spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); |
| return -1; |
| } |
| ret = 0; |
| for (tries = EPB_TRANS_TRIES; tries; --tries) { |
| transval = qib_read_kreg32(dd, trans); |
| if (transval & EPB_TRANS_RDY) |
| break; |
| udelay(5); |
| } |
| |
| if (tries > 0) { |
| tries = 1; /* to make read-skip work */ |
| if (mask != 0xFF) { |
| /* |
| * Not a pure write, so need to read. |
| * loc encodes chip-select as well as address |
| */ |
| transval = loc | EPB_RD; |
| tries = epb_trans(dd, trans, transval, &transval); |
| } |
| if (tries > 0 && mask != 0) { |
| /* |
| * Not a pure read, so need to write. |
| */ |
| wd = (wd & mask) | (transval & ~mask); |
| transval = loc | (wd & EPB_DATA_MASK); |
| tries = epb_trans(dd, trans, transval, &transval); |
| } |
| } |
| /* else, failed to see ready, what error-handling? */ |
| |
| /* |
| * Release bus. Failure is an error. |
| */ |
| if (epb_access(dd, sdnum, -1) < 0) |
| ret = -1; |
| else |
| ret = transval & EPB_DATA_MASK; |
| |
| spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); |
| if (tries <= 0) |
| ret = -1; |
| return ret; |
| } |
| |
| #define EPB_ROM_R (2) |
| #define EPB_ROM_W (1) |
| /* |
| * Below, all uC-related, use appropriate UC_CS, depending |
| * on which SerDes is used. |
| */ |
| #define EPB_UC_CTL EPB_LOC(6, 0, 0) |
| #define EPB_MADDRL EPB_LOC(6, 0, 2) |
| #define EPB_MADDRH EPB_LOC(6, 0, 3) |
| #define EPB_ROMDATA EPB_LOC(6, 0, 4) |
| #define EPB_RAMDATA EPB_LOC(6, 0, 5) |
| |
| /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */ |
| static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc, |
| u8 *buf, int cnt, int rd_notwr) |
| { |
| u16 trans; |
| u64 transval; |
| u64 csbit; |
| int owned; |
| int tries; |
| int sofar; |
| int addr; |
| int ret; |
| unsigned long flags; |
| const char *op; |
| |
| /* Pick appropriate transaction reg and "Chip select" for this serdes */ |
| switch (sdnum) { |
| case IB_7220_SERDES: |
| csbit = 1ULL << EPB_IB_UC_CS_SHF; |
| trans = kr_ibsd_epb_transaction_reg; |
| break; |
| |
| case PCIE_SERDES0: |
| case PCIE_SERDES1: |
| /* PCIe SERDES has uC "chip select" in different bit, too */ |
| csbit = 1ULL << EPB_PCIE_UC_CS_SHF; |
| trans = kr_pciesd_epb_transaction_reg; |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| op = rd_notwr ? "Rd" : "Wr"; |
| spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); |
| |
| owned = epb_access(dd, sdnum, 1); |
| if (owned < 0) { |
| spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); |
| return -1; |
| } |
| |
| /* |
| * In future code, we may need to distinguish several address ranges, |
| * and select various memories based on this. For now, just trim |
| * "loc" (location including address and memory select) to |
| * "addr" (address within memory). we will only support PRAM |
| * The memory is 8KB. |
| */ |
| addr = loc & 0x1FFF; |
| for (tries = EPB_TRANS_TRIES; tries; --tries) { |
| transval = qib_read_kreg32(dd, trans); |
| if (transval & EPB_TRANS_RDY) |
| break; |
| udelay(5); |
| } |
| |
| sofar = 0; |
| if (tries > 0) { |
| /* |
| * Every "memory" access is doubly-indirect. |
| * We set two bytes of address, then read/write |
| * one or mores bytes of data. |
| */ |
| |
| /* First, we set control to "Read" or "Write" */ |
| transval = csbit | EPB_UC_CTL | |
| (rd_notwr ? EPB_ROM_R : EPB_ROM_W); |
| tries = epb_trans(dd, trans, transval, &transval); |
| while (tries > 0 && sofar < cnt) { |
| if (!sofar) { |
| /* Only set address at start of chunk */ |
| int addrbyte = (addr + sofar) >> 8; |
| transval = csbit | EPB_MADDRH | addrbyte; |
| tries = epb_trans(dd, trans, transval, |
| &transval); |
| if (tries <= 0) |
| break; |
| addrbyte = (addr + sofar) & 0xFF; |
| transval = csbit | EPB_MADDRL | addrbyte; |
| tries = epb_trans(dd, trans, transval, |
| &transval); |
| if (tries <= 0) |
| break; |
| } |
| |
| if (rd_notwr) |
| transval = csbit | EPB_ROMDATA | EPB_RD; |
| else |
| transval = csbit | EPB_ROMDATA | buf[sofar]; |
| tries = epb_trans(dd, trans, transval, &transval); |
| if (tries <= 0) |
| break; |
| if (rd_notwr) |
| buf[sofar] = transval & EPB_DATA_MASK; |
| ++sofar; |
| } |
| /* Finally, clear control-bit for Read or Write */ |
| transval = csbit | EPB_UC_CTL; |
| tries = epb_trans(dd, trans, transval, &transval); |
| } |
| |
| ret = sofar; |
| /* Release bus. Failure is an error */ |
| if (epb_access(dd, sdnum, -1) < 0) |
| ret = -1; |
| |
| spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); |
| if (tries <= 0) |
| ret = -1; |
| return ret; |
| } |
| |
| #define PROG_CHUNK 64 |
| |
| static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum, |
| const u8 *img, int len, int offset) |
| { |
| int cnt, sofar, req; |
| |
| sofar = 0; |
| while (sofar < len) { |
| req = len - sofar; |
| if (req > PROG_CHUNK) |
| req = PROG_CHUNK; |
| cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar, |
| (u8 *)img + sofar, req, 0); |
| if (cnt < req) { |
| sofar = -1; |
| break; |
| } |
| sofar += req; |
| } |
| return sofar; |
| } |
| |
| #define VFY_CHUNK 64 |
| #define SD_PRAM_ERROR_LIMIT 42 |
| |
| static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum, |
| const u8 *img, int len, int offset) |
| { |
| int cnt, sofar, req, idx, errors; |
| unsigned char readback[VFY_CHUNK]; |
| |
| errors = 0; |
| sofar = 0; |
| while (sofar < len) { |
| req = len - sofar; |
| if (req > VFY_CHUNK) |
| req = VFY_CHUNK; |
| cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset, |
| readback, req, 1); |
| if (cnt < req) { |
| /* failed in read itself */ |
| sofar = -1; |
| break; |
| } |
| for (idx = 0; idx < cnt; ++idx) { |
| if (readback[idx] != img[idx+sofar]) |
| ++errors; |
| } |
| sofar += cnt; |
| } |
| return errors ? -errors : sofar; |
| } |
| |
| static int |
| qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw) |
| { |
| return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0); |
| } |
| |
| static int |
| qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw) |
| { |
| return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0); |
| } |
| |
| /* |
| * IRQ not set up at this point in init, so we poll. |
| */ |
| #define IB_SERDES_TRIM_DONE (1ULL << 11) |
| #define TRIM_TMO (30) |
| |
| static int qib_sd_trimdone_poll(struct qib_devdata *dd) |
| { |
| int trim_tmo, ret; |
| uint64_t val; |
| |
| /* |
| * Default to failure, so IBC will not start |
| * without IB_SERDES_TRIM_DONE. |
| */ |
| ret = 0; |
| for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) { |
| val = qib_read_kreg64(dd, kr_ibcstatus); |
| if (val & IB_SERDES_TRIM_DONE) { |
| ret = 1; |
| break; |
| } |
| msleep(10); |
| } |
| if (trim_tmo >= TRIM_TMO) { |
| qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo); |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| #define TX_FAST_ELT (9) |
| |
| /* |
| * Set the "negotiation" values for SERDES. These are used by the IB1.2 |
| * link negotiation. Macros below are attempt to keep the values a |
| * little more human-editable. |
| * First, values related to Drive De-emphasis Settings. |
| */ |
| |
| #define NUM_DDS_REGS 6 |
| #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */ |
| |
| #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \ |
| { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \ |
| (main_d << 3) | 4 | (ipre_d >> 2), \ |
| (main_s << 3) | 4 | (ipre_s >> 2), \ |
| ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \ |
| ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } } |
| |
| static struct dds_init { |
| uint8_t reg_vals[NUM_DDS_REGS]; |
| } dds_init_vals[] = { |
| /* DDR(FDR) SDR(HDR) */ |
| /* Vendor recommends below for 3m cable */ |
| #define DDS_3M 0 |
| DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0), |
| DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1), |
| DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0), |
| DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0), |
| DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0), |
| DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0), |
| DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0), |
| DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0), |
| DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0), |
| DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0), |
| DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0), |
| DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0), |
| DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0), |
| /* Vendor recommends below for 1m cable */ |
| #define DDS_1M 13 |
| DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0), |
| DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0), |
| DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0) |
| }; |
| |
| /* |
| * Now the RXEQ section of the table. |
| */ |
| /* Hardware packs an element number and register address thus: */ |
| #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4)) |
| #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \ |
| {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} } |
| |
| #define RXEQ_VAL_ALL(elt, adr, val) \ |
| {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} } |
| |
| #define RXEQ_SDR_DFELTH 0 |
| #define RXEQ_SDR_TLTH 0 |
| #define RXEQ_SDR_G1CNT_Z1CNT 0x11 |
| #define RXEQ_SDR_ZCNT 23 |
| |
| static struct rxeq_init { |
| u16 rdesc; /* in form used in SerDesDDSRXEQ */ |
| u8 rdata[4]; |
| } rxeq_init_vals[] = { |
| /* Set Rcv Eq. to Preset node */ |
| RXEQ_VAL_ALL(7, 0x27, 0x10), |
| /* Set DFELTHFDR/HDR thresholds */ |
| RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */ |
| RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */ |
| /* Set TLTHFDR/HDR theshold */ |
| RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */ |
| RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */ |
| /* Set Preamp setting 2 (ZFR/ZCNT) */ |
| RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */ |
| RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */ |
| /* Set Preamp DC gain and Setting 1 (GFR/GHR) */ |
| RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */ |
| RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */ |
| /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */ |
| RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */ |
| RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */ |
| }; |
| |
| /* There are 17 values from vendor, but IBC only accesses the first 16 */ |
| #define DDS_ROWS (16) |
| #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals) |
| |
| static int qib_sd_setvals(struct qib_devdata *dd) |
| { |
| int idx, midx; |
| int min_idx; /* Minimum index for this portion of table */ |
| uint32_t dds_reg_map; |
| u64 __iomem *taddr, *iaddr; |
| uint64_t data; |
| uint64_t sdctl; |
| |
| taddr = dd->kregbase + kr_serdes_maptable; |
| iaddr = dd->kregbase + kr_serdes_ddsrxeq0; |
| |
| /* |
| * Init the DDS section of the table. |
| * Each "row" of the table provokes NUM_DDS_REG writes, to the |
| * registers indicated in DDS_REG_MAP. |
| */ |
| sdctl = qib_read_kreg64(dd, kr_ibserdesctrl); |
| sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8); |
| sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13); |
| qib_write_kreg(dd, kr_ibserdesctrl, sdctl); |
| |
| /* |
| * Iterate down table within loop for each register to store. |
| */ |
| dds_reg_map = DDS_REG_MAP; |
| for (idx = 0; idx < NUM_DDS_REGS; ++idx) { |
| data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT; |
| writeq(data, iaddr + idx); |
| mmiowb(); |
| qib_read_kreg32(dd, kr_scratch); |
| dds_reg_map >>= 4; |
| for (midx = 0; midx < DDS_ROWS; ++midx) { |
| u64 __iomem *daddr = taddr + ((midx << 4) + idx); |
| data = dds_init_vals[midx].reg_vals[idx]; |
| writeq(data, daddr); |
| mmiowb(); |
| qib_read_kreg32(dd, kr_scratch); |
| } /* End inner for (vals for this reg, each row) */ |
| } /* end outer for (regs to be stored) */ |
| |
| /* |
| * Init the RXEQ section of the table. |
| * This runs in a different order, as the pattern of |
| * register references is more complex, but there are only |
| * four "data" values per register. |
| */ |
| min_idx = idx; /* RXEQ indices pick up where DDS left off */ |
| taddr += 0x100; /* RXEQ data is in second half of table */ |
| /* Iterate through RXEQ register addresses */ |
| for (idx = 0; idx < RXEQ_ROWS; ++idx) { |
| int didx; /* "destination" */ |
| int vidx; |
| |
| /* didx is offset by min_idx to address RXEQ range of regs */ |
| didx = idx + min_idx; |
| /* Store the next RXEQ register address */ |
| writeq(rxeq_init_vals[idx].rdesc, iaddr + didx); |
| mmiowb(); |
| qib_read_kreg32(dd, kr_scratch); |
| /* Iterate through RXEQ values */ |
| for (vidx = 0; vidx < 4; vidx++) { |
| data = rxeq_init_vals[idx].rdata[vidx]; |
| writeq(data, taddr + (vidx << 6) + idx); |
| mmiowb(); |
| qib_read_kreg32(dd, kr_scratch); |
| } |
| } /* end outer for (Reg-writes for RXEQ) */ |
| return 0; |
| } |
| |
| #define CMUCTRL5 EPB_LOC(7, 0, 0x15) |
| #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0) |
| #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5) |
| #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6) |
| #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8) |
| #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28) |
| |
| /* |
| * Repeat a "store" across all channels of the IB SerDes. |
| * Although nominally it inherits the "read value" of the last |
| * channel it modified, the only really useful return is <0 for |
| * failure, >= 0 for success. The parameter 'loc' is assumed to |
| * be the location in some channel of the register to be modified |
| * The caller can specify use of the "gang write" option of EPB, |
| * in which case we use the specified channel data for any fields |
| * not explicitely written. |
| */ |
| static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, |
| int mask) |
| { |
| int ret = -1; |
| int chnl; |
| |
| if (loc & EPB_GLOBAL_WR) { |
| /* |
| * Our caller has assured us that we can set all four |
| * channels at once. Trust that. If mask is not 0xFF, |
| * we will read the _specified_ channel for our starting |
| * value. |
| */ |
| loc |= (1U << EPB_IB_QUAD0_CS_SHF); |
| chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7; |
| if (mask != 0xFF) { |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, |
| loc & ~EPB_GLOBAL_WR, 0, 0); |
| if (ret < 0) { |
| int sloc = loc >> EPB_ADDR_SHF; |
| |
| qib_dev_err(dd, |
| "pre-read failed: elt %d, addr 0x%X, chnl %d\n", |
| (sloc & 0xF), |
| (sloc >> 9) & 0x3f, chnl); |
| return ret; |
| } |
| val = (ret & ~mask) | (val & mask); |
| } |
| loc &= ~(7 << (4+EPB_ADDR_SHF)); |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); |
| if (ret < 0) { |
| int sloc = loc >> EPB_ADDR_SHF; |
| |
| qib_dev_err(dd, |
| "Global WR failed: elt %d, addr 0x%X, val %02X\n", |
| (sloc & 0xF), (sloc >> 9) & 0x3f, val); |
| } |
| return ret; |
| } |
| /* Clear "channel" and set CS so we can simply iterate */ |
| loc &= ~(7 << (4+EPB_ADDR_SHF)); |
| loc |= (1U << EPB_IB_QUAD0_CS_SHF); |
| for (chnl = 0; chnl < 4; ++chnl) { |
| int cloc = loc | (chnl << (4+EPB_ADDR_SHF)); |
| |
| ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask); |
| if (ret < 0) { |
| int sloc = loc >> EPB_ADDR_SHF; |
| |
| qib_dev_err(dd, |
| "Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n", |
| (sloc & 0xF), (sloc >> 9) & 0x3f, chnl, |
| val & 0xFF, mask & 0xFF); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Set the Tx values normally modified by IBC in IB1.2 mode to default |
| * values, as gotten from first row of init table. |
| */ |
| static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi) |
| { |
| int ret; |
| int idx, reg, data; |
| uint32_t regmap; |
| |
| regmap = DDS_REG_MAP; |
| for (idx = 0; idx < NUM_DDS_REGS; ++idx) { |
| reg = (regmap & 0xF); |
| regmap >>= 4; |
| data = ddi->reg_vals[idx]; |
| /* Vendor says RMW not needed for these regs, use 0xFF mask */ |
| ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF); |
| if (ret < 0) |
| break; |
| } |
| return ret; |
| } |
| |
| /* |
| * Set the Rx values normally modified by IBC in IB1.2 mode to default |
| * values, as gotten from selected column of init table. |
| */ |
| static int set_rxeq_vals(struct qib_devdata *dd, int vsel) |
| { |
| int ret; |
| int ridx; |
| int cnt = ARRAY_SIZE(rxeq_init_vals); |
| |
| for (ridx = 0; ridx < cnt; ++ridx) { |
| int elt, reg, val, loc; |
| |
| elt = rxeq_init_vals[ridx].rdesc & 0xF; |
| reg = rxeq_init_vals[ridx].rdesc >> 4; |
| loc = EPB_LOC(0, elt, reg); |
| val = rxeq_init_vals[ridx].rdata[vsel]; |
| /* mask of 0xFF, because hardware does full-byte store. */ |
| ret = ibsd_mod_allchnls(dd, loc, val, 0xFF); |
| if (ret < 0) |
| break; |
| } |
| return ret; |
| } |
| |
| /* |
| * Set the default values (row 0) for DDR Driver Demphasis. |
| * we do this initially and whenever we turn off IB-1.2 |
| * |
| * The "default" values for Rx equalization are also stored to |
| * SerDes registers. Formerly (and still default), we used set 2. |
| * For experimenting with cables and link-partners, we allow changing |
| * that via a module parameter. |
| */ |
| static unsigned qib_rxeq_set = 2; |
| module_param_named(rxeq_default_set, qib_rxeq_set, uint, |
| S_IWUSR | S_IRUGO); |
| MODULE_PARM_DESC(rxeq_default_set, |
| "Which set [0..3] of Rx Equalization values is default"); |
| |
| static int qib_internal_presets(struct qib_devdata *dd) |
| { |
| int ret = 0; |
| |
| ret = set_dds_vals(dd, dds_init_vals + DDS_3M); |
| |
| if (ret < 0) |
| qib_dev_err(dd, "Failed to set default DDS values\n"); |
| ret = set_rxeq_vals(dd, qib_rxeq_set & 3); |
| if (ret < 0) |
| qib_dev_err(dd, "Failed to set default RXEQ values\n"); |
| return ret; |
| } |
| |
| int qib_sd7220_presets(struct qib_devdata *dd) |
| { |
| int ret = 0; |
| |
| if (!dd->cspec->presets_needed) |
| return ret; |
| dd->cspec->presets_needed = 0; |
| /* Assert uC reset, so we don't clash with it. */ |
| qib_ibsd_reset(dd, 1); |
| udelay(2); |
| qib_sd_trimdone_monitor(dd, "link-down"); |
| |
| ret = qib_internal_presets(dd); |
| return ret; |
| } |
| |
| static int qib_sd_trimself(struct qib_devdata *dd, int val) |
| { |
| int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF); |
| |
| return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); |
| } |
| |
| static int qib_sd_early(struct qib_devdata *dd) |
| { |
| int ret; |
| |
| ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF); |
| if (ret < 0) |
| goto bail; |
| ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF); |
| if (ret < 0) |
| goto bail; |
| ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF); |
| bail: |
| return ret; |
| } |
| |
| #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E) |
| #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6) |
| #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF) |
| |
| static int qib_sd_dactrim(struct qib_devdata *dd) |
| { |
| int ret; |
| |
| ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF); |
| if (ret < 0) |
| goto bail; |
| |
| /* more fine-tuning of what will be default */ |
| ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF); |
| if (ret < 0) |
| goto bail; |
| |
| ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF); |
| if (ret < 0) |
| goto bail; |
| |
| ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF); |
| if (ret < 0) |
| goto bail; |
| |
| ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF); |
| if (ret < 0) |
| goto bail; |
| |
| /* |
| * Delay for max possible number of steps, with slop. |
| * Each step is about 4usec. |
| */ |
| udelay(415); |
| |
| ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF); |
| |
| bail: |
| return ret; |
| } |
| |
| #define RELOCK_FIRST_MS 3 |
| #define RXLSPPM(chan) EPB_LOC(chan, 0, 2) |
| void toggle_7220_rclkrls(struct qib_devdata *dd) |
| { |
| int loc = RXLSPPM(0) | EPB_GLOBAL_WR; |
| int ret; |
| |
| ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); |
| if (ret < 0) |
| qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); |
| else { |
| udelay(1); |
| ibsd_mod_allchnls(dd, loc, 0x80, 0x80); |
| } |
| /* And again for good measure */ |
| udelay(1); |
| ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); |
| if (ret < 0) |
| qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); |
| else { |
| udelay(1); |
| ibsd_mod_allchnls(dd, loc, 0x80, 0x80); |
| } |
| /* Now reset xgxs and IBC to complete the recovery */ |
| dd->f_xgxs_reset(dd->pport); |
| } |
| |
| /* |
| * Shut down the timer that polls for relock occasions, if needed |
| * this is "hooked" from qib_7220_quiet_serdes(), which is called |
| * just before qib_shutdown_device() in qib_driver.c shuts down all |
| * the other timers |
| */ |
| void shutdown_7220_relock_poll(struct qib_devdata *dd) |
| { |
| if (dd->cspec->relock_timer_active) |
| del_timer_sync(&dd->cspec->relock_timer); |
| } |
| |
| static unsigned qib_relock_by_timer = 1; |
| module_param_named(relock_by_timer, qib_relock_by_timer, uint, |
| S_IWUSR | S_IRUGO); |
| MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up"); |
| |
| static void qib_run_relock(unsigned long opaque) |
| { |
| struct qib_devdata *dd = (struct qib_devdata *)opaque; |
| struct qib_pportdata *ppd = dd->pport; |
| struct qib_chip_specific *cs = dd->cspec; |
| int timeoff; |
| |
| /* |
| * Check link-training state for "stuck" state, when down. |
| * if found, try relock and schedule another try at |
| * exponentially growing delay, maxed at one second. |
| * if not stuck, our work is done. |
| */ |
| if ((dd->flags & QIB_INITTED) && !(ppd->lflags & |
| (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED | |
| QIBL_LINKACTIVE))) { |
| if (qib_relock_by_timer) { |
| if (!(ppd->lflags & QIBL_IB_LINK_DISABLED)) |
| toggle_7220_rclkrls(dd); |
| } |
| /* re-set timer for next check */ |
| timeoff = cs->relock_interval << 1; |
| if (timeoff > HZ) |
| timeoff = HZ; |
| cs->relock_interval = timeoff; |
| } else |
| timeoff = HZ; |
| mod_timer(&cs->relock_timer, jiffies + timeoff); |
| } |
| |
| void set_7220_relock_poll(struct qib_devdata *dd, int ibup) |
| { |
| struct qib_chip_specific *cs = dd->cspec; |
| |
| if (ibup) { |
| /* We are now up, relax timer to 1 second interval */ |
| if (cs->relock_timer_active) { |
| cs->relock_interval = HZ; |
| mod_timer(&cs->relock_timer, jiffies + HZ); |
| } |
| } else { |
| /* Transition to down, (re-)set timer to short interval. */ |
| unsigned int timeout; |
| |
| timeout = msecs_to_jiffies(RELOCK_FIRST_MS); |
| if (timeout == 0) |
| timeout = 1; |
| /* If timer has not yet been started, do so. */ |
| if (!cs->relock_timer_active) { |
| cs->relock_timer_active = 1; |
| init_timer(&cs->relock_timer); |
| cs->relock_timer.function = qib_run_relock; |
| cs->relock_timer.data = (unsigned long) dd; |
| cs->relock_interval = timeout; |
| cs->relock_timer.expires = jiffies + timeout; |
| add_timer(&cs->relock_timer); |
| } else { |
| cs->relock_interval = timeout; |
| mod_timer(&cs->relock_timer, jiffies + timeout); |
| } |
| } |
| } |