blob: 774a253ca4e1eaa2ab9c8277d22cbcae0d85f676 [file] [log] [blame] [edit]
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
/* #define DEBUG_MMU */
#ifdef DEBUG_MMU
#define dprintk(X...) printk(KERN_INFO X)
#else
#define dprintk(X...) do { } while(0)
#endif
static void kvmppc_mmu_book3s_64_reset_msr(struct kvm_vcpu *vcpu)
{
kvmppc_set_msr(vcpu, vcpu->arch.intr_msr);
}
static struct kvmppc_slb *kvmppc_mmu_book3s_64_find_slbe(
struct kvm_vcpu *vcpu,
gva_t eaddr)
{
int i;
u64 esid = GET_ESID(eaddr);
u64 esid_1t = GET_ESID_1T(eaddr);
for (i = 0; i < vcpu->arch.slb_nr; i++) {
u64 cmp_esid = esid;
if (!vcpu->arch.slb[i].valid)
continue;
if (vcpu->arch.slb[i].tb)
cmp_esid = esid_1t;
if (vcpu->arch.slb[i].esid == cmp_esid)
return &vcpu->arch.slb[i];
}
dprintk("KVM: No SLB entry found for 0x%lx [%llx | %llx]\n",
eaddr, esid, esid_1t);
for (i = 0; i < vcpu->arch.slb_nr; i++) {
if (vcpu->arch.slb[i].vsid)
dprintk(" %d: %c%c%c %llx %llx\n", i,
vcpu->arch.slb[i].valid ? 'v' : ' ',
vcpu->arch.slb[i].large ? 'l' : ' ',
vcpu->arch.slb[i].tb ? 't' : ' ',
vcpu->arch.slb[i].esid,
vcpu->arch.slb[i].vsid);
}
return NULL;
}
static int kvmppc_slb_sid_shift(struct kvmppc_slb *slbe)
{
return slbe->tb ? SID_SHIFT_1T : SID_SHIFT;
}
static u64 kvmppc_slb_offset_mask(struct kvmppc_slb *slbe)
{
return (1ul << kvmppc_slb_sid_shift(slbe)) - 1;
}
static u64 kvmppc_slb_calc_vpn(struct kvmppc_slb *slb, gva_t eaddr)
{
eaddr &= kvmppc_slb_offset_mask(slb);
return (eaddr >> VPN_SHIFT) |
((slb->vsid) << (kvmppc_slb_sid_shift(slb) - VPN_SHIFT));
}
static u64 kvmppc_mmu_book3s_64_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
bool data)
{
struct kvmppc_slb *slb;
slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
if (!slb)
return 0;
return kvmppc_slb_calc_vpn(slb, eaddr);
}
static int mmu_pagesize(int mmu_pg)
{
switch (mmu_pg) {
case MMU_PAGE_64K:
return 16;
case MMU_PAGE_16M:
return 24;
}
return 12;
}
static int kvmppc_mmu_book3s_64_get_pagesize(struct kvmppc_slb *slbe)
{
return mmu_pagesize(slbe->base_page_size);
}
static u32 kvmppc_mmu_book3s_64_get_page(struct kvmppc_slb *slbe, gva_t eaddr)
{
int p = kvmppc_mmu_book3s_64_get_pagesize(slbe);
return ((eaddr & kvmppc_slb_offset_mask(slbe)) >> p);
}
static hva_t kvmppc_mmu_book3s_64_get_pteg(struct kvm_vcpu *vcpu,
struct kvmppc_slb *slbe, gva_t eaddr,
bool second)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
u64 hash, pteg, htabsize;
u32 ssize;
hva_t r;
u64 vpn;
htabsize = ((1 << ((vcpu_book3s->sdr1 & 0x1f) + 11)) - 1);
vpn = kvmppc_slb_calc_vpn(slbe, eaddr);
ssize = slbe->tb ? MMU_SEGSIZE_1T : MMU_SEGSIZE_256M;
hash = hpt_hash(vpn, kvmppc_mmu_book3s_64_get_pagesize(slbe), ssize);
if (second)
hash = ~hash;
hash &= ((1ULL << 39ULL) - 1ULL);
hash &= htabsize;
hash <<= 7ULL;
pteg = vcpu_book3s->sdr1 & 0xfffffffffffc0000ULL;
pteg |= hash;
dprintk("MMU: page=0x%x sdr1=0x%llx pteg=0x%llx vsid=0x%llx\n",
page, vcpu_book3s->sdr1, pteg, slbe->vsid);
/* When running a PAPR guest, SDR1 contains a HVA address instead
of a GPA */
if (vcpu->arch.papr_enabled)
r = pteg;
else
r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT);
if (kvm_is_error_hva(r))
return r;
return r | (pteg & ~PAGE_MASK);
}
static u64 kvmppc_mmu_book3s_64_get_avpn(struct kvmppc_slb *slbe, gva_t eaddr)
{
int p = kvmppc_mmu_book3s_64_get_pagesize(slbe);
u64 avpn;
avpn = kvmppc_mmu_book3s_64_get_page(slbe, eaddr);
avpn |= slbe->vsid << (kvmppc_slb_sid_shift(slbe) - p);
if (p < 16)
avpn >>= ((80 - p) - 56) - 8; /* 16 - p */
else
avpn <<= p - 16;
return avpn;
}
/*
* Return page size encoded in the second word of a HPTE, or
* -1 for an invalid encoding for the base page size indicated by
* the SLB entry. This doesn't handle mixed pagesize segments yet.
*/
static int decode_pagesize(struct kvmppc_slb *slbe, u64 r)
{
switch (slbe->base_page_size) {
case MMU_PAGE_64K:
if ((r & 0xf000) == 0x1000)
return MMU_PAGE_64K;
break;
case MMU_PAGE_16M:
if ((r & 0xff000) == 0)
return MMU_PAGE_16M;
break;
}
return -1;
}
static int kvmppc_mmu_book3s_64_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, bool data,
bool iswrite)
{
struct kvmppc_slb *slbe;
hva_t ptegp;
u64 pteg[16];
u64 avpn = 0;
u64 v, r;
u64 v_val, v_mask;
u64 eaddr_mask;
int i;
u8 pp, key = 0;
bool found = false;
bool second = false;
int pgsize;
ulong mp_ea = vcpu->arch.magic_page_ea;
/* Magic page override */
if (unlikely(mp_ea) &&
unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
gpte->eaddr = eaddr;
gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data);
gpte->raddr = vcpu->arch.magic_page_pa | (gpte->raddr & 0xfff);
gpte->raddr &= KVM_PAM;
gpte->may_execute = true;
gpte->may_read = true;
gpte->may_write = true;
gpte->page_size = MMU_PAGE_4K;
return 0;
}
slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
if (!slbe)
goto no_seg_found;
avpn = kvmppc_mmu_book3s_64_get_avpn(slbe, eaddr);
v_val = avpn & HPTE_V_AVPN;
if (slbe->tb)
v_val |= SLB_VSID_B_1T;
if (slbe->large)
v_val |= HPTE_V_LARGE;
v_val |= HPTE_V_VALID;
v_mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_LARGE | HPTE_V_VALID |
HPTE_V_SECONDARY;
pgsize = slbe->large ? MMU_PAGE_16M : MMU_PAGE_4K;
mutex_lock(&vcpu->kvm->arch.hpt_mutex);
do_second:
ptegp = kvmppc_mmu_book3s_64_get_pteg(vcpu, slbe, eaddr, second);
if (kvm_is_error_hva(ptegp))
goto no_page_found;
if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
printk(KERN_ERR "KVM can't copy data from 0x%lx!\n", ptegp);
goto no_page_found;
}
if ((kvmppc_get_msr(vcpu) & MSR_PR) && slbe->Kp)
key = 4;
else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && slbe->Ks)
key = 4;
for (i=0; i<16; i+=2) {
u64 pte0 = be64_to_cpu(pteg[i]);
u64 pte1 = be64_to_cpu(pteg[i + 1]);
/* Check all relevant fields of 1st dword */
if ((pte0 & v_mask) == v_val) {
/* If large page bit is set, check pgsize encoding */
if (slbe->large &&
(vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
pgsize = decode_pagesize(slbe, pte1);
if (pgsize < 0)
continue;
}
found = true;
break;
}
}
if (!found) {
if (second)
goto no_page_found;
v_val |= HPTE_V_SECONDARY;
second = true;
goto do_second;
}
v = be64_to_cpu(pteg[i]);
r = be64_to_cpu(pteg[i+1]);
pp = (r & HPTE_R_PP) | key;
if (r & HPTE_R_PP0)
pp |= 8;
gpte->eaddr = eaddr;
gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data);
eaddr_mask = (1ull << mmu_pagesize(pgsize)) - 1;
gpte->raddr = (r & HPTE_R_RPN & ~eaddr_mask) | (eaddr & eaddr_mask);
gpte->page_size = pgsize;
gpte->may_execute = ((r & HPTE_R_N) ? false : true);
if (unlikely(vcpu->arch.disable_kernel_nx) &&
!(kvmppc_get_msr(vcpu) & MSR_PR))
gpte->may_execute = true;
gpte->may_read = false;
gpte->may_write = false;
switch (pp) {
case 0:
case 1:
case 2:
case 6:
gpte->may_write = true;
/* fall through */
case 3:
case 5:
case 7:
case 10:
gpte->may_read = true;
break;
}
dprintk("KVM MMU: Translated 0x%lx [0x%llx] -> 0x%llx "
"-> 0x%lx\n",
eaddr, avpn, gpte->vpage, gpte->raddr);
/* Update PTE R and C bits, so the guest's swapper knows we used the
* page */
if (gpte->may_read && !(r & HPTE_R_R)) {
/*
* Set the accessed flag.
* We have to write this back with a single byte write
* because another vcpu may be accessing this on
* non-PAPR platforms such as mac99, and this is
* what real hardware does.
*/
char __user *addr = (char __user *) (ptegp + (i + 1) * sizeof(u64));
r |= HPTE_R_R;
put_user(r >> 8, addr + 6);
}
if (iswrite && gpte->may_write && !(r & HPTE_R_C)) {
/* Set the dirty flag */
/* Use a single byte write */
char __user *addr = (char __user *) (ptegp + (i + 1) * sizeof(u64));
r |= HPTE_R_C;
put_user(r, addr + 7);
}
mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
if (!gpte->may_read || (iswrite && !gpte->may_write))
return -EPERM;
return 0;
no_page_found:
mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
return -ENOENT;
no_seg_found:
dprintk("KVM MMU: Trigger segment fault\n");
return -EINVAL;
}
static void kvmppc_mmu_book3s_64_slbmte(struct kvm_vcpu *vcpu, u64 rs, u64 rb)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
u64 esid, esid_1t;
int slb_nr;
struct kvmppc_slb *slbe;
dprintk("KVM MMU: slbmte(0x%llx, 0x%llx)\n", rs, rb);
vcpu_book3s = to_book3s(vcpu);
esid = GET_ESID(rb);
esid_1t = GET_ESID_1T(rb);
slb_nr = rb & 0xfff;
if (slb_nr > vcpu->arch.slb_nr)
return;
slbe = &vcpu->arch.slb[slb_nr];
slbe->large = (rs & SLB_VSID_L) ? 1 : 0;
slbe->tb = (rs & SLB_VSID_B_1T) ? 1 : 0;
slbe->esid = slbe->tb ? esid_1t : esid;
slbe->vsid = (rs & ~SLB_VSID_B) >> (kvmppc_slb_sid_shift(slbe) - 16);
slbe->valid = (rb & SLB_ESID_V) ? 1 : 0;
slbe->Ks = (rs & SLB_VSID_KS) ? 1 : 0;
slbe->Kp = (rs & SLB_VSID_KP) ? 1 : 0;
slbe->nx = (rs & SLB_VSID_N) ? 1 : 0;
slbe->class = (rs & SLB_VSID_C) ? 1 : 0;
slbe->base_page_size = MMU_PAGE_4K;
if (slbe->large) {
if (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE) {
switch (rs & SLB_VSID_LP) {
case SLB_VSID_LP_00:
slbe->base_page_size = MMU_PAGE_16M;
break;
case SLB_VSID_LP_01:
slbe->base_page_size = MMU_PAGE_64K;
break;
}
} else
slbe->base_page_size = MMU_PAGE_16M;
}
slbe->orige = rb & (ESID_MASK | SLB_ESID_V);
slbe->origv = rs;
/* Map the new segment */
kvmppc_mmu_map_segment(vcpu, esid << SID_SHIFT);
}
static u64 kvmppc_mmu_book3s_64_slbmfee(struct kvm_vcpu *vcpu, u64 slb_nr)
{
struct kvmppc_slb *slbe;
if (slb_nr > vcpu->arch.slb_nr)
return 0;
slbe = &vcpu->arch.slb[slb_nr];
return slbe->orige;
}
static u64 kvmppc_mmu_book3s_64_slbmfev(struct kvm_vcpu *vcpu, u64 slb_nr)
{
struct kvmppc_slb *slbe;
if (slb_nr > vcpu->arch.slb_nr)
return 0;
slbe = &vcpu->arch.slb[slb_nr];
return slbe->origv;
}
static void kvmppc_mmu_book3s_64_slbie(struct kvm_vcpu *vcpu, u64 ea)
{
struct kvmppc_slb *slbe;
u64 seg_size;
dprintk("KVM MMU: slbie(0x%llx)\n", ea);
slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea);
if (!slbe)
return;
dprintk("KVM MMU: slbie(0x%llx, 0x%llx)\n", ea, slbe->esid);
slbe->valid = false;
slbe->orige = 0;
slbe->origv = 0;
seg_size = 1ull << kvmppc_slb_sid_shift(slbe);
kvmppc_mmu_flush_segment(vcpu, ea & ~(seg_size - 1), seg_size);
}
static void kvmppc_mmu_book3s_64_slbia(struct kvm_vcpu *vcpu)
{
int i;
dprintk("KVM MMU: slbia()\n");
for (i = 1; i < vcpu->arch.slb_nr; i++) {
vcpu->arch.slb[i].valid = false;
vcpu->arch.slb[i].orige = 0;
vcpu->arch.slb[i].origv = 0;
}
if (kvmppc_get_msr(vcpu) & MSR_IR) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
}
}
static void kvmppc_mmu_book3s_64_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
ulong value)
{
u64 rb = 0, rs = 0;
/*
* According to Book3 2.01 mtsrin is implemented as:
*
* The SLB entry specified by (RB)32:35 is loaded from register
* RS, as follows.
*
* SLBE Bit Source SLB Field
*
* 0:31 0x0000_0000 ESID-0:31
* 32:35 (RB)32:35 ESID-32:35
* 36 0b1 V
* 37:61 0x00_0000|| 0b0 VSID-0:24
* 62:88 (RS)37:63 VSID-25:51
* 89:91 (RS)33:35 Ks Kp N
* 92 (RS)36 L ((RS)36 must be 0b0)
* 93 0b0 C
*/
dprintk("KVM MMU: mtsrin(0x%x, 0x%lx)\n", srnum, value);
/* ESID = srnum */
rb |= (srnum & 0xf) << 28;
/* Set the valid bit */
rb |= 1 << 27;
/* Index = ESID */
rb |= srnum;
/* VSID = VSID */
rs |= (value & 0xfffffff) << 12;
/* flags = flags */
rs |= ((value >> 28) & 0x7) << 9;
kvmppc_mmu_book3s_64_slbmte(vcpu, rs, rb);
}
static void kvmppc_mmu_book3s_64_tlbie(struct kvm_vcpu *vcpu, ulong va,
bool large)
{
u64 mask = 0xFFFFFFFFFULL;
long i;
struct kvm_vcpu *v;
dprintk("KVM MMU: tlbie(0x%lx)\n", va);
/*
* The tlbie instruction changed behaviour starting with
* POWER6. POWER6 and later don't have the large page flag
* in the instruction but in the RB value, along with bits
* indicating page and segment sizes.
*/
if (vcpu->arch.hflags & BOOK3S_HFLAG_NEW_TLBIE) {
/* POWER6 or later */
if (va & 1) { /* L bit */
if ((va & 0xf000) == 0x1000)
mask = 0xFFFFFFFF0ULL; /* 64k page */
else
mask = 0xFFFFFF000ULL; /* 16M page */
}
} else {
/* older processors, e.g. PPC970 */
if (large)
mask = 0xFFFFFF000ULL;
}
/* flush this VA on all vcpus */
kvm_for_each_vcpu(i, v, vcpu->kvm)
kvmppc_mmu_pte_vflush(v, va >> 12, mask);
}
#ifdef CONFIG_PPC_64K_PAGES
static int segment_contains_magic_page(struct kvm_vcpu *vcpu, ulong esid)
{
ulong mp_ea = vcpu->arch.magic_page_ea;
return mp_ea && !(kvmppc_get_msr(vcpu) & MSR_PR) &&
(mp_ea >> SID_SHIFT) == esid;
}
#endif
static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
u64 *vsid)
{
ulong ea = esid << SID_SHIFT;
struct kvmppc_slb *slb;
u64 gvsid = esid;
ulong mp_ea = vcpu->arch.magic_page_ea;
int pagesize = MMU_PAGE_64K;
u64 msr = kvmppc_get_msr(vcpu);
if (msr & (MSR_DR|MSR_IR)) {
slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea);
if (slb) {
gvsid = slb->vsid;
pagesize = slb->base_page_size;
if (slb->tb) {
gvsid <<= SID_SHIFT_1T - SID_SHIFT;
gvsid |= esid & ((1ul << (SID_SHIFT_1T - SID_SHIFT)) - 1);
gvsid |= VSID_1T;
}
}
}
switch (msr & (MSR_DR|MSR_IR)) {
case 0:
gvsid = VSID_REAL | esid;
break;
case MSR_IR:
gvsid |= VSID_REAL_IR;
break;
case MSR_DR:
gvsid |= VSID_REAL_DR;
break;
case MSR_DR|MSR_IR:
if (!slb)
goto no_slb;
break;
default:
BUG();
break;
}
#ifdef CONFIG_PPC_64K_PAGES
/*
* Mark this as a 64k segment if the host is using
* 64k pages, the host MMU supports 64k pages and
* the guest segment page size is >= 64k,
* but not if this segment contains the magic page.
*/
if (pagesize >= MMU_PAGE_64K &&
mmu_psize_defs[MMU_PAGE_64K].shift &&
!segment_contains_magic_page(vcpu, esid))
gvsid |= VSID_64K;
#endif
if (kvmppc_get_msr(vcpu) & MSR_PR)
gvsid |= VSID_PR;
*vsid = gvsid;
return 0;
no_slb:
/* Catch magic page case */
if (unlikely(mp_ea) &&
unlikely(esid == (mp_ea >> SID_SHIFT)) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
*vsid = VSID_REAL | esid;
return 0;
}
return -EINVAL;
}
static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu)
{
return (to_book3s(vcpu)->hid[5] & 0x80);
}
void kvmppc_mmu_book3s_64_init(struct kvm_vcpu *vcpu)
{
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
mmu->mfsrin = NULL;
mmu->mtsrin = kvmppc_mmu_book3s_64_mtsrin;
mmu->slbmte = kvmppc_mmu_book3s_64_slbmte;
mmu->slbmfee = kvmppc_mmu_book3s_64_slbmfee;
mmu->slbmfev = kvmppc_mmu_book3s_64_slbmfev;
mmu->slbie = kvmppc_mmu_book3s_64_slbie;
mmu->slbia = kvmppc_mmu_book3s_64_slbia;
mmu->xlate = kvmppc_mmu_book3s_64_xlate;
mmu->reset_msr = kvmppc_mmu_book3s_64_reset_msr;
mmu->tlbie = kvmppc_mmu_book3s_64_tlbie;
mmu->esid_to_vsid = kvmppc_mmu_book3s_64_esid_to_vsid;
mmu->ea_to_vp = kvmppc_mmu_book3s_64_ea_to_vp;
mmu->is_dcbz32 = kvmppc_mmu_book3s_64_is_dcbz32;
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}