| /* Authors: Karl MacMillan <kmacmillan@tresys.com> |
| * Frank Mayer <mayerf@tresys.com> |
| * |
| * Copyright (C) 2003 - 2004 Tresys Technology, LLC |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, version 2. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| |
| #include "security.h" |
| #include "conditional.h" |
| #include "services.h" |
| |
| /* |
| * cond_evaluate_expr evaluates a conditional expr |
| * in reverse polish notation. It returns true (1), false (0), |
| * or undefined (-1). Undefined occurs when the expression |
| * exceeds the stack depth of COND_EXPR_MAXDEPTH. |
| */ |
| static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr) |
| { |
| |
| struct cond_expr *cur; |
| int s[COND_EXPR_MAXDEPTH]; |
| int sp = -1; |
| |
| for (cur = expr; cur; cur = cur->next) { |
| switch (cur->expr_type) { |
| case COND_BOOL: |
| if (sp == (COND_EXPR_MAXDEPTH - 1)) |
| return -1; |
| sp++; |
| s[sp] = p->bool_val_to_struct[cur->bool - 1]->state; |
| break; |
| case COND_NOT: |
| if (sp < 0) |
| return -1; |
| s[sp] = !s[sp]; |
| break; |
| case COND_OR: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] |= s[sp + 1]; |
| break; |
| case COND_AND: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] &= s[sp + 1]; |
| break; |
| case COND_XOR: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] ^= s[sp + 1]; |
| break; |
| case COND_EQ: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] = (s[sp] == s[sp + 1]); |
| break; |
| case COND_NEQ: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] = (s[sp] != s[sp + 1]); |
| break; |
| default: |
| return -1; |
| } |
| } |
| return s[0]; |
| } |
| |
| /* |
| * evaluate_cond_node evaluates the conditional stored in |
| * a struct cond_node and if the result is different than the |
| * current state of the node it sets the rules in the true/false |
| * list appropriately. If the result of the expression is undefined |
| * all of the rules are disabled for safety. |
| */ |
| int evaluate_cond_node(struct policydb *p, struct cond_node *node) |
| { |
| int new_state; |
| struct cond_av_list *cur; |
| |
| new_state = cond_evaluate_expr(p, node->expr); |
| if (new_state != node->cur_state) { |
| node->cur_state = new_state; |
| if (new_state == -1) |
| printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n"); |
| /* turn the rules on or off */ |
| for (cur = node->true_list; cur; cur = cur->next) { |
| if (new_state <= 0) |
| cur->node->key.specified &= ~AVTAB_ENABLED; |
| else |
| cur->node->key.specified |= AVTAB_ENABLED; |
| } |
| |
| for (cur = node->false_list; cur; cur = cur->next) { |
| /* -1 or 1 */ |
| if (new_state) |
| cur->node->key.specified &= ~AVTAB_ENABLED; |
| else |
| cur->node->key.specified |= AVTAB_ENABLED; |
| } |
| } |
| return 0; |
| } |
| |
| int cond_policydb_init(struct policydb *p) |
| { |
| int rc; |
| |
| p->bool_val_to_struct = NULL; |
| p->cond_list = NULL; |
| |
| rc = avtab_init(&p->te_cond_avtab); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| static void cond_av_list_destroy(struct cond_av_list *list) |
| { |
| struct cond_av_list *cur, *next; |
| for (cur = list; cur; cur = next) { |
| next = cur->next; |
| /* the avtab_ptr_t node is destroy by the avtab */ |
| kfree(cur); |
| } |
| } |
| |
| static void cond_node_destroy(struct cond_node *node) |
| { |
| struct cond_expr *cur_expr, *next_expr; |
| |
| for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) { |
| next_expr = cur_expr->next; |
| kfree(cur_expr); |
| } |
| cond_av_list_destroy(node->true_list); |
| cond_av_list_destroy(node->false_list); |
| kfree(node); |
| } |
| |
| static void cond_list_destroy(struct cond_node *list) |
| { |
| struct cond_node *next, *cur; |
| |
| if (list == NULL) |
| return; |
| |
| for (cur = list; cur; cur = next) { |
| next = cur->next; |
| cond_node_destroy(cur); |
| } |
| } |
| |
| void cond_policydb_destroy(struct policydb *p) |
| { |
| kfree(p->bool_val_to_struct); |
| avtab_destroy(&p->te_cond_avtab); |
| cond_list_destroy(p->cond_list); |
| } |
| |
| int cond_init_bool_indexes(struct policydb *p) |
| { |
| kfree(p->bool_val_to_struct); |
| p->bool_val_to_struct = |
| kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL); |
| if (!p->bool_val_to_struct) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| int cond_destroy_bool(void *key, void *datum, void *p) |
| { |
| kfree(key); |
| kfree(datum); |
| return 0; |
| } |
| |
| int cond_index_bool(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct cond_bool_datum *booldatum; |
| struct flex_array *fa; |
| |
| booldatum = datum; |
| p = datap; |
| |
| if (!booldatum->value || booldatum->value > p->p_bools.nprim) |
| return -EINVAL; |
| |
| fa = p->sym_val_to_name[SYM_BOOLS]; |
| if (flex_array_put_ptr(fa, booldatum->value - 1, key, |
| GFP_KERNEL | __GFP_ZERO)) |
| BUG(); |
| p->bool_val_to_struct[booldatum->value - 1] = booldatum; |
| |
| return 0; |
| } |
| |
| static int bool_isvalid(struct cond_bool_datum *b) |
| { |
| if (!(b->state == 0 || b->state == 1)) |
| return 0; |
| return 1; |
| } |
| |
| int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct cond_bool_datum *booldatum; |
| __le32 buf[3]; |
| u32 len; |
| int rc; |
| |
| booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL); |
| if (!booldatum) |
| return -ENOMEM; |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc) |
| goto err; |
| |
| booldatum->value = le32_to_cpu(buf[0]); |
| booldatum->state = le32_to_cpu(buf[1]); |
| |
| rc = -EINVAL; |
| if (!bool_isvalid(booldatum)) |
| goto err; |
| |
| len = le32_to_cpu(buf[2]); |
| |
| rc = -ENOMEM; |
| key = kmalloc(len + 1, GFP_KERNEL); |
| if (!key) |
| goto err; |
| rc = next_entry(key, fp, len); |
| if (rc) |
| goto err; |
| key[len] = '\0'; |
| rc = hashtab_insert(h, key, booldatum); |
| if (rc) |
| goto err; |
| |
| return 0; |
| err: |
| cond_destroy_bool(key, booldatum, NULL); |
| return rc; |
| } |
| |
| struct cond_insertf_data { |
| struct policydb *p; |
| struct cond_av_list *other; |
| struct cond_av_list *head; |
| struct cond_av_list *tail; |
| }; |
| |
| static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr) |
| { |
| struct cond_insertf_data *data = ptr; |
| struct policydb *p = data->p; |
| struct cond_av_list *other = data->other, *list, *cur; |
| struct avtab_node *node_ptr; |
| u8 found; |
| int rc = -EINVAL; |
| |
| /* |
| * For type rules we have to make certain there aren't any |
| * conflicting rules by searching the te_avtab and the |
| * cond_te_avtab. |
| */ |
| if (k->specified & AVTAB_TYPE) { |
| if (avtab_search(&p->te_avtab, k)) { |
| printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n"); |
| goto err; |
| } |
| /* |
| * If we are reading the false list other will be a pointer to |
| * the true list. We can have duplicate entries if there is only |
| * 1 other entry and it is in our true list. |
| * |
| * If we are reading the true list (other == NULL) there shouldn't |
| * be any other entries. |
| */ |
| if (other) { |
| node_ptr = avtab_search_node(&p->te_cond_avtab, k); |
| if (node_ptr) { |
| if (avtab_search_node_next(node_ptr, k->specified)) { |
| printk(KERN_ERR "SELinux: too many conflicting type rules.\n"); |
| goto err; |
| } |
| found = 0; |
| for (cur = other; cur; cur = cur->next) { |
| if (cur->node == node_ptr) { |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| printk(KERN_ERR "SELinux: conflicting type rules.\n"); |
| goto err; |
| } |
| } |
| } else { |
| if (avtab_search(&p->te_cond_avtab, k)) { |
| printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n"); |
| goto err; |
| } |
| } |
| } |
| |
| node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d); |
| if (!node_ptr) { |
| printk(KERN_ERR "SELinux: could not insert rule.\n"); |
| rc = -ENOMEM; |
| goto err; |
| } |
| |
| list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL); |
| if (!list) { |
| rc = -ENOMEM; |
| goto err; |
| } |
| |
| list->node = node_ptr; |
| if (!data->head) |
| data->head = list; |
| else |
| data->tail->next = list; |
| data->tail = list; |
| return 0; |
| |
| err: |
| cond_av_list_destroy(data->head); |
| data->head = NULL; |
| return rc; |
| } |
| |
| static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other) |
| { |
| int i, rc; |
| __le32 buf[1]; |
| u32 len; |
| struct cond_insertf_data data; |
| |
| *ret_list = NULL; |
| |
| len = 0; |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc) |
| return rc; |
| |
| len = le32_to_cpu(buf[0]); |
| if (len == 0) |
| return 0; |
| |
| data.p = p; |
| data.other = other; |
| data.head = NULL; |
| data.tail = NULL; |
| for (i = 0; i < len; i++) { |
| rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf, |
| &data); |
| if (rc) |
| return rc; |
| } |
| |
| *ret_list = data.head; |
| return 0; |
| } |
| |
| static int expr_isvalid(struct policydb *p, struct cond_expr *expr) |
| { |
| if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) { |
| printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n"); |
| return 0; |
| } |
| |
| if (expr->bool > p->p_bools.nprim) { |
| printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp) |
| { |
| __le32 buf[2]; |
| u32 len, i; |
| int rc; |
| struct cond_expr *expr = NULL, *last = NULL; |
| |
| rc = next_entry(buf, fp, sizeof(u32) * 2); |
| if (rc) |
| goto err; |
| |
| node->cur_state = le32_to_cpu(buf[0]); |
| |
| /* expr */ |
| len = le32_to_cpu(buf[1]); |
| |
| for (i = 0; i < len; i++) { |
| rc = next_entry(buf, fp, sizeof(u32) * 2); |
| if (rc) |
| goto err; |
| |
| rc = -ENOMEM; |
| expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL); |
| if (!expr) |
| goto err; |
| |
| expr->expr_type = le32_to_cpu(buf[0]); |
| expr->bool = le32_to_cpu(buf[1]); |
| |
| if (!expr_isvalid(p, expr)) { |
| rc = -EINVAL; |
| kfree(expr); |
| goto err; |
| } |
| |
| if (i == 0) |
| node->expr = expr; |
| else |
| last->next = expr; |
| last = expr; |
| } |
| |
| rc = cond_read_av_list(p, fp, &node->true_list, NULL); |
| if (rc) |
| goto err; |
| rc = cond_read_av_list(p, fp, &node->false_list, node->true_list); |
| if (rc) |
| goto err; |
| return 0; |
| err: |
| cond_node_destroy(node); |
| return rc; |
| } |
| |
| int cond_read_list(struct policydb *p, void *fp) |
| { |
| struct cond_node *node, *last = NULL; |
| __le32 buf[1]; |
| u32 i, len; |
| int rc; |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc) |
| return rc; |
| |
| len = le32_to_cpu(buf[0]); |
| |
| rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel); |
| if (rc) |
| goto err; |
| |
| for (i = 0; i < len; i++) { |
| rc = -ENOMEM; |
| node = kzalloc(sizeof(struct cond_node), GFP_KERNEL); |
| if (!node) |
| goto err; |
| |
| rc = cond_read_node(p, node, fp); |
| if (rc) |
| goto err; |
| |
| if (i == 0) |
| p->cond_list = node; |
| else |
| last->next = node; |
| last = node; |
| } |
| return 0; |
| err: |
| cond_list_destroy(p->cond_list); |
| p->cond_list = NULL; |
| return rc; |
| } |
| |
| int cond_write_bool(void *vkey, void *datum, void *ptr) |
| { |
| char *key = vkey; |
| struct cond_bool_datum *booldatum = datum; |
| struct policy_data *pd = ptr; |
| void *fp = pd->fp; |
| __le32 buf[3]; |
| u32 len; |
| int rc; |
| |
| len = strlen(key); |
| buf[0] = cpu_to_le32(booldatum->value); |
| buf[1] = cpu_to_le32(booldatum->state); |
| buf[2] = cpu_to_le32(len); |
| rc = put_entry(buf, sizeof(u32), 3, fp); |
| if (rc) |
| return rc; |
| rc = put_entry(key, 1, len, fp); |
| if (rc) |
| return rc; |
| return 0; |
| } |
| |
| /* |
| * cond_write_cond_av_list doesn't write out the av_list nodes. |
| * Instead it writes out the key/value pairs from the avtab. This |
| * is necessary because there is no way to uniquely identifying rules |
| * in the avtab so it is not possible to associate individual rules |
| * in the avtab with a conditional without saving them as part of |
| * the conditional. This means that the avtab with the conditional |
| * rules will not be saved but will be rebuilt on policy load. |
| */ |
| static int cond_write_av_list(struct policydb *p, |
| struct cond_av_list *list, struct policy_file *fp) |
| { |
| __le32 buf[1]; |
| struct cond_av_list *cur_list; |
| u32 len; |
| int rc; |
| |
| len = 0; |
| for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) |
| len++; |
| |
| buf[0] = cpu_to_le32(len); |
| rc = put_entry(buf, sizeof(u32), 1, fp); |
| if (rc) |
| return rc; |
| |
| if (len == 0) |
| return 0; |
| |
| for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) { |
| rc = avtab_write_item(p, cur_list->node, fp); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int cond_write_node(struct policydb *p, struct cond_node *node, |
| struct policy_file *fp) |
| { |
| struct cond_expr *cur_expr; |
| __le32 buf[2]; |
| int rc; |
| u32 len = 0; |
| |
| buf[0] = cpu_to_le32(node->cur_state); |
| rc = put_entry(buf, sizeof(u32), 1, fp); |
| if (rc) |
| return rc; |
| |
| for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) |
| len++; |
| |
| buf[0] = cpu_to_le32(len); |
| rc = put_entry(buf, sizeof(u32), 1, fp); |
| if (rc) |
| return rc; |
| |
| for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) { |
| buf[0] = cpu_to_le32(cur_expr->expr_type); |
| buf[1] = cpu_to_le32(cur_expr->bool); |
| rc = put_entry(buf, sizeof(u32), 2, fp); |
| if (rc) |
| return rc; |
| } |
| |
| rc = cond_write_av_list(p, node->true_list, fp); |
| if (rc) |
| return rc; |
| rc = cond_write_av_list(p, node->false_list, fp); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| int cond_write_list(struct policydb *p, struct cond_node *list, void *fp) |
| { |
| struct cond_node *cur; |
| u32 len; |
| __le32 buf[1]; |
| int rc; |
| |
| len = 0; |
| for (cur = list; cur != NULL; cur = cur->next) |
| len++; |
| buf[0] = cpu_to_le32(len); |
| rc = put_entry(buf, sizeof(u32), 1, fp); |
| if (rc) |
| return rc; |
| |
| for (cur = list; cur != NULL; cur = cur->next) { |
| rc = cond_write_node(p, cur, fp); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key, |
| struct extended_perms_decision *xpermd) |
| { |
| struct avtab_node *node; |
| |
| if (!ctab || !key || !xpermd) |
| return; |
| |
| for (node = avtab_search_node(ctab, key); node; |
| node = avtab_search_node_next(node, key->specified)) { |
| if (node->key.specified & AVTAB_ENABLED) |
| services_compute_xperms_decision(xpermd, node); |
| } |
| return; |
| |
| } |
| /* Determine whether additional permissions are granted by the conditional |
| * av table, and if so, add them to the result |
| */ |
| void cond_compute_av(struct avtab *ctab, struct avtab_key *key, |
| struct av_decision *avd, struct extended_perms *xperms) |
| { |
| struct avtab_node *node; |
| |
| if (!ctab || !key || !avd) |
| return; |
| |
| for (node = avtab_search_node(ctab, key); node; |
| node = avtab_search_node_next(node, key->specified)) { |
| if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) == |
| (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED))) |
| avd->allowed |= node->datum.u.data; |
| if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) == |
| (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED))) |
| /* Since a '0' in an auditdeny mask represents a |
| * permission we do NOT want to audit (dontaudit), we use |
| * the '&' operand to ensure that all '0's in the mask |
| * are retained (much unlike the allow and auditallow cases). |
| */ |
| avd->auditdeny &= node->datum.u.data; |
| if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) == |
| (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED))) |
| avd->auditallow |= node->datum.u.data; |
| if (xperms && (node->key.specified & AVTAB_ENABLED) && |
| (node->key.specified & AVTAB_XPERMS)) |
| services_compute_xperms_drivers(xperms, node); |
| } |
| return; |
| } |