| /* |
| * fs/f2fs/segment.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/prefetch.h> |
| #include <linux/kthread.h> |
| #include <linux/swap.h> |
| #include <linux/timer.h> |
| |
| #include "f2fs.h" |
| #include "segment.h" |
| #include "node.h" |
| #include "trace.h" |
| #include <trace/events/f2fs.h> |
| |
| #define __reverse_ffz(x) __reverse_ffs(~(x)) |
| |
| static struct kmem_cache *discard_entry_slab; |
| static struct kmem_cache *sit_entry_set_slab; |
| static struct kmem_cache *inmem_entry_slab; |
| |
| static unsigned long __reverse_ulong(unsigned char *str) |
| { |
| unsigned long tmp = 0; |
| int shift = 24, idx = 0; |
| |
| #if BITS_PER_LONG == 64 |
| shift = 56; |
| #endif |
| while (shift >= 0) { |
| tmp |= (unsigned long)str[idx++] << shift; |
| shift -= BITS_PER_BYTE; |
| } |
| return tmp; |
| } |
| |
| /* |
| * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since |
| * MSB and LSB are reversed in a byte by f2fs_set_bit. |
| */ |
| static inline unsigned long __reverse_ffs(unsigned long word) |
| { |
| int num = 0; |
| |
| #if BITS_PER_LONG == 64 |
| if ((word & 0xffffffff00000000UL) == 0) |
| num += 32; |
| else |
| word >>= 32; |
| #endif |
| if ((word & 0xffff0000) == 0) |
| num += 16; |
| else |
| word >>= 16; |
| |
| if ((word & 0xff00) == 0) |
| num += 8; |
| else |
| word >>= 8; |
| |
| if ((word & 0xf0) == 0) |
| num += 4; |
| else |
| word >>= 4; |
| |
| if ((word & 0xc) == 0) |
| num += 2; |
| else |
| word >>= 2; |
| |
| if ((word & 0x2) == 0) |
| num += 1; |
| return num; |
| } |
| |
| /* |
| * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because |
| * f2fs_set_bit makes MSB and LSB reversed in a byte. |
| * Example: |
| * MSB <--> LSB |
| * f2fs_set_bit(0, bitmap) => 1000 0000 |
| * f2fs_set_bit(7, bitmap) => 0000 0001 |
| */ |
| static unsigned long __find_rev_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BIT_WORD(offset); |
| unsigned long result = offset & ~(BITS_PER_LONG - 1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| |
| size -= result; |
| offset %= BITS_PER_LONG; |
| if (!offset) |
| goto aligned; |
| |
| tmp = __reverse_ulong((unsigned char *)p); |
| tmp &= ~0UL >> offset; |
| |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| p++; |
| aligned: |
| while (size & ~(BITS_PER_LONG-1)) { |
| tmp = __reverse_ulong((unsigned char *)p); |
| if (tmp) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| if (!size) |
| return result; |
| |
| tmp = __reverse_ulong((unsigned char *)p); |
| found_first: |
| tmp &= (~0UL << (BITS_PER_LONG - size)); |
| if (!tmp) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __reverse_ffs(tmp); |
| } |
| |
| static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BIT_WORD(offset); |
| unsigned long result = offset & ~(BITS_PER_LONG - 1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| |
| size -= result; |
| offset %= BITS_PER_LONG; |
| if (!offset) |
| goto aligned; |
| |
| tmp = __reverse_ulong((unsigned char *)p); |
| tmp |= ~((~0UL << offset) >> offset); |
| |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp != ~0UL) |
| goto found_middle; |
| |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| p++; |
| aligned: |
| while (size & ~(BITS_PER_LONG - 1)) { |
| tmp = __reverse_ulong((unsigned char *)p); |
| if (tmp != ~0UL) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| if (!size) |
| return result; |
| |
| tmp = __reverse_ulong((unsigned char *)p); |
| found_first: |
| tmp |= ~(~0UL << (BITS_PER_LONG - size)); |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __reverse_ffz(tmp); |
| } |
| |
| void register_inmem_page(struct inode *inode, struct page *page) |
| { |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| struct inmem_pages *new; |
| |
| f2fs_trace_pid(page); |
| |
| set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); |
| SetPagePrivate(page); |
| |
| new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); |
| |
| /* add atomic page indices to the list */ |
| new->page = page; |
| INIT_LIST_HEAD(&new->list); |
| |
| /* increase reference count with clean state */ |
| mutex_lock(&fi->inmem_lock); |
| get_page(page); |
| list_add_tail(&new->list, &fi->inmem_pages); |
| inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); |
| mutex_unlock(&fi->inmem_lock); |
| |
| trace_f2fs_register_inmem_page(page, INMEM); |
| } |
| |
| int commit_inmem_pages(struct inode *inode, bool abort) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| struct inmem_pages *cur, *tmp; |
| bool submit_bio = false; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = DATA, |
| .rw = WRITE_SYNC | REQ_PRIO, |
| .encrypted_page = NULL, |
| }; |
| int err = 0; |
| |
| /* |
| * The abort is true only when f2fs_evict_inode is called. |
| * Basically, the f2fs_evict_inode doesn't produce any data writes, so |
| * that we don't need to call f2fs_balance_fs. |
| * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this |
| * inode becomes free by iget_locked in f2fs_iget. |
| */ |
| if (!abort) { |
| f2fs_balance_fs(sbi); |
| f2fs_lock_op(sbi); |
| } |
| |
| mutex_lock(&fi->inmem_lock); |
| list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { |
| lock_page(cur->page); |
| if (!abort) { |
| if (cur->page->mapping == inode->i_mapping) { |
| set_page_dirty(cur->page); |
| f2fs_wait_on_page_writeback(cur->page, DATA); |
| if (clear_page_dirty_for_io(cur->page)) |
| inode_dec_dirty_pages(inode); |
| trace_f2fs_commit_inmem_page(cur->page, INMEM); |
| fio.page = cur->page; |
| err = do_write_data_page(&fio); |
| if (err) { |
| unlock_page(cur->page); |
| break; |
| } |
| clear_cold_data(cur->page); |
| submit_bio = true; |
| } |
| } else { |
| trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP); |
| } |
| set_page_private(cur->page, 0); |
| ClearPagePrivate(cur->page); |
| f2fs_put_page(cur->page, 1); |
| |
| list_del(&cur->list); |
| kmem_cache_free(inmem_entry_slab, cur); |
| dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); |
| } |
| mutex_unlock(&fi->inmem_lock); |
| |
| if (!abort) { |
| f2fs_unlock_op(sbi); |
| if (submit_bio) |
| f2fs_submit_merged_bio(sbi, DATA, WRITE); |
| } |
| return err; |
| } |
| |
| /* |
| * This function balances dirty node and dentry pages. |
| * In addition, it controls garbage collection. |
| */ |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi) |
| { |
| /* |
| * We should do GC or end up with checkpoint, if there are so many dirty |
| * dir/node pages without enough free segments. |
| */ |
| if (has_not_enough_free_secs(sbi, 0)) { |
| mutex_lock(&sbi->gc_mutex); |
| f2fs_gc(sbi, false); |
| } |
| } |
| |
| void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) |
| { |
| /* try to shrink extent cache when there is no enough memory */ |
| if (!available_free_memory(sbi, EXTENT_CACHE)) |
| f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); |
| |
| /* check the # of cached NAT entries */ |
| if (!available_free_memory(sbi, NAT_ENTRIES)) |
| try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); |
| |
| if (!available_free_memory(sbi, FREE_NIDS)) |
| try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES); |
| |
| /* checkpoint is the only way to shrink partial cached entries */ |
| if (!available_free_memory(sbi, NAT_ENTRIES) || |
| excess_prefree_segs(sbi) || |
| !available_free_memory(sbi, INO_ENTRIES) || |
| jiffies > sbi->cp_expires) |
| f2fs_sync_fs(sbi->sb, true); |
| } |
| |
| static int issue_flush_thread(void *data) |
| { |
| struct f2fs_sb_info *sbi = data; |
| struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; |
| wait_queue_head_t *q = &fcc->flush_wait_queue; |
| repeat: |
| if (kthread_should_stop()) |
| return 0; |
| |
| if (!llist_empty(&fcc->issue_list)) { |
| struct bio *bio; |
| struct flush_cmd *cmd, *next; |
| int ret; |
| |
| bio = f2fs_bio_alloc(0); |
| |
| fcc->dispatch_list = llist_del_all(&fcc->issue_list); |
| fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); |
| |
| bio->bi_bdev = sbi->sb->s_bdev; |
| ret = submit_bio_wait(WRITE_FLUSH, bio); |
| |
| llist_for_each_entry_safe(cmd, next, |
| fcc->dispatch_list, llnode) { |
| cmd->ret = ret; |
| complete(&cmd->wait); |
| } |
| bio_put(bio); |
| fcc->dispatch_list = NULL; |
| } |
| |
| wait_event_interruptible(*q, |
| kthread_should_stop() || !llist_empty(&fcc->issue_list)); |
| goto repeat; |
| } |
| |
| int f2fs_issue_flush(struct f2fs_sb_info *sbi) |
| { |
| struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; |
| struct flush_cmd cmd; |
| |
| trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), |
| test_opt(sbi, FLUSH_MERGE)); |
| |
| if (test_opt(sbi, NOBARRIER)) |
| return 0; |
| |
| if (!test_opt(sbi, FLUSH_MERGE)) { |
| struct bio *bio = f2fs_bio_alloc(0); |
| int ret; |
| |
| bio->bi_bdev = sbi->sb->s_bdev; |
| ret = submit_bio_wait(WRITE_FLUSH, bio); |
| bio_put(bio); |
| return ret; |
| } |
| |
| init_completion(&cmd.wait); |
| |
| llist_add(&cmd.llnode, &fcc->issue_list); |
| |
| if (!fcc->dispatch_list) |
| wake_up(&fcc->flush_wait_queue); |
| |
| wait_for_completion(&cmd.wait); |
| |
| return cmd.ret; |
| } |
| |
| int create_flush_cmd_control(struct f2fs_sb_info *sbi) |
| { |
| dev_t dev = sbi->sb->s_bdev->bd_dev; |
| struct flush_cmd_control *fcc; |
| int err = 0; |
| |
| fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); |
| if (!fcc) |
| return -ENOMEM; |
| init_waitqueue_head(&fcc->flush_wait_queue); |
| init_llist_head(&fcc->issue_list); |
| SM_I(sbi)->cmd_control_info = fcc; |
| fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, |
| "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); |
| if (IS_ERR(fcc->f2fs_issue_flush)) { |
| err = PTR_ERR(fcc->f2fs_issue_flush); |
| kfree(fcc); |
| SM_I(sbi)->cmd_control_info = NULL; |
| return err; |
| } |
| |
| return err; |
| } |
| |
| void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) |
| { |
| struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; |
| |
| if (fcc && fcc->f2fs_issue_flush) |
| kthread_stop(fcc->f2fs_issue_flush); |
| kfree(fcc); |
| SM_I(sbi)->cmd_control_info = NULL; |
| } |
| |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| /* need not be added */ |
| if (IS_CURSEG(sbi, segno)) |
| return; |
| |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]++; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| enum dirty_type t = sentry->type; |
| |
| if (unlikely(t >= DIRTY)) { |
| f2fs_bug_on(sbi, 1); |
| return; |
| } |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) |
| dirty_i->nr_dirty[t]++; |
| } |
| } |
| |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]--; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| enum dirty_type t = sentry->type; |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) |
| dirty_i->nr_dirty[t]--; |
| |
| if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) |
| clear_bit(GET_SECNO(sbi, segno), |
| dirty_i->victim_secmap); |
| } |
| } |
| |
| /* |
| * Should not occur error such as -ENOMEM. |
| * Adding dirty entry into seglist is not critical operation. |
| * If a given segment is one of current working segments, it won't be added. |
| */ |
| static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned short valid_blocks; |
| |
| if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) |
| return; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| valid_blocks = get_valid_blocks(sbi, segno, 0); |
| |
| if (valid_blocks == 0) { |
| __locate_dirty_segment(sbi, segno, PRE); |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } else if (valid_blocks < sbi->blocks_per_seg) { |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| } else { |
| /* Recovery routine with SSR needs this */ |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } |
| |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| static int f2fs_issue_discard(struct f2fs_sb_info *sbi, |
| block_t blkstart, block_t blklen) |
| { |
| sector_t start = SECTOR_FROM_BLOCK(blkstart); |
| sector_t len = SECTOR_FROM_BLOCK(blklen); |
| struct seg_entry *se; |
| unsigned int offset; |
| block_t i; |
| |
| for (i = blkstart; i < blkstart + blklen; i++) { |
| se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); |
| offset = GET_BLKOFF_FROM_SEG0(sbi, i); |
| |
| if (!f2fs_test_and_set_bit(offset, se->discard_map)) |
| sbi->discard_blks--; |
| } |
| trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); |
| return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); |
| } |
| |
| bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| int err = -ENOTSUPP; |
| |
| if (test_opt(sbi, DISCARD)) { |
| struct seg_entry *se = get_seg_entry(sbi, |
| GET_SEGNO(sbi, blkaddr)); |
| unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| |
| if (f2fs_test_bit(offset, se->discard_map)) |
| return false; |
| |
| err = f2fs_issue_discard(sbi, blkaddr, 1); |
| } |
| |
| if (err) { |
| update_meta_page(sbi, NULL, blkaddr); |
| return true; |
| } |
| return false; |
| } |
| |
| static void __add_discard_entry(struct f2fs_sb_info *sbi, |
| struct cp_control *cpc, struct seg_entry *se, |
| unsigned int start, unsigned int end) |
| { |
| struct list_head *head = &SM_I(sbi)->discard_list; |
| struct discard_entry *new, *last; |
| |
| if (!list_empty(head)) { |
| last = list_last_entry(head, struct discard_entry, list); |
| if (START_BLOCK(sbi, cpc->trim_start) + start == |
| last->blkaddr + last->len) { |
| last->len += end - start; |
| goto done; |
| } |
| } |
| |
| new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); |
| INIT_LIST_HEAD(&new->list); |
| new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; |
| new->len = end - start; |
| list_add_tail(&new->list, head); |
| done: |
| SM_I(sbi)->nr_discards += end - start; |
| } |
| |
| static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); |
| int max_blocks = sbi->blocks_per_seg; |
| struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); |
| unsigned long *cur_map = (unsigned long *)se->cur_valid_map; |
| unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; |
| unsigned long *discard_map = (unsigned long *)se->discard_map; |
| unsigned long *dmap = SIT_I(sbi)->tmp_map; |
| unsigned int start = 0, end = -1; |
| bool force = (cpc->reason == CP_DISCARD); |
| int i; |
| |
| if (se->valid_blocks == max_blocks) |
| return; |
| |
| if (!force) { |
| if (!test_opt(sbi, DISCARD) || !se->valid_blocks || |
| SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) |
| return; |
| } |
| |
| /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ |
| for (i = 0; i < entries; i++) |
| dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : |
| (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; |
| |
| while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { |
| start = __find_rev_next_bit(dmap, max_blocks, end + 1); |
| if (start >= max_blocks) |
| break; |
| |
| end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); |
| __add_discard_entry(sbi, cpc, se, start, end); |
| } |
| } |
| |
| void release_discard_addrs(struct f2fs_sb_info *sbi) |
| { |
| struct list_head *head = &(SM_I(sbi)->discard_list); |
| struct discard_entry *entry, *this; |
| |
| /* drop caches */ |
| list_for_each_entry_safe(entry, this, head, list) { |
| list_del(&entry->list); |
| kmem_cache_free(discard_entry_slab, entry); |
| } |
| } |
| |
| /* |
| * Should call clear_prefree_segments after checkpoint is done. |
| */ |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) |
| __set_test_and_free(sbi, segno); |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| struct list_head *head = &(SM_I(sbi)->discard_list); |
| struct discard_entry *entry, *this; |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; |
| unsigned int start = 0, end = -1; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| while (1) { |
| int i; |
| start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); |
| if (start >= MAIN_SEGS(sbi)) |
| break; |
| end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), |
| start + 1); |
| |
| for (i = start; i < end; i++) |
| clear_bit(i, prefree_map); |
| |
| dirty_i->nr_dirty[PRE] -= end - start; |
| |
| if (!test_opt(sbi, DISCARD)) |
| continue; |
| |
| f2fs_issue_discard(sbi, START_BLOCK(sbi, start), |
| (end - start) << sbi->log_blocks_per_seg); |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| /* send small discards */ |
| list_for_each_entry_safe(entry, this, head, list) { |
| if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) |
| goto skip; |
| f2fs_issue_discard(sbi, entry->blkaddr, entry->len); |
| cpc->trimmed += entry->len; |
| skip: |
| list_del(&entry->list); |
| SM_I(sbi)->nr_discards -= entry->len; |
| kmem_cache_free(discard_entry_slab, entry); |
| } |
| } |
| |
| static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { |
| sit_i->dirty_sentries++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, |
| unsigned int segno, int modified) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, segno); |
| se->type = type; |
| if (modified) |
| __mark_sit_entry_dirty(sbi, segno); |
| } |
| |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) |
| { |
| struct seg_entry *se; |
| unsigned int segno, offset; |
| long int new_vblocks; |
| |
| segno = GET_SEGNO(sbi, blkaddr); |
| |
| se = get_seg_entry(sbi, segno); |
| new_vblocks = se->valid_blocks + del; |
| offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| |
| f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || |
| (new_vblocks > sbi->blocks_per_seg))); |
| |
| se->valid_blocks = new_vblocks; |
| se->mtime = get_mtime(sbi); |
| SIT_I(sbi)->max_mtime = se->mtime; |
| |
| /* Update valid block bitmap */ |
| if (del > 0) { |
| if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) |
| f2fs_bug_on(sbi, 1); |
| if (!f2fs_test_and_set_bit(offset, se->discard_map)) |
| sbi->discard_blks--; |
| } else { |
| if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) |
| f2fs_bug_on(sbi, 1); |
| if (f2fs_test_and_clear_bit(offset, se->discard_map)) |
| sbi->discard_blks++; |
| } |
| if (!f2fs_test_bit(offset, se->ckpt_valid_map)) |
| se->ckpt_valid_blocks += del; |
| |
| __mark_sit_entry_dirty(sbi, segno); |
| |
| /* update total number of valid blocks to be written in ckpt area */ |
| SIT_I(sbi)->written_valid_blocks += del; |
| |
| if (sbi->segs_per_sec > 1) |
| get_sec_entry(sbi, segno)->valid_blocks += del; |
| } |
| |
| void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) |
| { |
| update_sit_entry(sbi, new, 1); |
| if (GET_SEGNO(sbi, old) != NULL_SEGNO) |
| update_sit_entry(sbi, old, -1); |
| |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); |
| } |
| |
| void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) |
| { |
| unsigned int segno = GET_SEGNO(sbi, addr); |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| f2fs_bug_on(sbi, addr == NULL_ADDR); |
| if (addr == NEW_ADDR) |
| return; |
| |
| /* add it into sit main buffer */ |
| mutex_lock(&sit_i->sentry_lock); |
| |
| update_sit_entry(sbi, addr, -1); |
| |
| /* add it into dirty seglist */ |
| locate_dirty_segment(sbi, segno); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| } |
| |
| bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int segno, offset; |
| struct seg_entry *se; |
| bool is_cp = false; |
| |
| if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) |
| return true; |
| |
| mutex_lock(&sit_i->sentry_lock); |
| |
| segno = GET_SEGNO(sbi, blkaddr); |
| se = get_seg_entry(sbi, segno); |
| offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| |
| if (f2fs_test_bit(offset, se->ckpt_valid_map)) |
| is_cp = true; |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| |
| return is_cp; |
| } |
| |
| /* |
| * This function should be resided under the curseg_mutex lock |
| */ |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, |
| struct f2fs_summary *sum) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| void *addr = curseg->sum_blk; |
| addr += curseg->next_blkoff * sizeof(struct f2fs_summary); |
| memcpy(addr, sum, sizeof(struct f2fs_summary)); |
| } |
| |
| /* |
| * Calculate the number of current summary pages for writing |
| */ |
| int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) |
| { |
| int valid_sum_count = 0; |
| int i, sum_in_page; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| valid_sum_count += sbi->blocks_per_seg; |
| else { |
| if (for_ra) |
| valid_sum_count += le16_to_cpu( |
| F2FS_CKPT(sbi)->cur_data_blkoff[i]); |
| else |
| valid_sum_count += curseg_blkoff(sbi, i); |
| } |
| } |
| |
| sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - |
| SUM_FOOTER_SIZE) / SUMMARY_SIZE; |
| if (valid_sum_count <= sum_in_page) |
| return 1; |
| else if ((valid_sum_count - sum_in_page) <= |
| (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) |
| return 2; |
| return 3; |
| } |
| |
| /* |
| * Caller should put this summary page |
| */ |
| struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); |
| } |
| |
| void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) |
| { |
| struct page *page = grab_meta_page(sbi, blk_addr); |
| void *dst = page_address(page); |
| |
| if (src) |
| memcpy(dst, src, PAGE_CACHE_SIZE); |
| else |
| memset(dst, 0, PAGE_CACHE_SIZE); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| |
| static void write_sum_page(struct f2fs_sb_info *sbi, |
| struct f2fs_summary_block *sum_blk, block_t blk_addr) |
| { |
| update_meta_page(sbi, (void *)sum_blk, blk_addr); |
| } |
| |
| static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno + 1; |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| |
| if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) |
| return !test_bit(segno, free_i->free_segmap); |
| return 0; |
| } |
| |
| /* |
| * Find a new segment from the free segments bitmap to right order |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void get_new_segment(struct f2fs_sb_info *sbi, |
| unsigned int *newseg, bool new_sec, int dir) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno, secno, zoneno; |
| unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; |
| unsigned int hint = *newseg / sbi->segs_per_sec; |
| unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); |
| unsigned int left_start = hint; |
| bool init = true; |
| int go_left = 0; |
| int i; |
| |
| spin_lock(&free_i->segmap_lock); |
| |
| if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { |
| segno = find_next_zero_bit(free_i->free_segmap, |
| MAIN_SEGS(sbi), *newseg + 1); |
| if (segno - *newseg < sbi->segs_per_sec - |
| (*newseg % sbi->segs_per_sec)) |
| goto got_it; |
| } |
| find_other_zone: |
| secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); |
| if (secno >= MAIN_SECS(sbi)) { |
| if (dir == ALLOC_RIGHT) { |
| secno = find_next_zero_bit(free_i->free_secmap, |
| MAIN_SECS(sbi), 0); |
| f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); |
| } else { |
| go_left = 1; |
| left_start = hint - 1; |
| } |
| } |
| if (go_left == 0) |
| goto skip_left; |
| |
| while (test_bit(left_start, free_i->free_secmap)) { |
| if (left_start > 0) { |
| left_start--; |
| continue; |
| } |
| left_start = find_next_zero_bit(free_i->free_secmap, |
| MAIN_SECS(sbi), 0); |
| f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); |
| break; |
| } |
| secno = left_start; |
| skip_left: |
| hint = secno; |
| segno = secno * sbi->segs_per_sec; |
| zoneno = secno / sbi->secs_per_zone; |
| |
| /* give up on finding another zone */ |
| if (!init) |
| goto got_it; |
| if (sbi->secs_per_zone == 1) |
| goto got_it; |
| if (zoneno == old_zoneno) |
| goto got_it; |
| if (dir == ALLOC_LEFT) { |
| if (!go_left && zoneno + 1 >= total_zones) |
| goto got_it; |
| if (go_left && zoneno == 0) |
| goto got_it; |
| } |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| if (CURSEG_I(sbi, i)->zone == zoneno) |
| break; |
| |
| if (i < NR_CURSEG_TYPE) { |
| /* zone is in user, try another */ |
| if (go_left) |
| hint = zoneno * sbi->secs_per_zone - 1; |
| else if (zoneno + 1 >= total_zones) |
| hint = 0; |
| else |
| hint = (zoneno + 1) * sbi->secs_per_zone; |
| init = false; |
| goto find_other_zone; |
| } |
| got_it: |
| /* set it as dirty segment in free segmap */ |
| f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); |
| __set_inuse(sbi, segno); |
| *newseg = segno; |
| spin_unlock(&free_i->segmap_lock); |
| } |
| |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| struct summary_footer *sum_footer; |
| |
| curseg->segno = curseg->next_segno; |
| curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); |
| curseg->next_blkoff = 0; |
| curseg->next_segno = NULL_SEGNO; |
| |
| sum_footer = &(curseg->sum_blk->footer); |
| memset(sum_footer, 0, sizeof(struct summary_footer)); |
| if (IS_DATASEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); |
| if (IS_NODESEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); |
| __set_sit_entry_type(sbi, type, curseg->segno, modified); |
| } |
| |
| /* |
| * Allocate a current working segment. |
| * This function always allocates a free segment in LFS manner. |
| */ |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno; |
| int dir = ALLOC_LEFT; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, segno)); |
| if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) |
| dir = ALLOC_RIGHT; |
| |
| if (test_opt(sbi, NOHEAP)) |
| dir = ALLOC_RIGHT; |
| |
| get_new_segment(sbi, &segno, new_sec, dir); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = LFS; |
| } |
| |
| static void __next_free_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg, block_t start) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, seg->segno); |
| int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); |
| unsigned long *target_map = SIT_I(sbi)->tmp_map; |
| unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; |
| unsigned long *cur_map = (unsigned long *)se->cur_valid_map; |
| int i, pos; |
| |
| for (i = 0; i < entries; i++) |
| target_map[i] = ckpt_map[i] | cur_map[i]; |
| |
| pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); |
| |
| seg->next_blkoff = pos; |
| } |
| |
| /* |
| * If a segment is written by LFS manner, next block offset is just obtained |
| * by increasing the current block offset. However, if a segment is written by |
| * SSR manner, next block offset obtained by calling __next_free_blkoff |
| */ |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg) |
| { |
| if (seg->alloc_type == SSR) |
| __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); |
| else |
| seg->next_blkoff++; |
| } |
| |
| /* |
| * This function always allocates a used segment(from dirty seglist) by SSR |
| * manner, so it should recover the existing segment information of valid blocks |
| */ |
| static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int new_segno = curseg->next_segno; |
| struct f2fs_summary_block *sum_node; |
| struct page *sum_page; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, curseg->segno)); |
| __set_test_and_inuse(sbi, new_segno); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| __remove_dirty_segment(sbi, new_segno, PRE); |
| __remove_dirty_segment(sbi, new_segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = SSR; |
| __next_free_blkoff(sbi, curseg, 0); |
| |
| if (reuse) { |
| sum_page = get_sum_page(sbi, new_segno); |
| sum_node = (struct f2fs_summary_block *)page_address(sum_page); |
| memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); |
| f2fs_put_page(sum_page, 1); |
| } |
| } |
| |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; |
| |
| if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) |
| return v_ops->get_victim(sbi, |
| &(curseg)->next_segno, BG_GC, type, SSR); |
| |
| /* For data segments, let's do SSR more intensively */ |
| for (; type >= CURSEG_HOT_DATA; type--) |
| if (v_ops->get_victim(sbi, &(curseg)->next_segno, |
| BG_GC, type, SSR)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * flush out current segment and replace it with new segment |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi, |
| int type, bool force) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| |
| if (force) |
| new_curseg(sbi, type, true); |
| else if (type == CURSEG_WARM_NODE) |
| new_curseg(sbi, type, false); |
| else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) |
| new_curseg(sbi, type, false); |
| else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) |
| change_curseg(sbi, type, true); |
| else |
| new_curseg(sbi, type, false); |
| |
| stat_inc_seg_type(sbi, curseg); |
| } |
| |
| static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int old_segno; |
| |
| old_segno = curseg->segno; |
| SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); |
| locate_dirty_segment(sbi, old_segno); |
| } |
| |
| void allocate_new_segments(struct f2fs_sb_info *sbi) |
| { |
| int i; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) |
| __allocate_new_segments(sbi, i); |
| } |
| |
| static const struct segment_allocation default_salloc_ops = { |
| .allocate_segment = allocate_segment_by_default, |
| }; |
| |
| int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) |
| { |
| __u64 start = F2FS_BYTES_TO_BLK(range->start); |
| __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; |
| unsigned int start_segno, end_segno; |
| struct cp_control cpc; |
| |
| if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) |
| return -EINVAL; |
| |
| cpc.trimmed = 0; |
| if (end <= MAIN_BLKADDR(sbi)) |
| goto out; |
| |
| /* start/end segment number in main_area */ |
| start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); |
| end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : |
| GET_SEGNO(sbi, end); |
| cpc.reason = CP_DISCARD; |
| cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); |
| |
| /* do checkpoint to issue discard commands safely */ |
| for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { |
| cpc.trim_start = start_segno; |
| |
| if (sbi->discard_blks == 0) |
| break; |
| else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) |
| cpc.trim_end = end_segno; |
| else |
| cpc.trim_end = min_t(unsigned int, |
| rounddown(start_segno + |
| BATCHED_TRIM_SEGMENTS(sbi), |
| sbi->segs_per_sec) - 1, end_segno); |
| |
| mutex_lock(&sbi->gc_mutex); |
| write_checkpoint(sbi, &cpc); |
| mutex_unlock(&sbi->gc_mutex); |
| } |
| out: |
| range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); |
| return 0; |
| } |
| |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| if (curseg->next_blkoff < sbi->blocks_per_seg) |
| return true; |
| return false; |
| } |
| |
| static int __get_segment_type_2(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_HOT_NODE; |
| } |
| |
| static int __get_segment_type_4(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) { |
| struct inode *inode = page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_COLD_DATA; |
| } else { |
| if (IS_DNODE(page) && is_cold_node(page)) |
| return CURSEG_WARM_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type_6(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) { |
| struct inode *inode = page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else if (is_cold_data(page) || file_is_cold(inode)) |
| return CURSEG_COLD_DATA; |
| else |
| return CURSEG_WARM_DATA; |
| } else { |
| if (IS_DNODE(page)) |
| return is_cold_node(page) ? CURSEG_WARM_NODE : |
| CURSEG_HOT_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type(struct page *page, enum page_type p_type) |
| { |
| switch (F2FS_P_SB(page)->active_logs) { |
| case 2: |
| return __get_segment_type_2(page, p_type); |
| case 4: |
| return __get_segment_type_4(page, p_type); |
| } |
| /* NR_CURSEG_TYPE(6) logs by default */ |
| f2fs_bug_on(F2FS_P_SB(page), |
| F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); |
| return __get_segment_type_6(page, p_type); |
| } |
| |
| void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, |
| block_t old_blkaddr, block_t *new_blkaddr, |
| struct f2fs_summary *sum, int type) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| bool direct_io = (type == CURSEG_DIRECT_IO); |
| |
| type = direct_io ? CURSEG_WARM_DATA : type; |
| |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| /* direct_io'ed data is aligned to the segment for better performance */ |
| if (direct_io && curseg->next_blkoff && |
| !has_not_enough_free_secs(sbi, 0)) |
| __allocate_new_segments(sbi, type); |
| |
| *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); |
| |
| /* |
| * __add_sum_entry should be resided under the curseg_mutex |
| * because, this function updates a summary entry in the |
| * current summary block. |
| */ |
| __add_sum_entry(sbi, type, sum); |
| |
| __refresh_next_blkoff(sbi, curseg); |
| |
| stat_inc_block_count(sbi, curseg); |
| |
| if (!__has_curseg_space(sbi, type)) |
| sit_i->s_ops->allocate_segment(sbi, type, false); |
| /* |
| * SIT information should be updated before segment allocation, |
| * since SSR needs latest valid block information. |
| */ |
| refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| |
| if (page && IS_NODESEG(type)) |
| fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); |
| |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) |
| { |
| int type = __get_segment_type(fio->page, fio->type); |
| |
| allocate_data_block(fio->sbi, fio->page, fio->blk_addr, |
| &fio->blk_addr, sum, type); |
| |
| /* writeout dirty page into bdev */ |
| f2fs_submit_page_mbio(fio); |
| } |
| |
| void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = META, |
| .rw = WRITE_SYNC | REQ_META | REQ_PRIO, |
| .blk_addr = page->index, |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| |
| if (unlikely(page->index >= MAIN_BLKADDR(sbi))) |
| fio.rw &= ~REQ_META; |
| |
| set_page_writeback(page); |
| f2fs_submit_page_mbio(&fio); |
| } |
| |
| void write_node_page(unsigned int nid, struct f2fs_io_info *fio) |
| { |
| struct f2fs_summary sum; |
| |
| set_summary(&sum, nid, 0, 0); |
| do_write_page(&sum, fio); |
| } |
| |
| void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| struct f2fs_summary sum; |
| struct node_info ni; |
| |
| f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); |
| get_node_info(sbi, dn->nid, &ni); |
| set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); |
| do_write_page(&sum, fio); |
| dn->data_blkaddr = fio->blk_addr; |
| } |
| |
| void rewrite_data_page(struct f2fs_io_info *fio) |
| { |
| stat_inc_inplace_blocks(fio->sbi); |
| f2fs_submit_page_mbio(fio); |
| } |
| |
| static void __f2fs_replace_block(struct f2fs_sb_info *sbi, |
| struct f2fs_summary *sum, |
| block_t old_blkaddr, block_t new_blkaddr, |
| bool recover_curseg) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| unsigned int segno, old_cursegno; |
| struct seg_entry *se; |
| int type; |
| unsigned short old_blkoff; |
| |
| segno = GET_SEGNO(sbi, new_blkaddr); |
| se = get_seg_entry(sbi, segno); |
| type = se->type; |
| |
| if (!recover_curseg) { |
| /* for recovery flow */ |
| if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { |
| if (old_blkaddr == NULL_ADDR) |
| type = CURSEG_COLD_DATA; |
| else |
| type = CURSEG_WARM_DATA; |
| } |
| } else { |
| if (!IS_CURSEG(sbi, segno)) |
| type = CURSEG_WARM_DATA; |
| } |
| |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| old_cursegno = curseg->segno; |
| old_blkoff = curseg->next_blkoff; |
| |
| /* change the current segment */ |
| if (segno != curseg->segno) { |
| curseg->next_segno = segno; |
| change_curseg(sbi, type, true); |
| } |
| |
| curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); |
| __add_sum_entry(sbi, type, sum); |
| |
| if (!recover_curseg) |
| update_sit_entry(sbi, new_blkaddr, 1); |
| if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) |
| update_sit_entry(sbi, old_blkaddr, -1); |
| |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| |
| if (recover_curseg) { |
| if (old_cursegno != curseg->segno) { |
| curseg->next_segno = old_cursegno; |
| change_curseg(sbi, type, true); |
| } |
| curseg->next_blkoff = old_blkoff; |
| } |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, |
| block_t old_addr, block_t new_addr, |
| unsigned char version, bool recover_curseg) |
| { |
| struct f2fs_summary sum; |
| |
| set_summary(&sum, dn->nid, dn->ofs_in_node, version); |
| |
| __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg); |
| |
| dn->data_blkaddr = new_addr; |
| set_data_blkaddr(dn); |
| f2fs_update_extent_cache(dn); |
| } |
| |
| static inline bool is_merged_page(struct f2fs_sb_info *sbi, |
| struct page *page, enum page_type type) |
| { |
| enum page_type btype = PAGE_TYPE_OF_BIO(type); |
| struct f2fs_bio_info *io = &sbi->write_io[btype]; |
| struct bio_vec *bvec; |
| struct page *target; |
| int i; |
| |
| down_read(&io->io_rwsem); |
| if (!io->bio) { |
| up_read(&io->io_rwsem); |
| return false; |
| } |
| |
| bio_for_each_segment_all(bvec, io->bio, i) { |
| |
| if (bvec->bv_page->mapping) { |
| target = bvec->bv_page; |
| } else { |
| struct f2fs_crypto_ctx *ctx; |
| |
| /* encrypted page */ |
| ctx = (struct f2fs_crypto_ctx *)page_private( |
| bvec->bv_page); |
| target = ctx->w.control_page; |
| } |
| |
| if (page == target) { |
| up_read(&io->io_rwsem); |
| return true; |
| } |
| } |
| |
| up_read(&io->io_rwsem); |
| return false; |
| } |
| |
| void f2fs_wait_on_page_writeback(struct page *page, |
| enum page_type type) |
| { |
| if (PageWriteback(page)) { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| |
| if (is_merged_page(sbi, page, type)) |
| f2fs_submit_merged_bio(sbi, type, WRITE); |
| wait_on_page_writeback(page); |
| } |
| } |
| |
| void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, |
| block_t blkaddr) |
| { |
| struct page *cpage; |
| |
| if (blkaddr == NEW_ADDR) |
| return; |
| |
| f2fs_bug_on(sbi, blkaddr == NULL_ADDR); |
| |
| cpage = find_lock_page(META_MAPPING(sbi), blkaddr); |
| if (cpage) { |
| f2fs_wait_on_page_writeback(cpage, DATA); |
| f2fs_put_page(cpage, 1); |
| } |
| } |
| |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct curseg_info *seg_i; |
| unsigned char *kaddr; |
| struct page *page; |
| block_t start; |
| int i, j, offset; |
| |
| start = start_sum_block(sbi); |
| |
| page = get_meta_page(sbi, start++); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: restore nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); |
| |
| /* Step 2: restore sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, |
| SUM_JOURNAL_SIZE); |
| offset = 2 * SUM_JOURNAL_SIZE; |
| |
| /* Step 3: restore summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blk_off; |
| unsigned int segno; |
| |
| seg_i = CURSEG_I(sbi, i); |
| segno = le32_to_cpu(ckpt->cur_data_segno[i]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); |
| seg_i->next_segno = segno; |
| reset_curseg(sbi, i, 0); |
| seg_i->alloc_type = ckpt->alloc_type[i]; |
| seg_i->next_blkoff = blk_off; |
| |
| if (seg_i->alloc_type == SSR) |
| blk_off = sbi->blocks_per_seg; |
| |
| for (j = 0; j < blk_off; j++) { |
| struct f2fs_summary *s; |
| s = (struct f2fs_summary *)(kaddr + offset); |
| seg_i->sum_blk->entries[j] = *s; |
| offset += SUMMARY_SIZE; |
| if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| f2fs_put_page(page, 1); |
| page = NULL; |
| |
| page = get_meta_page(sbi, start++); |
| kaddr = (unsigned char *)page_address(page); |
| offset = 0; |
| } |
| } |
| f2fs_put_page(page, 1); |
| return 0; |
| } |
| |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_summary_block *sum; |
| struct curseg_info *curseg; |
| struct page *new; |
| unsigned short blk_off; |
| unsigned int segno = 0; |
| block_t blk_addr = 0; |
| |
| /* get segment number and block addr */ |
| if (IS_DATASEG(type)) { |
| segno = le32_to_cpu(ckpt->cur_data_segno[type]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - |
| CURSEG_HOT_DATA]); |
| if (__exist_node_summaries(sbi)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); |
| else |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); |
| } else { |
| segno = le32_to_cpu(ckpt->cur_node_segno[type - |
| CURSEG_HOT_NODE]); |
| blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - |
| CURSEG_HOT_NODE]); |
| if (__exist_node_summaries(sbi)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, |
| type - CURSEG_HOT_NODE); |
| else |
| blk_addr = GET_SUM_BLOCK(sbi, segno); |
| } |
| |
| new = get_meta_page(sbi, blk_addr); |
| sum = (struct f2fs_summary_block *)page_address(new); |
| |
| if (IS_NODESEG(type)) { |
| if (__exist_node_summaries(sbi)) { |
| struct f2fs_summary *ns = &sum->entries[0]; |
| int i; |
| for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { |
| ns->version = 0; |
| ns->ofs_in_node = 0; |
| } |
| } else { |
| int err; |
| |
| err = restore_node_summary(sbi, segno, sum); |
| if (err) { |
| f2fs_put_page(new, 1); |
| return err; |
| } |
| } |
| } |
| |
| /* set uncompleted segment to curseg */ |
| curseg = CURSEG_I(sbi, type); |
| mutex_lock(&curseg->curseg_mutex); |
| memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 0); |
| curseg->alloc_type = ckpt->alloc_type[type]; |
| curseg->next_blkoff = blk_off; |
| mutex_unlock(&curseg->curseg_mutex); |
| f2fs_put_page(new, 1); |
| return 0; |
| } |
| |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi) |
| { |
| int type = CURSEG_HOT_DATA; |
| int err; |
| |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { |
| int npages = npages_for_summary_flush(sbi, true); |
| |
| if (npages >= 2) |
| ra_meta_pages(sbi, start_sum_block(sbi), npages, |
| META_CP, true); |
| |
| /* restore for compacted data summary */ |
| if (read_compacted_summaries(sbi)) |
| return -EINVAL; |
| type = CURSEG_HOT_NODE; |
| } |
| |
| if (__exist_node_summaries(sbi)) |
| ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), |
| NR_CURSEG_TYPE - type, META_CP, true); |
| |
| for (; type <= CURSEG_COLD_NODE; type++) { |
| err = read_normal_summaries(sbi, type); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct page *page; |
| unsigned char *kaddr; |
| struct f2fs_summary *summary; |
| struct curseg_info *seg_i; |
| int written_size = 0; |
| int i, j; |
| |
| page = grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: write nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 2: write sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, |
| SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 3: write summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blkoff; |
| seg_i = CURSEG_I(sbi, i); |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| blkoff = sbi->blocks_per_seg; |
| else |
| blkoff = curseg_blkoff(sbi, i); |
| |
| for (j = 0; j < blkoff; j++) { |
| if (!page) { |
| page = grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| written_size = 0; |
| } |
| summary = (struct f2fs_summary *)(kaddr + written_size); |
| *summary = seg_i->sum_blk->entries[j]; |
| written_size += SUMMARY_SIZE; |
| |
| if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| page = NULL; |
| } |
| } |
| if (page) { |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| } |
| |
| static void write_normal_summaries(struct f2fs_sb_info *sbi, |
| block_t blkaddr, int type) |
| { |
| int i, end; |
| if (IS_DATASEG(type)) |
| end = type + NR_CURSEG_DATA_TYPE; |
| else |
| end = type + NR_CURSEG_NODE_TYPE; |
| |
| for (i = type; i < end; i++) { |
| struct curseg_info *sum = CURSEG_I(sbi, i); |
| mutex_lock(&sum->curseg_mutex); |
| write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); |
| mutex_unlock(&sum->curseg_mutex); |
| } |
| } |
| |
| void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) |
| write_compacted_summaries(sbi, start_blk); |
| else |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); |
| } |
| |
| void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); |
| } |
| |
| int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, |
| unsigned int val, int alloc) |
| { |
| int i; |
| |
| if (type == NAT_JOURNAL) { |
| for (i = 0; i < nats_in_cursum(sum); i++) { |
| if (le32_to_cpu(nid_in_journal(sum, i)) == val) |
| return i; |
| } |
| if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) |
| return update_nats_in_cursum(sum, 1); |
| } else if (type == SIT_JOURNAL) { |
| for (i = 0; i < sits_in_cursum(sum); i++) |
| if (le32_to_cpu(segno_in_journal(sum, i)) == val) |
| return i; |
| if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) |
| return update_sits_in_cursum(sum, 1); |
| } |
| return -1; |
| } |
| |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| return get_meta_page(sbi, current_sit_addr(sbi, segno)); |
| } |
| |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int start) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct page *src_page, *dst_page; |
| pgoff_t src_off, dst_off; |
| void *src_addr, *dst_addr; |
| |
| src_off = current_sit_addr(sbi, start); |
| dst_off = next_sit_addr(sbi, src_off); |
| |
| /* get current sit block page without lock */ |
| src_page = get_meta_page(sbi, src_off); |
| dst_page = grab_meta_page(sbi, dst_off); |
| f2fs_bug_on(sbi, PageDirty(src_page)); |
| |
| src_addr = page_address(src_page); |
| dst_addr = page_address(dst_page); |
| memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); |
| |
| set_page_dirty(dst_page); |
| f2fs_put_page(src_page, 1); |
| |
| set_to_next_sit(sit_i, start); |
| |
| return dst_page; |
| } |
| |
| static struct sit_entry_set *grab_sit_entry_set(void) |
| { |
| struct sit_entry_set *ses = |
| f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); |
| |
| ses->entry_cnt = 0; |
| INIT_LIST_HEAD(&ses->set_list); |
| return ses; |
| } |
| |
| static void release_sit_entry_set(struct sit_entry_set *ses) |
| { |
| list_del(&ses->set_list); |
| kmem_cache_free(sit_entry_set_slab, ses); |
| } |
| |
| static void adjust_sit_entry_set(struct sit_entry_set *ses, |
| struct list_head *head) |
| { |
| struct sit_entry_set *next = ses; |
| |
| if (list_is_last(&ses->set_list, head)) |
| return; |
| |
| list_for_each_entry_continue(next, head, set_list) |
| if (ses->entry_cnt <= next->entry_cnt) |
| break; |
| |
| list_move_tail(&ses->set_list, &next->set_list); |
| } |
| |
| static void add_sit_entry(unsigned int segno, struct list_head *head) |
| { |
| struct sit_entry_set *ses; |
| unsigned int start_segno = START_SEGNO(segno); |
| |
| list_for_each_entry(ses, head, set_list) { |
| if (ses->start_segno == start_segno) { |
| ses->entry_cnt++; |
| adjust_sit_entry_set(ses, head); |
| return; |
| } |
| } |
| |
| ses = grab_sit_entry_set(); |
| |
| ses->start_segno = start_segno; |
| ses->entry_cnt++; |
| list_add(&ses->set_list, head); |
| } |
| |
| static void add_sits_in_set(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| struct list_head *set_list = &sm_info->sit_entry_set; |
| unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; |
| unsigned int segno; |
| |
| for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) |
| add_sit_entry(segno, set_list); |
| } |
| |
| static void remove_sits_in_journal(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int i; |
| |
| for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { |
| unsigned int segno; |
| bool dirtied; |
| |
| segno = le32_to_cpu(segno_in_journal(sum, i)); |
| dirtied = __mark_sit_entry_dirty(sbi, segno); |
| |
| if (!dirtied) |
| add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); |
| } |
| update_sits_in_cursum(sum, -sits_in_cursum(sum)); |
| } |
| |
| /* |
| * CP calls this function, which flushes SIT entries including sit_journal, |
| * and moves prefree segs to free segs. |
| */ |
| void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned long *bitmap = sit_i->dirty_sentries_bitmap; |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| struct sit_entry_set *ses, *tmp; |
| struct list_head *head = &SM_I(sbi)->sit_entry_set; |
| bool to_journal = true; |
| struct seg_entry *se; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| if (!sit_i->dirty_sentries) |
| goto out; |
| |
| /* |
| * add and account sit entries of dirty bitmap in sit entry |
| * set temporarily |
| */ |
| add_sits_in_set(sbi); |
| |
| /* |
| * if there are no enough space in journal to store dirty sit |
| * entries, remove all entries from journal and add and account |
| * them in sit entry set. |
| */ |
| if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) |
| remove_sits_in_journal(sbi); |
| |
| /* |
| * there are two steps to flush sit entries: |
| * #1, flush sit entries to journal in current cold data summary block. |
| * #2, flush sit entries to sit page. |
| */ |
| list_for_each_entry_safe(ses, tmp, head, set_list) { |
| struct page *page = NULL; |
| struct f2fs_sit_block *raw_sit = NULL; |
| unsigned int start_segno = ses->start_segno; |
| unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, |
| (unsigned long)MAIN_SEGS(sbi)); |
| unsigned int segno = start_segno; |
| |
| if (to_journal && |
| !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) |
| to_journal = false; |
| |
| if (!to_journal) { |
| page = get_next_sit_page(sbi, start_segno); |
| raw_sit = page_address(page); |
| } |
| |
| /* flush dirty sit entries in region of current sit set */ |
| for_each_set_bit_from(segno, bitmap, end) { |
| int offset, sit_offset; |
| |
| se = get_seg_entry(sbi, segno); |
| |
| /* add discard candidates */ |
| if (cpc->reason != CP_DISCARD) { |
| cpc->trim_start = segno; |
| add_discard_addrs(sbi, cpc); |
| } |
| |
| if (to_journal) { |
| offset = lookup_journal_in_cursum(sum, |
| SIT_JOURNAL, segno, 1); |
| f2fs_bug_on(sbi, offset < 0); |
| segno_in_journal(sum, offset) = |
| cpu_to_le32(segno); |
| seg_info_to_raw_sit(se, |
| &sit_in_journal(sum, offset)); |
| } else { |
| sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); |
| seg_info_to_raw_sit(se, |
| &raw_sit->entries[sit_offset]); |
| } |
| |
| __clear_bit(segno, bitmap); |
| sit_i->dirty_sentries--; |
| ses->entry_cnt--; |
| } |
| |
| if (!to_journal) |
| f2fs_put_page(page, 1); |
| |
| f2fs_bug_on(sbi, ses->entry_cnt); |
| release_sit_entry_set(ses); |
| } |
| |
| f2fs_bug_on(sbi, !list_empty(head)); |
| f2fs_bug_on(sbi, sit_i->dirty_sentries); |
| out: |
| if (cpc->reason == CP_DISCARD) { |
| for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) |
| add_discard_addrs(sbi, cpc); |
| } |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| set_prefree_as_free_segments(sbi); |
| } |
| |
| static int build_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct sit_info *sit_i; |
| unsigned int sit_segs, start; |
| char *src_bitmap, *dst_bitmap; |
| unsigned int bitmap_size; |
| |
| /* allocate memory for SIT information */ |
| sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); |
| if (!sit_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->sit_info = sit_i; |
| |
| sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * |
| sizeof(struct seg_entry), GFP_KERNEL); |
| if (!sit_i->sentries) |
| return -ENOMEM; |
| |
| bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); |
| sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); |
| if (!sit_i->dirty_sentries_bitmap) |
| return -ENOMEM; |
| |
| for (start = 0; start < MAIN_SEGS(sbi); start++) { |
| sit_i->sentries[start].cur_valid_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| sit_i->sentries[start].ckpt_valid_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| sit_i->sentries[start].discard_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| if (!sit_i->sentries[start].cur_valid_map || |
| !sit_i->sentries[start].ckpt_valid_map || |
| !sit_i->sentries[start].discard_map) |
| return -ENOMEM; |
| } |
| |
| sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| if (!sit_i->tmp_map) |
| return -ENOMEM; |
| |
| if (sbi->segs_per_sec > 1) { |
| sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * |
| sizeof(struct sec_entry), GFP_KERNEL); |
| if (!sit_i->sec_entries) |
| return -ENOMEM; |
| } |
| |
| /* get information related with SIT */ |
| sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; |
| |
| /* setup SIT bitmap from ckeckpoint pack */ |
| bitmap_size = __bitmap_size(sbi, SIT_BITMAP); |
| src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); |
| |
| dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); |
| if (!dst_bitmap) |
| return -ENOMEM; |
| |
| /* init SIT information */ |
| sit_i->s_ops = &default_salloc_ops; |
| |
| sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); |
| sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; |
| sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); |
| sit_i->sit_bitmap = dst_bitmap; |
| sit_i->bitmap_size = bitmap_size; |
| sit_i->dirty_sentries = 0; |
| sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; |
| sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); |
| sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; |
| mutex_init(&sit_i->sentry_lock); |
| return 0; |
| } |
| |
| static int build_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct free_segmap_info *free_i; |
| unsigned int bitmap_size, sec_bitmap_size; |
| |
| /* allocate memory for free segmap information */ |
| free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); |
| if (!free_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->free_info = free_i; |
| |
| bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); |
| free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); |
| if (!free_i->free_segmap) |
| return -ENOMEM; |
| |
| sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); |
| free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); |
| if (!free_i->free_secmap) |
| return -ENOMEM; |
| |
| /* set all segments as dirty temporarily */ |
| memset(free_i->free_segmap, 0xff, bitmap_size); |
| memset(free_i->free_secmap, 0xff, sec_bitmap_size); |
| |
| /* init free segmap information */ |
| free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); |
| free_i->free_segments = 0; |
| free_i->free_sections = 0; |
| spin_lock_init(&free_i->segmap_lock); |
| return 0; |
| } |
| |
| static int build_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array; |
| int i; |
| |
| array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); |
| if (!array) |
| return -ENOMEM; |
| |
| SM_I(sbi)->curseg_array = array; |
| |
| for (i = 0; i < NR_CURSEG_TYPE; i++) { |
| mutex_init(&array[i].curseg_mutex); |
| array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); |
| if (!array[i].sum_blk) |
| return -ENOMEM; |
| array[i].segno = NULL_SEGNO; |
| array[i].next_blkoff = 0; |
| } |
| return restore_curseg_summaries(sbi); |
| } |
| |
| static void build_sit_entries(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int sit_blk_cnt = SIT_BLK_CNT(sbi); |
| unsigned int i, start, end; |
| unsigned int readed, start_blk = 0; |
| int nrpages = MAX_BIO_BLOCKS(sbi); |
| |
| do { |
| readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); |
| |
| start = start_blk * sit_i->sents_per_block; |
| end = (start_blk + readed) * sit_i->sents_per_block; |
| |
| for (; start < end && start < MAIN_SEGS(sbi); start++) { |
| struct seg_entry *se = &sit_i->sentries[start]; |
| struct f2fs_sit_block *sit_blk; |
| struct f2fs_sit_entry sit; |
| struct page *page; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| for (i = 0; i < sits_in_cursum(sum); i++) { |
| if (le32_to_cpu(segno_in_journal(sum, i)) |
| == start) { |
| sit = sit_in_journal(sum, i); |
| mutex_unlock(&curseg->curseg_mutex); |
| goto got_it; |
| } |
| } |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| page = get_current_sit_page(sbi, start); |
| sit_blk = (struct f2fs_sit_block *)page_address(page); |
| sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; |
| f2fs_put_page(page, 1); |
| got_it: |
| check_block_count(sbi, start, &sit); |
| seg_info_from_raw_sit(se, &sit); |
| |
| /* build discard map only one time */ |
| memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); |
| sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; |
| |
| if (sbi->segs_per_sec > 1) { |
| struct sec_entry *e = get_sec_entry(sbi, start); |
| e->valid_blocks += se->valid_blocks; |
| } |
| } |
| start_blk += readed; |
| } while (start_blk < sit_blk_cnt); |
| } |
| |
| static void init_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| unsigned int start; |
| int type; |
| |
| for (start = 0; start < MAIN_SEGS(sbi); start++) { |
| struct seg_entry *sentry = get_seg_entry(sbi, start); |
| if (!sentry->valid_blocks) |
| __set_free(sbi, start); |
| } |
| |
| /* set use the current segments */ |
| for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { |
| struct curseg_info *curseg_t = CURSEG_I(sbi, type); |
| __set_test_and_inuse(sbi, curseg_t->segno); |
| } |
| } |
| |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno = 0, offset = 0; |
| unsigned short valid_blocks; |
| |
| while (1) { |
| /* find dirty segment based on free segmap */ |
| segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); |
| if (segno >= MAIN_SEGS(sbi)) |
| break; |
| offset = segno + 1; |
| valid_blocks = get_valid_blocks(sbi, segno, 0); |
| if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) |
| continue; |
| if (valid_blocks > sbi->blocks_per_seg) { |
| f2fs_bug_on(sbi, 1); |
| continue; |
| } |
| mutex_lock(&dirty_i->seglist_lock); |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| } |
| |
| static int init_victim_secmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); |
| |
| dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); |
| if (!dirty_i->victim_secmap) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i; |
| unsigned int bitmap_size, i; |
| |
| /* allocate memory for dirty segments list information */ |
| dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); |
| if (!dirty_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->dirty_info = dirty_i; |
| mutex_init(&dirty_i->seglist_lock); |
| |
| bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); |
| |
| for (i = 0; i < NR_DIRTY_TYPE; i++) { |
| dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); |
| if (!dirty_i->dirty_segmap[i]) |
| return -ENOMEM; |
| } |
| |
| init_dirty_segmap(sbi); |
| return init_victim_secmap(sbi); |
| } |
| |
| /* |
| * Update min, max modified time for cost-benefit GC algorithm |
| */ |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int segno; |
| |
| mutex_lock(&sit_i->sentry_lock); |
| |
| sit_i->min_mtime = LLONG_MAX; |
| |
| for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { |
| unsigned int i; |
| unsigned long long mtime = 0; |
| |
| for (i = 0; i < sbi->segs_per_sec; i++) |
| mtime += get_seg_entry(sbi, segno + i)->mtime; |
| |
| mtime = div_u64(mtime, sbi->segs_per_sec); |
| |
| if (sit_i->min_mtime > mtime) |
| sit_i->min_mtime = mtime; |
| } |
| sit_i->max_mtime = get_mtime(sbi); |
| mutex_unlock(&sit_i->sentry_lock); |
| } |
| |
| int build_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_sm_info *sm_info; |
| int err; |
| |
| sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); |
| if (!sm_info) |
| return -ENOMEM; |
| |
| /* init sm info */ |
| sbi->sm_info = sm_info; |
| sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); |
| sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); |
| sm_info->segment_count = le32_to_cpu(raw_super->segment_count); |
| sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); |
| sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); |
| sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); |
| sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); |
| sm_info->rec_prefree_segments = sm_info->main_segments * |
| DEF_RECLAIM_PREFREE_SEGMENTS / 100; |
| sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; |
| sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; |
| sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; |
| |
| INIT_LIST_HEAD(&sm_info->discard_list); |
| sm_info->nr_discards = 0; |
| sm_info->max_discards = 0; |
| |
| sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; |
| |
| INIT_LIST_HEAD(&sm_info->sit_entry_set); |
| |
| if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { |
| err = create_flush_cmd_control(sbi); |
| if (err) |
| return err; |
| } |
| |
| err = build_sit_info(sbi); |
| if (err) |
| return err; |
| err = build_free_segmap(sbi); |
| if (err) |
| return err; |
| err = build_curseg(sbi); |
| if (err) |
| return err; |
| |
| /* reinit free segmap based on SIT */ |
| build_sit_entries(sbi); |
| |
| init_free_segmap(sbi); |
| err = build_dirty_segmap(sbi); |
| if (err) |
| return err; |
| |
| init_min_max_mtime(sbi); |
| return 0; |
| } |
| |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| kvfree(dirty_i->dirty_segmap[dirty_type]); |
| dirty_i->nr_dirty[dirty_type] = 0; |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| static void destroy_victim_secmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| kvfree(dirty_i->victim_secmap); |
| } |
| |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| int i; |
| |
| if (!dirty_i) |
| return; |
| |
| /* discard pre-free/dirty segments list */ |
| for (i = 0; i < NR_DIRTY_TYPE; i++) |
| discard_dirty_segmap(sbi, i); |
| |
| destroy_victim_secmap(sbi); |
| SM_I(sbi)->dirty_info = NULL; |
| kfree(dirty_i); |
| } |
| |
| static void destroy_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array = SM_I(sbi)->curseg_array; |
| int i; |
| |
| if (!array) |
| return; |
| SM_I(sbi)->curseg_array = NULL; |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| kfree(array[i].sum_blk); |
| kfree(array); |
| } |
| |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct free_segmap_info *free_i = SM_I(sbi)->free_info; |
| if (!free_i) |
| return; |
| SM_I(sbi)->free_info = NULL; |
| kvfree(free_i->free_segmap); |
| kvfree(free_i->free_secmap); |
| kfree(free_i); |
| } |
| |
| static void destroy_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int start; |
| |
| if (!sit_i) |
| return; |
| |
| if (sit_i->sentries) { |
| for (start = 0; start < MAIN_SEGS(sbi); start++) { |
| kfree(sit_i->sentries[start].cur_valid_map); |
| kfree(sit_i->sentries[start].ckpt_valid_map); |
| kfree(sit_i->sentries[start].discard_map); |
| } |
| } |
| kfree(sit_i->tmp_map); |
| |
| kvfree(sit_i->sentries); |
| kvfree(sit_i->sec_entries); |
| kvfree(sit_i->dirty_sentries_bitmap); |
| |
| SM_I(sbi)->sit_info = NULL; |
| kfree(sit_i->sit_bitmap); |
| kfree(sit_i); |
| } |
| |
| void destroy_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| |
| if (!sm_info) |
| return; |
| destroy_flush_cmd_control(sbi); |
| destroy_dirty_segmap(sbi); |
| destroy_curseg(sbi); |
| destroy_free_segmap(sbi); |
| destroy_sit_info(sbi); |
| sbi->sm_info = NULL; |
| kfree(sm_info); |
| } |
| |
| int __init create_segment_manager_caches(void) |
| { |
| discard_entry_slab = f2fs_kmem_cache_create("discard_entry", |
| sizeof(struct discard_entry)); |
| if (!discard_entry_slab) |
| goto fail; |
| |
| sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", |
| sizeof(struct sit_entry_set)); |
| if (!sit_entry_set_slab) |
| goto destory_discard_entry; |
| |
| inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", |
| sizeof(struct inmem_pages)); |
| if (!inmem_entry_slab) |
| goto destroy_sit_entry_set; |
| return 0; |
| |
| destroy_sit_entry_set: |
| kmem_cache_destroy(sit_entry_set_slab); |
| destory_discard_entry: |
| kmem_cache_destroy(discard_entry_slab); |
| fail: |
| return -ENOMEM; |
| } |
| |
| void destroy_segment_manager_caches(void) |
| { |
| kmem_cache_destroy(sit_entry_set_slab); |
| kmem_cache_destroy(discard_entry_slab); |
| kmem_cache_destroy(inmem_entry_slab); |
| } |