| |
| #include <linux/device.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/pci_regs.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| |
| /* Max address size we deal with */ |
| #define OF_MAX_ADDR_CELLS 4 |
| #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) |
| #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) |
| |
| static struct of_bus *of_match_bus(struct device_node *np); |
| static int __of_address_to_resource(struct device_node *dev, |
| const __be32 *addrp, u64 size, unsigned int flags, |
| const char *name, struct resource *r); |
| |
| /* Debug utility */ |
| #ifdef DEBUG |
| static void of_dump_addr(const char *s, const __be32 *addr, int na) |
| { |
| printk(KERN_DEBUG "%s", s); |
| while (na--) |
| printk(" %08x", be32_to_cpu(*(addr++))); |
| printk("\n"); |
| } |
| #else |
| static void of_dump_addr(const char *s, const __be32 *addr, int na) { } |
| #endif |
| |
| /* Callbacks for bus specific translators */ |
| struct of_bus { |
| const char *name; |
| const char *addresses; |
| int (*match)(struct device_node *parent); |
| void (*count_cells)(struct device_node *child, |
| int *addrc, int *sizec); |
| u64 (*map)(__be32 *addr, const __be32 *range, |
| int na, int ns, int pna); |
| int (*translate)(__be32 *addr, u64 offset, int na); |
| unsigned int (*get_flags)(const __be32 *addr); |
| }; |
| |
| /* |
| * Default translator (generic bus) |
| */ |
| |
| static void of_bus_default_count_cells(struct device_node *dev, |
| int *addrc, int *sizec) |
| { |
| if (addrc) |
| *addrc = of_n_addr_cells(dev); |
| if (sizec) |
| *sizec = of_n_size_cells(dev); |
| } |
| |
| static u64 of_bus_default_map(__be32 *addr, const __be32 *range, |
| int na, int ns, int pna) |
| { |
| u64 cp, s, da; |
| |
| cp = of_read_number(range, na); |
| s = of_read_number(range + na + pna, ns); |
| da = of_read_number(addr, na); |
| |
| pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n", |
| (unsigned long long)cp, (unsigned long long)s, |
| (unsigned long long)da); |
| |
| if (da < cp || da >= (cp + s)) |
| return OF_BAD_ADDR; |
| return da - cp; |
| } |
| |
| static int of_bus_default_translate(__be32 *addr, u64 offset, int na) |
| { |
| u64 a = of_read_number(addr, na); |
| memset(addr, 0, na * 4); |
| a += offset; |
| if (na > 1) |
| addr[na - 2] = cpu_to_be32(a >> 32); |
| addr[na - 1] = cpu_to_be32(a & 0xffffffffu); |
| |
| return 0; |
| } |
| |
| static unsigned int of_bus_default_get_flags(const __be32 *addr) |
| { |
| return IORESOURCE_MEM; |
| } |
| |
| #ifdef CONFIG_OF_ADDRESS_PCI |
| /* |
| * PCI bus specific translator |
| */ |
| |
| static int of_bus_pci_match(struct device_node *np) |
| { |
| /* |
| * "pciex" is PCI Express |
| * "vci" is for the /chaos bridge on 1st-gen PCI powermacs |
| * "ht" is hypertransport |
| */ |
| return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") || |
| !strcmp(np->type, "vci") || !strcmp(np->type, "ht"); |
| } |
| |
| static void of_bus_pci_count_cells(struct device_node *np, |
| int *addrc, int *sizec) |
| { |
| if (addrc) |
| *addrc = 3; |
| if (sizec) |
| *sizec = 2; |
| } |
| |
| static unsigned int of_bus_pci_get_flags(const __be32 *addr) |
| { |
| unsigned int flags = 0; |
| u32 w = be32_to_cpup(addr); |
| |
| switch((w >> 24) & 0x03) { |
| case 0x01: |
| flags |= IORESOURCE_IO; |
| break; |
| case 0x02: /* 32 bits */ |
| case 0x03: /* 64 bits */ |
| flags |= IORESOURCE_MEM; |
| break; |
| } |
| if (w & 0x40000000) |
| flags |= IORESOURCE_PREFETCH; |
| return flags; |
| } |
| |
| static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, |
| int pna) |
| { |
| u64 cp, s, da; |
| unsigned int af, rf; |
| |
| af = of_bus_pci_get_flags(addr); |
| rf = of_bus_pci_get_flags(range); |
| |
| /* Check address type match */ |
| if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) |
| return OF_BAD_ADDR; |
| |
| /* Read address values, skipping high cell */ |
| cp = of_read_number(range + 1, na - 1); |
| s = of_read_number(range + na + pna, ns); |
| da = of_read_number(addr + 1, na - 1); |
| |
| pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n", |
| (unsigned long long)cp, (unsigned long long)s, |
| (unsigned long long)da); |
| |
| if (da < cp || da >= (cp + s)) |
| return OF_BAD_ADDR; |
| return da - cp; |
| } |
| |
| static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) |
| { |
| return of_bus_default_translate(addr + 1, offset, na - 1); |
| } |
| #endif /* CONFIG_OF_ADDRESS_PCI */ |
| |
| #ifdef CONFIG_PCI |
| const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, |
| unsigned int *flags) |
| { |
| const __be32 *prop; |
| unsigned int psize; |
| struct device_node *parent; |
| struct of_bus *bus; |
| int onesize, i, na, ns; |
| |
| /* Get parent & match bus type */ |
| parent = of_get_parent(dev); |
| if (parent == NULL) |
| return NULL; |
| bus = of_match_bus(parent); |
| if (strcmp(bus->name, "pci")) { |
| of_node_put(parent); |
| return NULL; |
| } |
| bus->count_cells(dev, &na, &ns); |
| of_node_put(parent); |
| if (!OF_CHECK_ADDR_COUNT(na)) |
| return NULL; |
| |
| /* Get "reg" or "assigned-addresses" property */ |
| prop = of_get_property(dev, bus->addresses, &psize); |
| if (prop == NULL) |
| return NULL; |
| psize /= 4; |
| |
| onesize = na + ns; |
| for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { |
| u32 val = be32_to_cpu(prop[0]); |
| if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { |
| if (size) |
| *size = of_read_number(prop + na, ns); |
| if (flags) |
| *flags = bus->get_flags(prop); |
| return prop; |
| } |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(of_get_pci_address); |
| |
| int of_pci_address_to_resource(struct device_node *dev, int bar, |
| struct resource *r) |
| { |
| const __be32 *addrp; |
| u64 size; |
| unsigned int flags; |
| |
| addrp = of_get_pci_address(dev, bar, &size, &flags); |
| if (addrp == NULL) |
| return -EINVAL; |
| return __of_address_to_resource(dev, addrp, size, flags, NULL, r); |
| } |
| EXPORT_SYMBOL_GPL(of_pci_address_to_resource); |
| |
| int of_pci_range_parser_init(struct of_pci_range_parser *parser, |
| struct device_node *node) |
| { |
| const int na = 3, ns = 2; |
| int rlen; |
| |
| parser->node = node; |
| parser->pna = of_n_addr_cells(node); |
| parser->np = parser->pna + na + ns; |
| |
| parser->range = of_get_property(node, "ranges", &rlen); |
| if (parser->range == NULL) |
| return -ENOENT; |
| |
| parser->end = parser->range + rlen / sizeof(__be32); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_range_parser_init); |
| |
| struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, |
| struct of_pci_range *range) |
| { |
| const int na = 3, ns = 2; |
| |
| if (!range) |
| return NULL; |
| |
| if (!parser->range || parser->range + parser->np > parser->end) |
| return NULL; |
| |
| range->pci_space = parser->range[0]; |
| range->flags = of_bus_pci_get_flags(parser->range); |
| range->pci_addr = of_read_number(parser->range + 1, ns); |
| range->cpu_addr = of_translate_address(parser->node, |
| parser->range + na); |
| range->size = of_read_number(parser->range + parser->pna + na, ns); |
| |
| parser->range += parser->np; |
| |
| /* Now consume following elements while they are contiguous */ |
| while (parser->range + parser->np <= parser->end) { |
| u32 flags, pci_space; |
| u64 pci_addr, cpu_addr, size; |
| |
| pci_space = be32_to_cpup(parser->range); |
| flags = of_bus_pci_get_flags(parser->range); |
| pci_addr = of_read_number(parser->range + 1, ns); |
| cpu_addr = of_translate_address(parser->node, |
| parser->range + na); |
| size = of_read_number(parser->range + parser->pna + na, ns); |
| |
| if (flags != range->flags) |
| break; |
| if (pci_addr != range->pci_addr + range->size || |
| cpu_addr != range->cpu_addr + range->size) |
| break; |
| |
| range->size += size; |
| parser->range += parser->np; |
| } |
| |
| return range; |
| } |
| EXPORT_SYMBOL_GPL(of_pci_range_parser_one); |
| |
| /* |
| * of_pci_range_to_resource - Create a resource from an of_pci_range |
| * @range: the PCI range that describes the resource |
| * @np: device node where the range belongs to |
| * @res: pointer to a valid resource that will be updated to |
| * reflect the values contained in the range. |
| * |
| * Returns EINVAL if the range cannot be converted to resource. |
| * |
| * Note that if the range is an IO range, the resource will be converted |
| * using pci_address_to_pio() which can fail if it is called too early or |
| * if the range cannot be matched to any host bridge IO space (our case here). |
| * To guard against that we try to register the IO range first. |
| * If that fails we know that pci_address_to_pio() will do too. |
| */ |
| int of_pci_range_to_resource(struct of_pci_range *range, |
| struct device_node *np, struct resource *res) |
| { |
| int err; |
| res->flags = range->flags; |
| res->parent = res->child = res->sibling = NULL; |
| res->name = np->full_name; |
| |
| if (res->flags & IORESOURCE_IO) { |
| unsigned long port; |
| err = pci_register_io_range(range->cpu_addr, range->size); |
| if (err) |
| goto invalid_range; |
| port = pci_address_to_pio(range->cpu_addr); |
| if (port == (unsigned long)-1) { |
| err = -EINVAL; |
| goto invalid_range; |
| } |
| res->start = port; |
| } else { |
| if ((sizeof(resource_size_t) < 8) && |
| upper_32_bits(range->cpu_addr)) { |
| err = -EINVAL; |
| goto invalid_range; |
| } |
| |
| res->start = range->cpu_addr; |
| } |
| res->end = res->start + range->size - 1; |
| return 0; |
| |
| invalid_range: |
| res->start = (resource_size_t)OF_BAD_ADDR; |
| res->end = (resource_size_t)OF_BAD_ADDR; |
| return err; |
| } |
| #endif /* CONFIG_PCI */ |
| |
| /* |
| * ISA bus specific translator |
| */ |
| |
| static int of_bus_isa_match(struct device_node *np) |
| { |
| return !strcmp(np->name, "isa"); |
| } |
| |
| static void of_bus_isa_count_cells(struct device_node *child, |
| int *addrc, int *sizec) |
| { |
| if (addrc) |
| *addrc = 2; |
| if (sizec) |
| *sizec = 1; |
| } |
| |
| static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, |
| int pna) |
| { |
| u64 cp, s, da; |
| |
| /* Check address type match */ |
| if ((addr[0] ^ range[0]) & cpu_to_be32(1)) |
| return OF_BAD_ADDR; |
| |
| /* Read address values, skipping high cell */ |
| cp = of_read_number(range + 1, na - 1); |
| s = of_read_number(range + na + pna, ns); |
| da = of_read_number(addr + 1, na - 1); |
| |
| pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n", |
| (unsigned long long)cp, (unsigned long long)s, |
| (unsigned long long)da); |
| |
| if (da < cp || da >= (cp + s)) |
| return OF_BAD_ADDR; |
| return da - cp; |
| } |
| |
| static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) |
| { |
| return of_bus_default_translate(addr + 1, offset, na - 1); |
| } |
| |
| static unsigned int of_bus_isa_get_flags(const __be32 *addr) |
| { |
| unsigned int flags = 0; |
| u32 w = be32_to_cpup(addr); |
| |
| if (w & 1) |
| flags |= IORESOURCE_IO; |
| else |
| flags |= IORESOURCE_MEM; |
| return flags; |
| } |
| |
| /* |
| * Array of bus specific translators |
| */ |
| |
| static struct of_bus of_busses[] = { |
| #ifdef CONFIG_OF_ADDRESS_PCI |
| /* PCI */ |
| { |
| .name = "pci", |
| .addresses = "assigned-addresses", |
| .match = of_bus_pci_match, |
| .count_cells = of_bus_pci_count_cells, |
| .map = of_bus_pci_map, |
| .translate = of_bus_pci_translate, |
| .get_flags = of_bus_pci_get_flags, |
| }, |
| #endif /* CONFIG_OF_ADDRESS_PCI */ |
| /* ISA */ |
| { |
| .name = "isa", |
| .addresses = "reg", |
| .match = of_bus_isa_match, |
| .count_cells = of_bus_isa_count_cells, |
| .map = of_bus_isa_map, |
| .translate = of_bus_isa_translate, |
| .get_flags = of_bus_isa_get_flags, |
| }, |
| /* Default */ |
| { |
| .name = "default", |
| .addresses = "reg", |
| .match = NULL, |
| .count_cells = of_bus_default_count_cells, |
| .map = of_bus_default_map, |
| .translate = of_bus_default_translate, |
| .get_flags = of_bus_default_get_flags, |
| }, |
| }; |
| |
| static struct of_bus *of_match_bus(struct device_node *np) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(of_busses); i++) |
| if (!of_busses[i].match || of_busses[i].match(np)) |
| return &of_busses[i]; |
| BUG(); |
| return NULL; |
| } |
| |
| static int of_empty_ranges_quirk(struct device_node *np) |
| { |
| if (IS_ENABLED(CONFIG_PPC)) { |
| /* To save cycles, we cache the result for global "Mac" setting */ |
| static int quirk_state = -1; |
| |
| /* PA-SEMI sdc DT bug */ |
| if (of_device_is_compatible(np, "1682m-sdc")) |
| return true; |
| |
| /* Make quirk cached */ |
| if (quirk_state < 0) |
| quirk_state = |
| of_machine_is_compatible("Power Macintosh") || |
| of_machine_is_compatible("MacRISC"); |
| return quirk_state; |
| } |
| return false; |
| } |
| |
| static int of_translate_one(struct device_node *parent, struct of_bus *bus, |
| struct of_bus *pbus, __be32 *addr, |
| int na, int ns, int pna, const char *rprop) |
| { |
| const __be32 *ranges; |
| unsigned int rlen; |
| int rone; |
| u64 offset = OF_BAD_ADDR; |
| |
| /* |
| * Normally, an absence of a "ranges" property means we are |
| * crossing a non-translatable boundary, and thus the addresses |
| * below the current cannot be converted to CPU physical ones. |
| * Unfortunately, while this is very clear in the spec, it's not |
| * what Apple understood, and they do have things like /uni-n or |
| * /ht nodes with no "ranges" property and a lot of perfectly |
| * useable mapped devices below them. Thus we treat the absence of |
| * "ranges" as equivalent to an empty "ranges" property which means |
| * a 1:1 translation at that level. It's up to the caller not to try |
| * to translate addresses that aren't supposed to be translated in |
| * the first place. --BenH. |
| * |
| * As far as we know, this damage only exists on Apple machines, so |
| * This code is only enabled on powerpc. --gcl |
| */ |
| ranges = of_get_property(parent, rprop, &rlen); |
| if (ranges == NULL && !of_empty_ranges_quirk(parent)) { |
| pr_debug("OF: no ranges; cannot translate\n"); |
| return 1; |
| } |
| if (ranges == NULL || rlen == 0) { |
| offset = of_read_number(addr, na); |
| memset(addr, 0, pna * 4); |
| pr_debug("OF: empty ranges; 1:1 translation\n"); |
| goto finish; |
| } |
| |
| pr_debug("OF: walking ranges...\n"); |
| |
| /* Now walk through the ranges */ |
| rlen /= 4; |
| rone = na + pna + ns; |
| for (; rlen >= rone; rlen -= rone, ranges += rone) { |
| offset = bus->map(addr, ranges, na, ns, pna); |
| if (offset != OF_BAD_ADDR) |
| break; |
| } |
| if (offset == OF_BAD_ADDR) { |
| pr_debug("OF: not found !\n"); |
| return 1; |
| } |
| memcpy(addr, ranges + na, 4 * pna); |
| |
| finish: |
| of_dump_addr("OF: parent translation for:", addr, pna); |
| pr_debug("OF: with offset: %llx\n", (unsigned long long)offset); |
| |
| /* Translate it into parent bus space */ |
| return pbus->translate(addr, offset, pna); |
| } |
| |
| /* |
| * Translate an address from the device-tree into a CPU physical address, |
| * this walks up the tree and applies the various bus mappings on the |
| * way. |
| * |
| * Note: We consider that crossing any level with #size-cells == 0 to mean |
| * that translation is impossible (that is we are not dealing with a value |
| * that can be mapped to a cpu physical address). This is not really specified |
| * that way, but this is traditionally the way IBM at least do things |
| */ |
| static u64 __of_translate_address(struct device_node *dev, |
| const __be32 *in_addr, const char *rprop) |
| { |
| struct device_node *parent = NULL; |
| struct of_bus *bus, *pbus; |
| __be32 addr[OF_MAX_ADDR_CELLS]; |
| int na, ns, pna, pns; |
| u64 result = OF_BAD_ADDR; |
| |
| pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev)); |
| |
| /* Increase refcount at current level */ |
| of_node_get(dev); |
| |
| /* Get parent & match bus type */ |
| parent = of_get_parent(dev); |
| if (parent == NULL) |
| goto bail; |
| bus = of_match_bus(parent); |
| |
| /* Count address cells & copy address locally */ |
| bus->count_cells(dev, &na, &ns); |
| if (!OF_CHECK_COUNTS(na, ns)) { |
| pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev)); |
| goto bail; |
| } |
| memcpy(addr, in_addr, na * 4); |
| |
| pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n", |
| bus->name, na, ns, of_node_full_name(parent)); |
| of_dump_addr("OF: translating address:", addr, na); |
| |
| /* Translate */ |
| for (;;) { |
| /* Switch to parent bus */ |
| of_node_put(dev); |
| dev = parent; |
| parent = of_get_parent(dev); |
| |
| /* If root, we have finished */ |
| if (parent == NULL) { |
| pr_debug("OF: reached root node\n"); |
| result = of_read_number(addr, na); |
| break; |
| } |
| |
| /* Get new parent bus and counts */ |
| pbus = of_match_bus(parent); |
| pbus->count_cells(dev, &pna, &pns); |
| if (!OF_CHECK_COUNTS(pna, pns)) { |
| printk(KERN_ERR "prom_parse: Bad cell count for %s\n", |
| of_node_full_name(dev)); |
| break; |
| } |
| |
| pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n", |
| pbus->name, pna, pns, of_node_full_name(parent)); |
| |
| /* Apply bus translation */ |
| if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) |
| break; |
| |
| /* Complete the move up one level */ |
| na = pna; |
| ns = pns; |
| bus = pbus; |
| |
| of_dump_addr("OF: one level translation:", addr, na); |
| } |
| bail: |
| of_node_put(parent); |
| of_node_put(dev); |
| |
| return result; |
| } |
| |
| u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) |
| { |
| return __of_translate_address(dev, in_addr, "ranges"); |
| } |
| EXPORT_SYMBOL(of_translate_address); |
| |
| u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) |
| { |
| return __of_translate_address(dev, in_addr, "dma-ranges"); |
| } |
| EXPORT_SYMBOL(of_translate_dma_address); |
| |
| const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, |
| unsigned int *flags) |
| { |
| const __be32 *prop; |
| unsigned int psize; |
| struct device_node *parent; |
| struct of_bus *bus; |
| int onesize, i, na, ns; |
| |
| /* Get parent & match bus type */ |
| parent = of_get_parent(dev); |
| if (parent == NULL) |
| return NULL; |
| bus = of_match_bus(parent); |
| bus->count_cells(dev, &na, &ns); |
| of_node_put(parent); |
| if (!OF_CHECK_ADDR_COUNT(na)) |
| return NULL; |
| |
| /* Get "reg" or "assigned-addresses" property */ |
| prop = of_get_property(dev, bus->addresses, &psize); |
| if (prop == NULL) |
| return NULL; |
| psize /= 4; |
| |
| onesize = na + ns; |
| for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) |
| if (i == index) { |
| if (size) |
| *size = of_read_number(prop + na, ns); |
| if (flags) |
| *flags = bus->get_flags(prop); |
| return prop; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(of_get_address); |
| |
| #ifdef PCI_IOBASE |
| struct io_range { |
| struct list_head list; |
| phys_addr_t start; |
| resource_size_t size; |
| }; |
| |
| static LIST_HEAD(io_range_list); |
| static DEFINE_SPINLOCK(io_range_lock); |
| #endif |
| |
| /* |
| * Record the PCI IO range (expressed as CPU physical address + size). |
| * Return a negative value if an error has occured, zero otherwise |
| */ |
| int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) |
| { |
| int err = 0; |
| |
| #ifdef PCI_IOBASE |
| struct io_range *range; |
| resource_size_t allocated_size = 0; |
| |
| /* check if the range hasn't been previously recorded */ |
| spin_lock(&io_range_lock); |
| list_for_each_entry(range, &io_range_list, list) { |
| if (addr >= range->start && addr + size <= range->start + size) { |
| /* range already registered, bail out */ |
| goto end_register; |
| } |
| allocated_size += range->size; |
| } |
| |
| /* range not registed yet, check for available space */ |
| if (allocated_size + size - 1 > IO_SPACE_LIMIT) { |
| /* if it's too big check if 64K space can be reserved */ |
| if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { |
| err = -E2BIG; |
| goto end_register; |
| } |
| |
| size = SZ_64K; |
| pr_warn("Requested IO range too big, new size set to 64K\n"); |
| } |
| |
| /* add the range to the list */ |
| range = kzalloc(sizeof(*range), GFP_ATOMIC); |
| if (!range) { |
| err = -ENOMEM; |
| goto end_register; |
| } |
| |
| range->start = addr; |
| range->size = size; |
| |
| list_add_tail(&range->list, &io_range_list); |
| |
| end_register: |
| spin_unlock(&io_range_lock); |
| #endif |
| |
| return err; |
| } |
| |
| phys_addr_t pci_pio_to_address(unsigned long pio) |
| { |
| phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; |
| |
| #ifdef PCI_IOBASE |
| struct io_range *range; |
| resource_size_t allocated_size = 0; |
| |
| if (pio > IO_SPACE_LIMIT) |
| return address; |
| |
| spin_lock(&io_range_lock); |
| list_for_each_entry(range, &io_range_list, list) { |
| if (pio >= allocated_size && pio < allocated_size + range->size) { |
| address = range->start + pio - allocated_size; |
| break; |
| } |
| allocated_size += range->size; |
| } |
| spin_unlock(&io_range_lock); |
| #endif |
| |
| return address; |
| } |
| |
| unsigned long __weak pci_address_to_pio(phys_addr_t address) |
| { |
| #ifdef PCI_IOBASE |
| struct io_range *res; |
| resource_size_t offset = 0; |
| unsigned long addr = -1; |
| |
| spin_lock(&io_range_lock); |
| list_for_each_entry(res, &io_range_list, list) { |
| if (address >= res->start && address < res->start + res->size) { |
| addr = address - res->start + offset; |
| break; |
| } |
| offset += res->size; |
| } |
| spin_unlock(&io_range_lock); |
| |
| return addr; |
| #else |
| if (address > IO_SPACE_LIMIT) |
| return (unsigned long)-1; |
| |
| return (unsigned long) address; |
| #endif |
| } |
| |
| static int __of_address_to_resource(struct device_node *dev, |
| const __be32 *addrp, u64 size, unsigned int flags, |
| const char *name, struct resource *r) |
| { |
| u64 taddr; |
| |
| if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0) |
| return -EINVAL; |
| taddr = of_translate_address(dev, addrp); |
| if (taddr == OF_BAD_ADDR) |
| return -EINVAL; |
| memset(r, 0, sizeof(struct resource)); |
| if (flags & IORESOURCE_IO) { |
| unsigned long port; |
| port = pci_address_to_pio(taddr); |
| if (port == (unsigned long)-1) |
| return -EINVAL; |
| r->start = port; |
| r->end = port + size - 1; |
| } else { |
| r->start = taddr; |
| r->end = taddr + size - 1; |
| } |
| r->flags = flags; |
| r->name = name ? name : dev->full_name; |
| |
| return 0; |
| } |
| |
| /** |
| * of_address_to_resource - Translate device tree address and return as resource |
| * |
| * Note that if your address is a PIO address, the conversion will fail if |
| * the physical address can't be internally converted to an IO token with |
| * pci_address_to_pio(), that is because it's either called to early or it |
| * can't be matched to any host bridge IO space |
| */ |
| int of_address_to_resource(struct device_node *dev, int index, |
| struct resource *r) |
| { |
| const __be32 *addrp; |
| u64 size; |
| unsigned int flags; |
| const char *name = NULL; |
| |
| addrp = of_get_address(dev, index, &size, &flags); |
| if (addrp == NULL) |
| return -EINVAL; |
| |
| /* Get optional "reg-names" property to add a name to a resource */ |
| of_property_read_string_index(dev, "reg-names", index, &name); |
| |
| return __of_address_to_resource(dev, addrp, size, flags, name, r); |
| } |
| EXPORT_SYMBOL_GPL(of_address_to_resource); |
| |
| struct device_node *of_find_matching_node_by_address(struct device_node *from, |
| const struct of_device_id *matches, |
| u64 base_address) |
| { |
| struct device_node *dn = of_find_matching_node(from, matches); |
| struct resource res; |
| |
| while (dn) { |
| if (!of_address_to_resource(dn, 0, &res) && |
| res.start == base_address) |
| return dn; |
| |
| dn = of_find_matching_node(dn, matches); |
| } |
| |
| return NULL; |
| } |
| |
| |
| /** |
| * of_iomap - Maps the memory mapped IO for a given device_node |
| * @device: the device whose io range will be mapped |
| * @index: index of the io range |
| * |
| * Returns a pointer to the mapped memory |
| */ |
| void __iomem *of_iomap(struct device_node *np, int index) |
| { |
| struct resource res; |
| |
| if (of_address_to_resource(np, index, &res)) |
| return NULL; |
| |
| return ioremap(res.start, resource_size(&res)); |
| } |
| EXPORT_SYMBOL(of_iomap); |
| |
| /* |
| * of_io_request_and_map - Requests a resource and maps the memory mapped IO |
| * for a given device_node |
| * @device: the device whose io range will be mapped |
| * @index: index of the io range |
| * @name: name of the resource |
| * |
| * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded |
| * error code on failure. Usage example: |
| * |
| * base = of_io_request_and_map(node, 0, "foo"); |
| * if (IS_ERR(base)) |
| * return PTR_ERR(base); |
| */ |
| void __iomem *of_io_request_and_map(struct device_node *np, int index, |
| const char *name) |
| { |
| struct resource res; |
| void __iomem *mem; |
| |
| if (of_address_to_resource(np, index, &res)) |
| return IOMEM_ERR_PTR(-EINVAL); |
| |
| if (!request_mem_region(res.start, resource_size(&res), name)) |
| return IOMEM_ERR_PTR(-EBUSY); |
| |
| mem = ioremap(res.start, resource_size(&res)); |
| if (!mem) { |
| release_mem_region(res.start, resource_size(&res)); |
| return IOMEM_ERR_PTR(-ENOMEM); |
| } |
| |
| return mem; |
| } |
| EXPORT_SYMBOL(of_io_request_and_map); |
| |
| /** |
| * of_dma_get_range - Get DMA range info |
| * @np: device node to get DMA range info |
| * @dma_addr: pointer to store initial DMA address of DMA range |
| * @paddr: pointer to store initial CPU address of DMA range |
| * @size: pointer to store size of DMA range |
| * |
| * Look in bottom up direction for the first "dma-ranges" property |
| * and parse it. |
| * dma-ranges format: |
| * DMA addr (dma_addr) : naddr cells |
| * CPU addr (phys_addr_t) : pna cells |
| * size : nsize cells |
| * |
| * It returns -ENODEV if "dma-ranges" property was not found |
| * for this device in DT. |
| */ |
| int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size) |
| { |
| struct device_node *node = of_node_get(np); |
| const __be32 *ranges = NULL; |
| int len, naddr, nsize, pna; |
| int ret = 0; |
| u64 dmaaddr; |
| |
| if (!node) |
| return -EINVAL; |
| |
| while (1) { |
| naddr = of_n_addr_cells(node); |
| nsize = of_n_size_cells(node); |
| node = of_get_next_parent(node); |
| if (!node) |
| break; |
| |
| ranges = of_get_property(node, "dma-ranges", &len); |
| |
| /* Ignore empty ranges, they imply no translation required */ |
| if (ranges && len > 0) |
| break; |
| |
| /* |
| * At least empty ranges has to be defined for parent node if |
| * DMA is supported |
| */ |
| if (!ranges) |
| break; |
| } |
| |
| if (!ranges) { |
| pr_debug("%s: no dma-ranges found for node(%s)\n", |
| __func__, np->full_name); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| len /= sizeof(u32); |
| |
| pna = of_n_addr_cells(node); |
| |
| /* dma-ranges format: |
| * DMA addr : naddr cells |
| * CPU addr : pna cells |
| * size : nsize cells |
| */ |
| dmaaddr = of_read_number(ranges, naddr); |
| *paddr = of_translate_dma_address(np, ranges); |
| if (*paddr == OF_BAD_ADDR) { |
| pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n", |
| __func__, dma_addr, np->full_name); |
| ret = -EINVAL; |
| goto out; |
| } |
| *dma_addr = dmaaddr; |
| |
| *size = of_read_number(ranges + naddr + pna, nsize); |
| |
| pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", |
| *dma_addr, *paddr, *size); |
| |
| out: |
| of_node_put(node); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(of_dma_get_range); |
| |
| /** |
| * of_dma_is_coherent - Check if device is coherent |
| * @np: device node |
| * |
| * It returns true if "dma-coherent" property was found |
| * for this device in DT. |
| */ |
| bool of_dma_is_coherent(struct device_node *np) |
| { |
| struct device_node *node = of_node_get(np); |
| |
| while (node) { |
| if (of_property_read_bool(node, "dma-coherent")) { |
| of_node_put(node); |
| return true; |
| } |
| node = of_get_next_parent(node); |
| } |
| of_node_put(node); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(of_dma_is_coherent); |