| /* |
| * Mirics MSi001 silicon tuner driver |
| * |
| * Copyright (C) 2013 Antti Palosaari <crope@iki.fi> |
| * Copyright (C) 2014 Antti Palosaari <crope@iki.fi> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/gcd.h> |
| #include <media/v4l2-device.h> |
| #include <media/v4l2-ctrls.h> |
| |
| static const struct v4l2_frequency_band bands[] = { |
| { |
| .type = V4L2_TUNER_RF, |
| .index = 0, |
| .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, |
| .rangelow = 49000000, |
| .rangehigh = 263000000, |
| }, { |
| .type = V4L2_TUNER_RF, |
| .index = 1, |
| .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, |
| .rangelow = 390000000, |
| .rangehigh = 960000000, |
| }, |
| }; |
| |
| struct msi001_dev { |
| struct spi_device *spi; |
| struct v4l2_subdev sd; |
| |
| /* Controls */ |
| struct v4l2_ctrl_handler hdl; |
| struct v4l2_ctrl *bandwidth_auto; |
| struct v4l2_ctrl *bandwidth; |
| struct v4l2_ctrl *lna_gain; |
| struct v4l2_ctrl *mixer_gain; |
| struct v4l2_ctrl *if_gain; |
| |
| unsigned int f_tuner; |
| }; |
| |
| static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd) |
| { |
| return container_of(sd, struct msi001_dev, sd); |
| } |
| |
| static int msi001_wreg(struct msi001_dev *dev, u32 data) |
| { |
| /* Register format: 4 bits addr + 20 bits value */ |
| return spi_write(dev->spi, &data, 3); |
| }; |
| |
| static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain, |
| int if_gain) |
| { |
| struct spi_device *spi = dev->spi; |
| int ret; |
| u32 reg; |
| |
| dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n", |
| lna_gain, mixer_gain, if_gain); |
| |
| reg = 1 << 0; |
| reg |= (59 - if_gain) << 4; |
| reg |= 0 << 10; |
| reg |= (1 - mixer_gain) << 12; |
| reg |= (1 - lna_gain) << 13; |
| reg |= 4 << 14; |
| reg |= 0 << 17; |
| ret = msi001_wreg(dev, reg); |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| dev_dbg(&spi->dev, "failed %d\n", ret); |
| return ret; |
| }; |
| |
| static int msi001_set_tuner(struct msi001_dev *dev) |
| { |
| struct spi_device *spi = dev->spi; |
| int ret, i; |
| unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1; |
| u32 reg; |
| u64 f_vco; |
| u8 mode, filter_mode; |
| |
| static const struct { |
| u32 rf; |
| u8 mode; |
| u8 div_lo; |
| } band_lut[] = { |
| { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */ |
| {108000000, 0x42, 32}, /* VHF_MODE */ |
| {330000000, 0x44, 16}, /* B3_MODE */ |
| {960000000, 0x48, 4}, /* B45_MODE */ |
| { ~0U, 0x50, 2}, /* BL_MODE */ |
| }; |
| static const struct { |
| u32 freq; |
| u8 filter_mode; |
| } if_freq_lut[] = { |
| { 0, 0x03}, /* Zero IF */ |
| { 450000, 0x02}, /* 450 kHz IF */ |
| {1620000, 0x01}, /* 1.62 MHz IF */ |
| {2048000, 0x00}, /* 2.048 MHz IF */ |
| }; |
| static const struct { |
| u32 freq; |
| u8 val; |
| } bandwidth_lut[] = { |
| { 200000, 0x00}, /* 200 kHz */ |
| { 300000, 0x01}, /* 300 kHz */ |
| { 600000, 0x02}, /* 600 kHz */ |
| {1536000, 0x03}, /* 1.536 MHz */ |
| {5000000, 0x04}, /* 5 MHz */ |
| {6000000, 0x05}, /* 6 MHz */ |
| {7000000, 0x06}, /* 7 MHz */ |
| {8000000, 0x07}, /* 8 MHz */ |
| }; |
| |
| unsigned int f_rf = dev->f_tuner; |
| |
| /* |
| * bandwidth (Hz) |
| * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000 |
| */ |
| unsigned int bandwidth; |
| |
| /* |
| * intermediate frequency (Hz) |
| * 0, 450000, 1620000, 2048000 |
| */ |
| unsigned int f_if = 0; |
| #define F_REF 24000000 |
| #define DIV_PRE_N 4 |
| #define F_VCO_STEP div_lo |
| |
| dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if); |
| |
| for (i = 0; i < ARRAY_SIZE(band_lut); i++) { |
| if (f_rf <= band_lut[i].rf) { |
| mode = band_lut[i].mode; |
| div_lo = band_lut[i].div_lo; |
| break; |
| } |
| } |
| if (i == ARRAY_SIZE(band_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* AM_MODE is upconverted */ |
| if ((mode >> 0) & 0x1) |
| f_if1 = 5 * F_REF; |
| else |
| f_if1 = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) { |
| if (f_if == if_freq_lut[i].freq) { |
| filter_mode = if_freq_lut[i].filter_mode; |
| break; |
| } |
| } |
| if (i == ARRAY_SIZE(if_freq_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* filters */ |
| bandwidth = dev->bandwidth->val; |
| bandwidth = clamp(bandwidth, 200000U, 8000000U); |
| |
| for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) { |
| if (bandwidth <= bandwidth_lut[i].freq) { |
| bandwidth = bandwidth_lut[i].val; |
| break; |
| } |
| } |
| if (i == ARRAY_SIZE(bandwidth_lut)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| dev->bandwidth->val = bandwidth_lut[i].freq; |
| |
| dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq); |
| |
| /* |
| * Fractional-N synthesizer |
| * |
| * +---------------------------------------+ |
| * v | |
| * Fref +----+ +-------+ +----+ +------+ +---+ |
| * ------> | PD | --> | VCO | ------> | /4 | --> | /N.F | <-- | K | |
| * +----+ +-------+ +----+ +------+ +---+ |
| * | |
| * | |
| * v |
| * +-------+ Fout |
| * | /Rout | ------> |
| * +-------+ |
| */ |
| |
| /* Calculate PLL integer and fractional control word. */ |
| f_vco = (u64) (f_rf + f_if + f_if1) * div_lo; |
| div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k); |
| k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP; |
| k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF)); |
| |
| /* Find out greatest common divisor and divide to smaller. */ |
| uitmp = gcd(k_thresh, k_frac); |
| k_thresh /= uitmp; |
| k_frac /= uitmp; |
| |
| /* Force divide to reg max. Resolution will be reduced. */ |
| uitmp = DIV_ROUND_UP(k_thresh, 4095); |
| k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp); |
| k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp); |
| |
| /* Calculate real RF set. */ |
| uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n; |
| uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh; |
| uitmp /= div_lo; |
| |
| dev_dbg(&spi->dev, |
| "f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n", |
| f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo); |
| |
| ret = msi001_wreg(dev, 0x00000e); |
| if (ret) |
| goto err; |
| |
| ret = msi001_wreg(dev, 0x000003); |
| if (ret) |
| goto err; |
| |
| reg = 0 << 0; |
| reg |= mode << 4; |
| reg |= filter_mode << 12; |
| reg |= bandwidth << 14; |
| reg |= 0x02 << 17; |
| reg |= 0x00 << 20; |
| ret = msi001_wreg(dev, reg); |
| if (ret) |
| goto err; |
| |
| reg = 5 << 0; |
| reg |= k_thresh << 4; |
| reg |= 1 << 19; |
| reg |= 1 << 21; |
| ret = msi001_wreg(dev, reg); |
| if (ret) |
| goto err; |
| |
| reg = 2 << 0; |
| reg |= k_frac << 4; |
| reg |= div_n << 16; |
| ret = msi001_wreg(dev, reg); |
| if (ret) |
| goto err; |
| |
| ret = msi001_set_gain(dev, dev->lna_gain->cur.val, |
| dev->mixer_gain->cur.val, dev->if_gain->cur.val); |
| if (ret) |
| goto err; |
| |
| reg = 6 << 0; |
| reg |= 63 << 4; |
| reg |= 4095 << 10; |
| ret = msi001_wreg(dev, reg); |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| dev_dbg(&spi->dev, "failed %d\n", ret); |
| return ret; |
| } |
| |
| static int msi001_s_power(struct v4l2_subdev *sd, int on) |
| { |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| struct spi_device *spi = dev->spi; |
| int ret; |
| |
| dev_dbg(&spi->dev, "on=%d\n", on); |
| |
| if (on) |
| ret = 0; |
| else |
| ret = msi001_wreg(dev, 0x000000); |
| |
| return ret; |
| } |
| |
| static const struct v4l2_subdev_core_ops msi001_core_ops = { |
| .s_power = msi001_s_power, |
| }; |
| |
| static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v) |
| { |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| struct spi_device *spi = dev->spi; |
| |
| dev_dbg(&spi->dev, "index=%d\n", v->index); |
| |
| strlcpy(v->name, "Mirics MSi001", sizeof(v->name)); |
| v->type = V4L2_TUNER_RF; |
| v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; |
| v->rangelow = 49000000; |
| v->rangehigh = 960000000; |
| |
| return 0; |
| } |
| |
| static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v) |
| { |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| struct spi_device *spi = dev->spi; |
| |
| dev_dbg(&spi->dev, "index=%d\n", v->index); |
| return 0; |
| } |
| |
| static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f) |
| { |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| struct spi_device *spi = dev->spi; |
| |
| dev_dbg(&spi->dev, "tuner=%d\n", f->tuner); |
| f->frequency = dev->f_tuner; |
| return 0; |
| } |
| |
| static int msi001_s_frequency(struct v4l2_subdev *sd, |
| const struct v4l2_frequency *f) |
| { |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| struct spi_device *spi = dev->spi; |
| unsigned int band; |
| |
| dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n", |
| f->tuner, f->type, f->frequency); |
| |
| if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2)) |
| band = 0; |
| else |
| band = 1; |
| dev->f_tuner = clamp_t(unsigned int, f->frequency, |
| bands[band].rangelow, bands[band].rangehigh); |
| |
| return msi001_set_tuner(dev); |
| } |
| |
| static int msi001_enum_freq_bands(struct v4l2_subdev *sd, |
| struct v4l2_frequency_band *band) |
| { |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| struct spi_device *spi = dev->spi; |
| |
| dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n", |
| band->tuner, band->type, band->index); |
| |
| if (band->index >= ARRAY_SIZE(bands)) |
| return -EINVAL; |
| |
| band->capability = bands[band->index].capability; |
| band->rangelow = bands[band->index].rangelow; |
| band->rangehigh = bands[band->index].rangehigh; |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = { |
| .g_tuner = msi001_g_tuner, |
| .s_tuner = msi001_s_tuner, |
| .g_frequency = msi001_g_frequency, |
| .s_frequency = msi001_s_frequency, |
| .enum_freq_bands = msi001_enum_freq_bands, |
| }; |
| |
| static const struct v4l2_subdev_ops msi001_ops = { |
| .core = &msi001_core_ops, |
| .tuner = &msi001_tuner_ops, |
| }; |
| |
| static int msi001_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl); |
| struct spi_device *spi = dev->spi; |
| |
| int ret; |
| |
| dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n", |
| ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum, |
| ctrl->step); |
| |
| switch (ctrl->id) { |
| case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: |
| case V4L2_CID_RF_TUNER_BANDWIDTH: |
| ret = msi001_set_tuner(dev); |
| break; |
| case V4L2_CID_RF_TUNER_LNA_GAIN: |
| ret = msi001_set_gain(dev, dev->lna_gain->val, |
| dev->mixer_gain->cur.val, |
| dev->if_gain->cur.val); |
| break; |
| case V4L2_CID_RF_TUNER_MIXER_GAIN: |
| ret = msi001_set_gain(dev, dev->lna_gain->cur.val, |
| dev->mixer_gain->val, |
| dev->if_gain->cur.val); |
| break; |
| case V4L2_CID_RF_TUNER_IF_GAIN: |
| ret = msi001_set_gain(dev, dev->lna_gain->cur.val, |
| dev->mixer_gain->cur.val, |
| dev->if_gain->val); |
| break; |
| default: |
| dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static const struct v4l2_ctrl_ops msi001_ctrl_ops = { |
| .s_ctrl = msi001_s_ctrl, |
| }; |
| |
| static int msi001_probe(struct spi_device *spi) |
| { |
| struct msi001_dev *dev; |
| int ret; |
| |
| dev_dbg(&spi->dev, "\n"); |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| dev->spi = spi; |
| dev->f_tuner = bands[0].rangelow; |
| v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops); |
| |
| /* Register controls */ |
| v4l2_ctrl_handler_init(&dev->hdl, 5); |
| dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops, |
| V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1); |
| dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops, |
| V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000); |
| v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false); |
| dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops, |
| V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1); |
| dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops, |
| V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1); |
| dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops, |
| V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0); |
| if (dev->hdl.error) { |
| ret = dev->hdl.error; |
| dev_err(&spi->dev, "Could not initialize controls\n"); |
| /* control init failed, free handler */ |
| goto err_ctrl_handler_free; |
| } |
| |
| dev->sd.ctrl_handler = &dev->hdl; |
| return 0; |
| err_ctrl_handler_free: |
| v4l2_ctrl_handler_free(&dev->hdl); |
| kfree(dev); |
| err: |
| return ret; |
| } |
| |
| static int msi001_remove(struct spi_device *spi) |
| { |
| struct v4l2_subdev *sd = spi_get_drvdata(spi); |
| struct msi001_dev *dev = sd_to_msi001_dev(sd); |
| |
| dev_dbg(&spi->dev, "\n"); |
| |
| /* |
| * Registered by v4l2_spi_new_subdev() from master driver, but we must |
| * unregister it from here. Weird. |
| */ |
| v4l2_device_unregister_subdev(&dev->sd); |
| v4l2_ctrl_handler_free(&dev->hdl); |
| kfree(dev); |
| return 0; |
| } |
| |
| static const struct spi_device_id msi001_id_table[] = { |
| {"msi001", 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(spi, msi001_id_table); |
| |
| static struct spi_driver msi001_driver = { |
| .driver = { |
| .name = "msi001", |
| .suppress_bind_attrs = true, |
| }, |
| .probe = msi001_probe, |
| .remove = msi001_remove, |
| .id_table = msi001_id_table, |
| }; |
| module_spi_driver(msi001_driver); |
| |
| MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); |
| MODULE_DESCRIPTION("Mirics MSi001"); |
| MODULE_LICENSE("GPL"); |