| /* |
| * Freescale Embedded oprofile support, based on ppc64 oprofile support |
| * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * Copyright (c) 2004, 2010 Freescale Semiconductor, Inc |
| * |
| * Author: Andy Fleming |
| * Maintainer: Kumar Gala <galak@kernel.crashing.org> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/oprofile.h> |
| #include <linux/smp.h> |
| #include <asm/ptrace.h> |
| #include <asm/processor.h> |
| #include <asm/cputable.h> |
| #include <asm/reg_fsl_emb.h> |
| #include <asm/page.h> |
| #include <asm/pmc.h> |
| #include <asm/oprofile_impl.h> |
| |
| static unsigned long reset_value[OP_MAX_COUNTER]; |
| |
| static int num_counters; |
| static int oprofile_running; |
| |
| static inline u32 get_pmlca(int ctr) |
| { |
| u32 pmlca; |
| |
| switch (ctr) { |
| case 0: |
| pmlca = mfpmr(PMRN_PMLCA0); |
| break; |
| case 1: |
| pmlca = mfpmr(PMRN_PMLCA1); |
| break; |
| case 2: |
| pmlca = mfpmr(PMRN_PMLCA2); |
| break; |
| case 3: |
| pmlca = mfpmr(PMRN_PMLCA3); |
| break; |
| case 4: |
| pmlca = mfpmr(PMRN_PMLCA4); |
| break; |
| case 5: |
| pmlca = mfpmr(PMRN_PMLCA5); |
| break; |
| default: |
| panic("Bad ctr number\n"); |
| } |
| |
| return pmlca; |
| } |
| |
| static inline void set_pmlca(int ctr, u32 pmlca) |
| { |
| switch (ctr) { |
| case 0: |
| mtpmr(PMRN_PMLCA0, pmlca); |
| break; |
| case 1: |
| mtpmr(PMRN_PMLCA1, pmlca); |
| break; |
| case 2: |
| mtpmr(PMRN_PMLCA2, pmlca); |
| break; |
| case 3: |
| mtpmr(PMRN_PMLCA3, pmlca); |
| break; |
| case 4: |
| mtpmr(PMRN_PMLCA4, pmlca); |
| break; |
| case 5: |
| mtpmr(PMRN_PMLCA5, pmlca); |
| break; |
| default: |
| panic("Bad ctr number\n"); |
| } |
| } |
| |
| static inline unsigned int ctr_read(unsigned int i) |
| { |
| switch(i) { |
| case 0: |
| return mfpmr(PMRN_PMC0); |
| case 1: |
| return mfpmr(PMRN_PMC1); |
| case 2: |
| return mfpmr(PMRN_PMC2); |
| case 3: |
| return mfpmr(PMRN_PMC3); |
| case 4: |
| return mfpmr(PMRN_PMC4); |
| case 5: |
| return mfpmr(PMRN_PMC5); |
| default: |
| return 0; |
| } |
| } |
| |
| static inline void ctr_write(unsigned int i, unsigned int val) |
| { |
| switch(i) { |
| case 0: |
| mtpmr(PMRN_PMC0, val); |
| break; |
| case 1: |
| mtpmr(PMRN_PMC1, val); |
| break; |
| case 2: |
| mtpmr(PMRN_PMC2, val); |
| break; |
| case 3: |
| mtpmr(PMRN_PMC3, val); |
| break; |
| case 4: |
| mtpmr(PMRN_PMC4, val); |
| break; |
| case 5: |
| mtpmr(PMRN_PMC5, val); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| |
| static void init_pmc_stop(int ctr) |
| { |
| u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU | |
| PMLCA_FCM1 | PMLCA_FCM0); |
| u32 pmlcb = 0; |
| |
| switch (ctr) { |
| case 0: |
| mtpmr(PMRN_PMLCA0, pmlca); |
| mtpmr(PMRN_PMLCB0, pmlcb); |
| break; |
| case 1: |
| mtpmr(PMRN_PMLCA1, pmlca); |
| mtpmr(PMRN_PMLCB1, pmlcb); |
| break; |
| case 2: |
| mtpmr(PMRN_PMLCA2, pmlca); |
| mtpmr(PMRN_PMLCB2, pmlcb); |
| break; |
| case 3: |
| mtpmr(PMRN_PMLCA3, pmlca); |
| mtpmr(PMRN_PMLCB3, pmlcb); |
| break; |
| case 4: |
| mtpmr(PMRN_PMLCA4, pmlca); |
| mtpmr(PMRN_PMLCB4, pmlcb); |
| break; |
| case 5: |
| mtpmr(PMRN_PMLCA5, pmlca); |
| mtpmr(PMRN_PMLCB5, pmlcb); |
| break; |
| default: |
| panic("Bad ctr number!\n"); |
| } |
| } |
| |
| static void set_pmc_event(int ctr, int event) |
| { |
| u32 pmlca; |
| |
| pmlca = get_pmlca(ctr); |
| |
| pmlca = (pmlca & ~PMLCA_EVENT_MASK) | |
| ((event << PMLCA_EVENT_SHIFT) & |
| PMLCA_EVENT_MASK); |
| |
| set_pmlca(ctr, pmlca); |
| } |
| |
| static void set_pmc_user_kernel(int ctr, int user, int kernel) |
| { |
| u32 pmlca; |
| |
| pmlca = get_pmlca(ctr); |
| |
| if(user) |
| pmlca &= ~PMLCA_FCU; |
| else |
| pmlca |= PMLCA_FCU; |
| |
| if(kernel) |
| pmlca &= ~PMLCA_FCS; |
| else |
| pmlca |= PMLCA_FCS; |
| |
| set_pmlca(ctr, pmlca); |
| } |
| |
| static void set_pmc_marked(int ctr, int mark0, int mark1) |
| { |
| u32 pmlca = get_pmlca(ctr); |
| |
| if(mark0) |
| pmlca &= ~PMLCA_FCM0; |
| else |
| pmlca |= PMLCA_FCM0; |
| |
| if(mark1) |
| pmlca &= ~PMLCA_FCM1; |
| else |
| pmlca |= PMLCA_FCM1; |
| |
| set_pmlca(ctr, pmlca); |
| } |
| |
| static void pmc_start_ctr(int ctr, int enable) |
| { |
| u32 pmlca = get_pmlca(ctr); |
| |
| pmlca &= ~PMLCA_FC; |
| |
| if (enable) |
| pmlca |= PMLCA_CE; |
| else |
| pmlca &= ~PMLCA_CE; |
| |
| set_pmlca(ctr, pmlca); |
| } |
| |
| static void pmc_start_ctrs(int enable) |
| { |
| u32 pmgc0 = mfpmr(PMRN_PMGC0); |
| |
| pmgc0 &= ~PMGC0_FAC; |
| pmgc0 |= PMGC0_FCECE; |
| |
| if (enable) |
| pmgc0 |= PMGC0_PMIE; |
| else |
| pmgc0 &= ~PMGC0_PMIE; |
| |
| mtpmr(PMRN_PMGC0, pmgc0); |
| } |
| |
| static void pmc_stop_ctrs(void) |
| { |
| u32 pmgc0 = mfpmr(PMRN_PMGC0); |
| |
| pmgc0 |= PMGC0_FAC; |
| |
| pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE); |
| |
| mtpmr(PMRN_PMGC0, pmgc0); |
| } |
| |
| static int fsl_emb_cpu_setup(struct op_counter_config *ctr) |
| { |
| int i; |
| |
| /* freeze all counters */ |
| pmc_stop_ctrs(); |
| |
| for (i = 0;i < num_counters;i++) { |
| init_pmc_stop(i); |
| |
| set_pmc_event(i, ctr[i].event); |
| |
| set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel); |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_emb_reg_setup(struct op_counter_config *ctr, |
| struct op_system_config *sys, |
| int num_ctrs) |
| { |
| int i; |
| |
| num_counters = num_ctrs; |
| |
| /* Our counters count up, and "count" refers to |
| * how much before the next interrupt, and we interrupt |
| * on overflow. So we calculate the starting value |
| * which will give us "count" until overflow. |
| * Then we set the events on the enabled counters */ |
| for (i = 0; i < num_counters; ++i) |
| reset_value[i] = 0x80000000UL - ctr[i].count; |
| |
| return 0; |
| } |
| |
| static int fsl_emb_start(struct op_counter_config *ctr) |
| { |
| int i; |
| |
| mtmsr(mfmsr() | MSR_PMM); |
| |
| for (i = 0; i < num_counters; ++i) { |
| if (ctr[i].enabled) { |
| ctr_write(i, reset_value[i]); |
| /* Set each enabled counter to only |
| * count when the Mark bit is *not* set */ |
| set_pmc_marked(i, 1, 0); |
| pmc_start_ctr(i, 1); |
| } else { |
| ctr_write(i, 0); |
| |
| /* Set the ctr to be stopped */ |
| pmc_start_ctr(i, 0); |
| } |
| } |
| |
| /* Clear the freeze bit, and enable the interrupt. |
| * The counters won't actually start until the rfi clears |
| * the PMM bit */ |
| pmc_start_ctrs(1); |
| |
| oprofile_running = 1; |
| |
| pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(), |
| mfpmr(PMRN_PMGC0)); |
| |
| return 0; |
| } |
| |
| static void fsl_emb_stop(void) |
| { |
| /* freeze counters */ |
| pmc_stop_ctrs(); |
| |
| oprofile_running = 0; |
| |
| pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(), |
| mfpmr(PMRN_PMGC0)); |
| |
| mb(); |
| } |
| |
| |
| static void fsl_emb_handle_interrupt(struct pt_regs *regs, |
| struct op_counter_config *ctr) |
| { |
| unsigned long pc; |
| int is_kernel; |
| int val; |
| int i; |
| |
| pc = regs->nip; |
| is_kernel = is_kernel_addr(pc); |
| |
| for (i = 0; i < num_counters; ++i) { |
| val = ctr_read(i); |
| if (val < 0) { |
| if (oprofile_running && ctr[i].enabled) { |
| oprofile_add_ext_sample(pc, regs, i, is_kernel); |
| ctr_write(i, reset_value[i]); |
| } else { |
| ctr_write(i, 0); |
| } |
| } |
| } |
| |
| /* The freeze bit was set by the interrupt. */ |
| /* Clear the freeze bit, and reenable the interrupt. The |
| * counters won't actually start until the rfi clears the PMM |
| * bit. The PMM bit should not be set until after the interrupt |
| * is cleared to avoid it getting lost in some hypervisor |
| * environments. |
| */ |
| mtmsr(mfmsr() | MSR_PMM); |
| pmc_start_ctrs(1); |
| } |
| |
| struct op_powerpc_model op_model_fsl_emb = { |
| .reg_setup = fsl_emb_reg_setup, |
| .cpu_setup = fsl_emb_cpu_setup, |
| .start = fsl_emb_start, |
| .stop = fsl_emb_stop, |
| .handle_interrupt = fsl_emb_handle_interrupt, |
| }; |