blob: 91a9e6af2ec4dbfdd46a5ce301ca08d31e7a653a [file] [log] [blame]
/*
* libata-eh.c - libata error handling
*
* Maintained by: Tejun Heo <tj@kernel.org>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2006 Tejun Heo <htejun@gmail.com>
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include "../scsi/scsi_transport_api.h"
#include <linux/libata.h>
#include <trace/events/libata.h>
#include "libata.h"
enum {
/* speed down verdicts */
ATA_EH_SPDN_NCQ_OFF = (1 << 0),
ATA_EH_SPDN_SPEED_DOWN = (1 << 1),
ATA_EH_SPDN_FALLBACK_TO_PIO = (1 << 2),
ATA_EH_SPDN_KEEP_ERRORS = (1 << 3),
/* error flags */
ATA_EFLAG_IS_IO = (1 << 0),
ATA_EFLAG_DUBIOUS_XFER = (1 << 1),
ATA_EFLAG_OLD_ER = (1 << 31),
/* error categories */
ATA_ECAT_NONE = 0,
ATA_ECAT_ATA_BUS = 1,
ATA_ECAT_TOUT_HSM = 2,
ATA_ECAT_UNK_DEV = 3,
ATA_ECAT_DUBIOUS_NONE = 4,
ATA_ECAT_DUBIOUS_ATA_BUS = 5,
ATA_ECAT_DUBIOUS_TOUT_HSM = 6,
ATA_ECAT_DUBIOUS_UNK_DEV = 7,
ATA_ECAT_NR = 8,
ATA_EH_CMD_DFL_TIMEOUT = 5000,
/* always put at least this amount of time between resets */
ATA_EH_RESET_COOL_DOWN = 5000,
/* Waiting in ->prereset can never be reliable. It's
* sometimes nice to wait there but it can't be depended upon;
* otherwise, we wouldn't be resetting. Just give it enough
* time for most drives to spin up.
*/
ATA_EH_PRERESET_TIMEOUT = 10000,
ATA_EH_FASTDRAIN_INTERVAL = 3000,
ATA_EH_UA_TRIES = 5,
/* probe speed down parameters, see ata_eh_schedule_probe() */
ATA_EH_PROBE_TRIAL_INTERVAL = 60000, /* 1 min */
ATA_EH_PROBE_TRIALS = 2,
};
/* The following table determines how we sequence resets. Each entry
* represents timeout for that try. The first try can be soft or
* hardreset. All others are hardreset if available. In most cases
* the first reset w/ 10sec timeout should succeed. Following entries
* are mostly for error handling, hotplug and those outlier devices that
* take an exceptionally long time to recover from reset.
*/
static const unsigned long ata_eh_reset_timeouts[] = {
10000, /* most drives spin up by 10sec */
10000, /* > 99% working drives spin up before 20sec */
35000, /* give > 30 secs of idleness for outlier devices */
5000, /* and sweet one last chance */
ULONG_MAX, /* > 1 min has elapsed, give up */
};
static const unsigned long ata_eh_identify_timeouts[] = {
5000, /* covers > 99% of successes and not too boring on failures */
10000, /* combined time till here is enough even for media access */
30000, /* for true idiots */
ULONG_MAX,
};
static const unsigned long ata_eh_flush_timeouts[] = {
15000, /* be generous with flush */
15000, /* ditto */
30000, /* and even more generous */
ULONG_MAX,
};
static const unsigned long ata_eh_other_timeouts[] = {
5000, /* same rationale as identify timeout */
10000, /* ditto */
/* but no merciful 30sec for other commands, it just isn't worth it */
ULONG_MAX,
};
struct ata_eh_cmd_timeout_ent {
const u8 *commands;
const unsigned long *timeouts;
};
/* The following table determines timeouts to use for EH internal
* commands. Each table entry is a command class and matches the
* commands the entry applies to and the timeout table to use.
*
* On the retry after a command timed out, the next timeout value from
* the table is used. If the table doesn't contain further entries,
* the last value is used.
*
* ehc->cmd_timeout_idx keeps track of which timeout to use per
* command class, so if SET_FEATURES times out on the first try, the
* next try will use the second timeout value only for that class.
*/
#define CMDS(cmds...) (const u8 []){ cmds, 0 }
static const struct ata_eh_cmd_timeout_ent
ata_eh_cmd_timeout_table[ATA_EH_CMD_TIMEOUT_TABLE_SIZE] = {
{ .commands = CMDS(ATA_CMD_ID_ATA, ATA_CMD_ID_ATAPI),
.timeouts = ata_eh_identify_timeouts, },
{ .commands = CMDS(ATA_CMD_READ_NATIVE_MAX, ATA_CMD_READ_NATIVE_MAX_EXT),
.timeouts = ata_eh_other_timeouts, },
{ .commands = CMDS(ATA_CMD_SET_MAX, ATA_CMD_SET_MAX_EXT),
.timeouts = ata_eh_other_timeouts, },
{ .commands = CMDS(ATA_CMD_SET_FEATURES),
.timeouts = ata_eh_other_timeouts, },
{ .commands = CMDS(ATA_CMD_INIT_DEV_PARAMS),
.timeouts = ata_eh_other_timeouts, },
{ .commands = CMDS(ATA_CMD_FLUSH, ATA_CMD_FLUSH_EXT),
.timeouts = ata_eh_flush_timeouts },
};
#undef CMDS
static void __ata_port_freeze(struct ata_port *ap);
#ifdef CONFIG_PM
static void ata_eh_handle_port_suspend(struct ata_port *ap);
static void ata_eh_handle_port_resume(struct ata_port *ap);
#else /* CONFIG_PM */
static void ata_eh_handle_port_suspend(struct ata_port *ap)
{ }
static void ata_eh_handle_port_resume(struct ata_port *ap)
{ }
#endif /* CONFIG_PM */
static void __ata_ehi_pushv_desc(struct ata_eh_info *ehi, const char *fmt,
va_list args)
{
ehi->desc_len += vscnprintf(ehi->desc + ehi->desc_len,
ATA_EH_DESC_LEN - ehi->desc_len,
fmt, args);
}
/**
* __ata_ehi_push_desc - push error description without adding separator
* @ehi: target EHI
* @fmt: printf format string
*
* Format string according to @fmt and append it to @ehi->desc.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void __ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
__ata_ehi_pushv_desc(ehi, fmt, args);
va_end(args);
}
/**
* ata_ehi_push_desc - push error description with separator
* @ehi: target EHI
* @fmt: printf format string
*
* Format string according to @fmt and append it to @ehi->desc.
* If @ehi->desc is not empty, ", " is added in-between.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...)
{
va_list args;
if (ehi->desc_len)
__ata_ehi_push_desc(ehi, ", ");
va_start(args, fmt);
__ata_ehi_pushv_desc(ehi, fmt, args);
va_end(args);
}
/**
* ata_ehi_clear_desc - clean error description
* @ehi: target EHI
*
* Clear @ehi->desc.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_ehi_clear_desc(struct ata_eh_info *ehi)
{
ehi->desc[0] = '\0';
ehi->desc_len = 0;
}
/**
* ata_port_desc - append port description
* @ap: target ATA port
* @fmt: printf format string
*
* Format string according to @fmt and append it to port
* description. If port description is not empty, " " is added
* in-between. This function is to be used while initializing
* ata_host. The description is printed on host registration.
*
* LOCKING:
* None.
*/
void ata_port_desc(struct ata_port *ap, const char *fmt, ...)
{
va_list args;
WARN_ON(!(ap->pflags & ATA_PFLAG_INITIALIZING));
if (ap->link.eh_info.desc_len)
__ata_ehi_push_desc(&ap->link.eh_info, " ");
va_start(args, fmt);
__ata_ehi_pushv_desc(&ap->link.eh_info, fmt, args);
va_end(args);
}
#ifdef CONFIG_PCI
/**
* ata_port_pbar_desc - append PCI BAR description
* @ap: target ATA port
* @bar: target PCI BAR
* @offset: offset into PCI BAR
* @name: name of the area
*
* If @offset is negative, this function formats a string which
* contains the name, address, size and type of the BAR and
* appends it to the port description. If @offset is zero or
* positive, only name and offsetted address is appended.
*
* LOCKING:
* None.
*/
void ata_port_pbar_desc(struct ata_port *ap, int bar, ssize_t offset,
const char *name)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
char *type = "";
unsigned long long start, len;
if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
type = "m";
else if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
type = "i";
start = (unsigned long long)pci_resource_start(pdev, bar);
len = (unsigned long long)pci_resource_len(pdev, bar);
if (offset < 0)
ata_port_desc(ap, "%s %s%llu@0x%llx", name, type, len, start);
else
ata_port_desc(ap, "%s 0x%llx", name,
start + (unsigned long long)offset);
}
#endif /* CONFIG_PCI */
static int ata_lookup_timeout_table(u8 cmd)
{
int i;
for (i = 0; i < ATA_EH_CMD_TIMEOUT_TABLE_SIZE; i++) {
const u8 *cur;
for (cur = ata_eh_cmd_timeout_table[i].commands; *cur; cur++)
if (*cur == cmd)
return i;
}
return -1;
}
/**
* ata_internal_cmd_timeout - determine timeout for an internal command
* @dev: target device
* @cmd: internal command to be issued
*
* Determine timeout for internal command @cmd for @dev.
*
* LOCKING:
* EH context.
*
* RETURNS:
* Determined timeout.
*/
unsigned long ata_internal_cmd_timeout(struct ata_device *dev, u8 cmd)
{
struct ata_eh_context *ehc = &dev->link->eh_context;
int ent = ata_lookup_timeout_table(cmd);
int idx;
if (ent < 0)
return ATA_EH_CMD_DFL_TIMEOUT;
idx = ehc->cmd_timeout_idx[dev->devno][ent];
return ata_eh_cmd_timeout_table[ent].timeouts[idx];
}
/**
* ata_internal_cmd_timed_out - notification for internal command timeout
* @dev: target device
* @cmd: internal command which timed out
*
* Notify EH that internal command @cmd for @dev timed out. This
* function should be called only for commands whose timeouts are
* determined using ata_internal_cmd_timeout().
*
* LOCKING:
* EH context.
*/
void ata_internal_cmd_timed_out(struct ata_device *dev, u8 cmd)
{
struct ata_eh_context *ehc = &dev->link->eh_context;
int ent = ata_lookup_timeout_table(cmd);
int idx;
if (ent < 0)
return;
idx = ehc->cmd_timeout_idx[dev->devno][ent];
if (ata_eh_cmd_timeout_table[ent].timeouts[idx + 1] != ULONG_MAX)
ehc->cmd_timeout_idx[dev->devno][ent]++;
}
static void ata_ering_record(struct ata_ering *ering, unsigned int eflags,
unsigned int err_mask)
{
struct ata_ering_entry *ent;
WARN_ON(!err_mask);
ering->cursor++;
ering->cursor %= ATA_ERING_SIZE;
ent = &ering->ring[ering->cursor];
ent->eflags = eflags;
ent->err_mask = err_mask;
ent->timestamp = get_jiffies_64();
}
static struct ata_ering_entry *ata_ering_top(struct ata_ering *ering)
{
struct ata_ering_entry *ent = &ering->ring[ering->cursor];
if (ent->err_mask)
return ent;
return NULL;
}
int ata_ering_map(struct ata_ering *ering,
int (*map_fn)(struct ata_ering_entry *, void *),
void *arg)
{
int idx, rc = 0;
struct ata_ering_entry *ent;
idx = ering->cursor;
do {
ent = &ering->ring[idx];
if (!ent->err_mask)
break;
rc = map_fn(ent, arg);
if (rc)
break;
idx = (idx - 1 + ATA_ERING_SIZE) % ATA_ERING_SIZE;
} while (idx != ering->cursor);
return rc;
}
static int ata_ering_clear_cb(struct ata_ering_entry *ent, void *void_arg)
{
ent->eflags |= ATA_EFLAG_OLD_ER;
return 0;
}
static void ata_ering_clear(struct ata_ering *ering)
{
ata_ering_map(ering, ata_ering_clear_cb, NULL);
}
static unsigned int ata_eh_dev_action(struct ata_device *dev)
{
struct ata_eh_context *ehc = &dev->link->eh_context;
return ehc->i.action | ehc->i.dev_action[dev->devno];
}
static void ata_eh_clear_action(struct ata_link *link, struct ata_device *dev,
struct ata_eh_info *ehi, unsigned int action)
{
struct ata_device *tdev;
if (!dev) {
ehi->action &= ~action;
ata_for_each_dev(tdev, link, ALL)
ehi->dev_action[tdev->devno] &= ~action;
} else {
/* doesn't make sense for port-wide EH actions */
WARN_ON(!(action & ATA_EH_PERDEV_MASK));
/* break ehi->action into ehi->dev_action */
if (ehi->action & action) {
ata_for_each_dev(tdev, link, ALL)
ehi->dev_action[tdev->devno] |=
ehi->action & action;
ehi->action &= ~action;
}
/* turn off the specified per-dev action */
ehi->dev_action[dev->devno] &= ~action;
}
}
/**
* ata_eh_acquire - acquire EH ownership
* @ap: ATA port to acquire EH ownership for
*
* Acquire EH ownership for @ap. This is the basic exclusion
* mechanism for ports sharing a host. Only one port hanging off
* the same host can claim the ownership of EH.
*
* LOCKING:
* EH context.
*/
void ata_eh_acquire(struct ata_port *ap)
{
mutex_lock(&ap->host->eh_mutex);
WARN_ON_ONCE(ap->host->eh_owner);
ap->host->eh_owner = current;
}
/**
* ata_eh_release - release EH ownership
* @ap: ATA port to release EH ownership for
*
* Release EH ownership for @ap if the caller. The caller must
* have acquired EH ownership using ata_eh_acquire() previously.
*
* LOCKING:
* EH context.
*/
void ata_eh_release(struct ata_port *ap)
{
WARN_ON_ONCE(ap->host->eh_owner != current);
ap->host->eh_owner = NULL;
mutex_unlock(&ap->host->eh_mutex);
}
/**
* ata_scsi_timed_out - SCSI layer time out callback
* @cmd: timed out SCSI command
*
* Handles SCSI layer timeout. We race with normal completion of
* the qc for @cmd. If the qc is already gone, we lose and let
* the scsi command finish (EH_HANDLED). Otherwise, the qc has
* timed out and EH should be invoked. Prevent ata_qc_complete()
* from finishing it by setting EH_SCHEDULED and return
* EH_NOT_HANDLED.
*
* TODO: kill this function once old EH is gone.
*
* LOCKING:
* Called from timer context
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
enum blk_eh_timer_return ata_scsi_timed_out(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host = cmd->device->host;
struct ata_port *ap = ata_shost_to_port(host);
unsigned long flags;
struct ata_queued_cmd *qc;
enum blk_eh_timer_return ret;
DPRINTK("ENTER\n");
if (ap->ops->error_handler) {
ret = BLK_EH_NOT_HANDLED;
goto out;
}
ret = BLK_EH_HANDLED;
spin_lock_irqsave(ap->lock, flags);
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc) {
WARN_ON(qc->scsicmd != cmd);
qc->flags |= ATA_QCFLAG_EH_SCHEDULED;
qc->err_mask |= AC_ERR_TIMEOUT;
ret = BLK_EH_NOT_HANDLED;
}
spin_unlock_irqrestore(ap->lock, flags);
out:
DPRINTK("EXIT, ret=%d\n", ret);
return ret;
}
static void ata_eh_unload(struct ata_port *ap)
{
struct ata_link *link;
struct ata_device *dev;
unsigned long flags;
/* Restore SControl IPM and SPD for the next driver and
* disable attached devices.
*/
ata_for_each_link(link, ap, PMP_FIRST) {
sata_scr_write(link, SCR_CONTROL, link->saved_scontrol & 0xff0);
ata_for_each_dev(dev, link, ALL)
ata_dev_disable(dev);
}
/* freeze and set UNLOADED */
spin_lock_irqsave(ap->lock, flags);
ata_port_freeze(ap); /* won't be thawed */
ap->pflags &= ~ATA_PFLAG_EH_PENDING; /* clear pending from freeze */
ap->pflags |= ATA_PFLAG_UNLOADED;
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_scsi_error - SCSI layer error handler callback
* @host: SCSI host on which error occurred
*
* Handles SCSI-layer-thrown error events.
*
* LOCKING:
* Inherited from SCSI layer (none, can sleep)
*
* RETURNS:
* Zero.
*/
void ata_scsi_error(struct Scsi_Host *host)
{
struct ata_port *ap = ata_shost_to_port(host);
unsigned long flags;
LIST_HEAD(eh_work_q);
DPRINTK("ENTER\n");
spin_lock_irqsave(host->host_lock, flags);
list_splice_init(&host->eh_cmd_q, &eh_work_q);
spin_unlock_irqrestore(host->host_lock, flags);
ata_scsi_cmd_error_handler(host, ap, &eh_work_q);
/* If we timed raced normal completion and there is nothing to
recover nr_timedout == 0 why exactly are we doing error recovery ? */
ata_scsi_port_error_handler(host, ap);
/* finish or retry handled scmd's and clean up */
WARN_ON(!list_empty(&eh_work_q));
DPRINTK("EXIT\n");
}
/**
* ata_scsi_cmd_error_handler - error callback for a list of commands
* @host: scsi host containing the port
* @ap: ATA port within the host
* @eh_work_q: list of commands to process
*
* process the given list of commands and return those finished to the
* ap->eh_done_q. This function is the first part of the libata error
* handler which processes a given list of failed commands.
*/
void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap,
struct list_head *eh_work_q)
{
int i;
unsigned long flags;
/* make sure sff pio task is not running */
ata_sff_flush_pio_task(ap);
/* synchronize with host lock and sort out timeouts */
/* For new EH, all qcs are finished in one of three ways -
* normal completion, error completion, and SCSI timeout.
* Both completions can race against SCSI timeout. When normal
* completion wins, the qc never reaches EH. When error
* completion wins, the qc has ATA_QCFLAG_FAILED set.
*
* When SCSI timeout wins, things are a bit more complex.
* Normal or error completion can occur after the timeout but
* before this point. In such cases, both types of
* completions are honored. A scmd is determined to have
* timed out iff its associated qc is active and not failed.
*/
if (ap->ops->error_handler) {
struct scsi_cmnd *scmd, *tmp;
int nr_timedout = 0;
spin_lock_irqsave(ap->lock, flags);
/* This must occur under the ap->lock as we don't want
a polled recovery to race the real interrupt handler
The lost_interrupt handler checks for any completed but
non-notified command and completes much like an IRQ handler.
We then fall into the error recovery code which will treat
this as if normal completion won the race */
if (ap->ops->lost_interrupt)
ap->ops->lost_interrupt(ap);
list_for_each_entry_safe(scmd, tmp, eh_work_q, eh_entry) {
struct ata_queued_cmd *qc;
for (i = 0; i < ATA_MAX_QUEUE; i++) {
qc = __ata_qc_from_tag(ap, i);
if (qc->flags & ATA_QCFLAG_ACTIVE &&
qc->scsicmd == scmd)
break;
}
if (i < ATA_MAX_QUEUE) {
/* the scmd has an associated qc */
if (!(qc->flags & ATA_QCFLAG_FAILED)) {
/* which hasn't failed yet, timeout */
qc->err_mask |= AC_ERR_TIMEOUT;
qc->flags |= ATA_QCFLAG_FAILED;
nr_timedout++;
}
} else {
/* Normal completion occurred after
* SCSI timeout but before this point.
* Successfully complete it.
*/
scmd->retries = scmd->allowed;
scsi_eh_finish_cmd(scmd, &ap->eh_done_q);
}
}
/* If we have timed out qcs. They belong to EH from
* this point but the state of the controller is
* unknown. Freeze the port to make sure the IRQ
* handler doesn't diddle with those qcs. This must
* be done atomically w.r.t. setting QCFLAG_FAILED.
*/
if (nr_timedout)
__ata_port_freeze(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* initialize eh_tries */
ap->eh_tries = ATA_EH_MAX_TRIES;
} else
spin_unlock_wait(ap->lock);
}
EXPORT_SYMBOL(ata_scsi_cmd_error_handler);
/**
* ata_scsi_port_error_handler - recover the port after the commands
* @host: SCSI host containing the port
* @ap: the ATA port
*
* Handle the recovery of the port @ap after all the commands
* have been recovered.
*/
void ata_scsi_port_error_handler(struct Scsi_Host *host, struct ata_port *ap)
{
unsigned long flags;
/* invoke error handler */
if (ap->ops->error_handler) {
struct ata_link *link;
/* acquire EH ownership */
ata_eh_acquire(ap);
repeat:
/* kill fast drain timer */
del_timer_sync(&ap->fastdrain_timer);
/* process port resume request */
ata_eh_handle_port_resume(ap);
/* fetch & clear EH info */
spin_lock_irqsave(ap->lock, flags);
ata_for_each_link(link, ap, HOST_FIRST) {
struct ata_eh_context *ehc = &link->eh_context;
struct ata_device *dev;
memset(&link->eh_context, 0, sizeof(link->eh_context));
link->eh_context.i = link->eh_info;
memset(&link->eh_info, 0, sizeof(link->eh_info));
ata_for_each_dev(dev, link, ENABLED) {
int devno = dev->devno;
ehc->saved_xfer_mode[devno] = dev->xfer_mode;
if (ata_ncq_enabled(dev))
ehc->saved_ncq_enabled |= 1 << devno;
}
}
ap->pflags |= ATA_PFLAG_EH_IN_PROGRESS;
ap->pflags &= ~ATA_PFLAG_EH_PENDING;
ap->excl_link = NULL; /* don't maintain exclusion over EH */
spin_unlock_irqrestore(ap->lock, flags);
/* invoke EH, skip if unloading or suspended */
if (!(ap->pflags & (ATA_PFLAG_UNLOADING | ATA_PFLAG_SUSPENDED)))
ap->ops->error_handler(ap);
else {
/* if unloading, commence suicide */
if ((ap->pflags & ATA_PFLAG_UNLOADING) &&
!(ap->pflags & ATA_PFLAG_UNLOADED))
ata_eh_unload(ap);
ata_eh_finish(ap);
}
/* process port suspend request */
ata_eh_handle_port_suspend(ap);
/* Exception might have happened after ->error_handler
* recovered the port but before this point. Repeat
* EH in such case.
*/
spin_lock_irqsave(ap->lock, flags);
if (ap->pflags & ATA_PFLAG_EH_PENDING) {
if (--ap->eh_tries) {
spin_unlock_irqrestore(ap->lock, flags);
goto repeat;
}
ata_port_err(ap,
"EH pending after %d tries, giving up\n",
ATA_EH_MAX_TRIES);
ap->pflags &= ~ATA_PFLAG_EH_PENDING;
}
/* this run is complete, make sure EH info is clear */
ata_for_each_link(link, ap, HOST_FIRST)
memset(&link->eh_info, 0, sizeof(link->eh_info));
/* end eh (clear host_eh_scheduled) while holding
* ap->lock such that if exception occurs after this
* point but before EH completion, SCSI midlayer will
* re-initiate EH.
*/
ap->ops->end_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
ata_eh_release(ap);
} else {
WARN_ON(ata_qc_from_tag(ap, ap->link.active_tag) == NULL);
ap->ops->eng_timeout(ap);
}
scsi_eh_flush_done_q(&ap->eh_done_q);
/* clean up */
spin_lock_irqsave(ap->lock, flags);
if (ap->pflags & ATA_PFLAG_LOADING)
ap->pflags &= ~ATA_PFLAG_LOADING;
else if (ap->pflags & ATA_PFLAG_SCSI_HOTPLUG)
schedule_delayed_work(&ap->hotplug_task, 0);
if (ap->pflags & ATA_PFLAG_RECOVERED)
ata_port_info(ap, "EH complete\n");
ap->pflags &= ~(ATA_PFLAG_SCSI_HOTPLUG | ATA_PFLAG_RECOVERED);
/* tell wait_eh that we're done */
ap->pflags &= ~ATA_PFLAG_EH_IN_PROGRESS;
wake_up_all(&ap->eh_wait_q);
spin_unlock_irqrestore(ap->lock, flags);
}
EXPORT_SYMBOL_GPL(ata_scsi_port_error_handler);
/**
* ata_port_wait_eh - Wait for the currently pending EH to complete
* @ap: Port to wait EH for
*
* Wait until the currently pending EH is complete.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_port_wait_eh(struct ata_port *ap)
{
unsigned long flags;
DEFINE_WAIT(wait);
retry:
spin_lock_irqsave(ap->lock, flags);
while (ap->pflags & (ATA_PFLAG_EH_PENDING | ATA_PFLAG_EH_IN_PROGRESS)) {
prepare_to_wait(&ap->eh_wait_q, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(ap->lock, flags);
schedule();
spin_lock_irqsave(ap->lock, flags);
}
finish_wait(&ap->eh_wait_q, &wait);
spin_unlock_irqrestore(ap->lock, flags);
/* make sure SCSI EH is complete */
if (scsi_host_in_recovery(ap->scsi_host)) {
ata_msleep(ap, 10);
goto retry;
}
}
EXPORT_SYMBOL_GPL(ata_port_wait_eh);
static int ata_eh_nr_in_flight(struct ata_port *ap)
{
unsigned int tag;
int nr = 0;
/* count only non-internal commands */
for (tag = 0; tag < ATA_MAX_QUEUE - 1; tag++)
if (ata_qc_from_tag(ap, tag))
nr++;
return nr;
}
void ata_eh_fastdrain_timerfn(unsigned long arg)
{
struct ata_port *ap = (void *)arg;
unsigned long flags;
int cnt;
spin_lock_irqsave(ap->lock, flags);
cnt = ata_eh_nr_in_flight(ap);
/* are we done? */
if (!cnt)
goto out_unlock;
if (cnt == ap->fastdrain_cnt) {
unsigned int tag;
/* No progress during the last interval, tag all
* in-flight qcs as timed out and freeze the port.
*/
for (tag = 0; tag < ATA_MAX_QUEUE - 1; tag++) {
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
if (qc)
qc->err_mask |= AC_ERR_TIMEOUT;
}
ata_port_freeze(ap);
} else {
/* some qcs have finished, give it another chance */
ap->fastdrain_cnt = cnt;
ap->fastdrain_timer.expires =
ata_deadline(jiffies, ATA_EH_FASTDRAIN_INTERVAL);
add_timer(&ap->fastdrain_timer);
}
out_unlock:
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_eh_set_pending - set ATA_PFLAG_EH_PENDING and activate fast drain
* @ap: target ATA port
* @fastdrain: activate fast drain
*
* Set ATA_PFLAG_EH_PENDING and activate fast drain if @fastdrain
* is non-zero and EH wasn't pending before. Fast drain ensures
* that EH kicks in in timely manner.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_eh_set_pending(struct ata_port *ap, int fastdrain)
{
int cnt;
/* already scheduled? */
if (ap->pflags & ATA_PFLAG_EH_PENDING)
return;
ap->pflags |= ATA_PFLAG_EH_PENDING;
if (!fastdrain)
return;
/* do we have in-flight qcs? */
cnt = ata_eh_nr_in_flight(ap);
if (!cnt)
return;
/* activate fast drain */
ap->fastdrain_cnt = cnt;
ap->fastdrain_timer.expires =
ata_deadline(jiffies, ATA_EH_FASTDRAIN_INTERVAL);
add_timer(&ap->fastdrain_timer);
}
/**
* ata_qc_schedule_eh - schedule qc for error handling
* @qc: command to schedule error handling for
*
* Schedule error handling for @qc. EH will kick in as soon as
* other commands are drained.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_schedule_eh(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct request_queue *q = qc->scsicmd->device->request_queue;
unsigned long flags;
WARN_ON(!ap->ops->error_handler);
qc->flags |= ATA_QCFLAG_FAILED;
ata_eh_set_pending(ap, 1);
/* The following will fail if timeout has already expired.
* ata_scsi_error() takes care of such scmds on EH entry.
* Note that ATA_QCFLAG_FAILED is unconditionally set after
* this function completes.
*/
spin_lock_irqsave(q->queue_lock, flags);
blk_abort_request(qc->scsicmd->request);
spin_unlock_irqrestore(q->queue_lock, flags);
}
/**
* ata_std_sched_eh - non-libsas ata_ports issue eh with this common routine
* @ap: ATA port to schedule EH for
*
* LOCKING: inherited from ata_port_schedule_eh
* spin_lock_irqsave(host lock)
*/
void ata_std_sched_eh(struct ata_port *ap)
{
WARN_ON(!ap->ops->error_handler);
if (ap->pflags & ATA_PFLAG_INITIALIZING)
return;
ata_eh_set_pending(ap, 1);
scsi_schedule_eh(ap->scsi_host);
DPRINTK("port EH scheduled\n");
}
EXPORT_SYMBOL_GPL(ata_std_sched_eh);
/**
* ata_std_end_eh - non-libsas ata_ports complete eh with this common routine
* @ap: ATA port to end EH for
*
* In the libata object model there is a 1:1 mapping of ata_port to
* shost, so host fields can be directly manipulated under ap->lock, in
* the libsas case we need to hold a lock at the ha->level to coordinate
* these events.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_std_end_eh(struct ata_port *ap)
{
struct Scsi_Host *host = ap->scsi_host;
host->host_eh_scheduled = 0;
}
EXPORT_SYMBOL(ata_std_end_eh);
/**
* ata_port_schedule_eh - schedule error handling without a qc
* @ap: ATA port to schedule EH for
*
* Schedule error handling for @ap. EH will kick in as soon as
* all commands are drained.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_port_schedule_eh(struct ata_port *ap)
{
/* see: ata_std_sched_eh, unless you know better */
ap->ops->sched_eh(ap);
}
static int ata_do_link_abort(struct ata_port *ap, struct ata_link *link)
{
int tag, nr_aborted = 0;
WARN_ON(!ap->ops->error_handler);
/* we're gonna abort all commands, no need for fast drain */
ata_eh_set_pending(ap, 0);
for (tag = 0; tag < ATA_MAX_QUEUE; tag++) {
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
if (qc && (!link || qc->dev->link == link)) {
qc->flags |= ATA_QCFLAG_FAILED;
ata_qc_complete(qc);
nr_aborted++;
}
}
if (!nr_aborted)
ata_port_schedule_eh(ap);
return nr_aborted;
}
/**
* ata_link_abort - abort all qc's on the link
* @link: ATA link to abort qc's for
*
* Abort all active qc's active on @link and schedule EH.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Number of aborted qc's.
*/
int ata_link_abort(struct ata_link *link)
{
return ata_do_link_abort(link->ap, link);
}
/**
* ata_port_abort - abort all qc's on the port
* @ap: ATA port to abort qc's for
*
* Abort all active qc's of @ap and schedule EH.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Number of aborted qc's.
*/
int ata_port_abort(struct ata_port *ap)
{
return ata_do_link_abort(ap, NULL);
}
/**
* __ata_port_freeze - freeze port
* @ap: ATA port to freeze
*
* This function is called when HSM violation or some other
* condition disrupts normal operation of the port. Frozen port
* is not allowed to perform any operation until the port is
* thawed, which usually follows a successful reset.
*
* ap->ops->freeze() callback can be used for freezing the port
* hardware-wise (e.g. mask interrupt and stop DMA engine). If a
* port cannot be frozen hardware-wise, the interrupt handler
* must ack and clear interrupts unconditionally while the port
* is frozen.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void __ata_port_freeze(struct ata_port *ap)
{
WARN_ON(!ap->ops->error_handler);
if (ap->ops->freeze)
ap->ops->freeze(ap);
ap->pflags |= ATA_PFLAG_FROZEN;
DPRINTK("ata%u port frozen\n", ap->print_id);
}
/**
* ata_port_freeze - abort & freeze port
* @ap: ATA port to freeze
*
* Abort and freeze @ap. The freeze operation must be called
* first, because some hardware requires special operations
* before the taskfile registers are accessible.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Number of aborted commands.
*/
int ata_port_freeze(struct ata_port *ap)
{
int nr_aborted;
WARN_ON(!ap->ops->error_handler);
__ata_port_freeze(ap);
nr_aborted = ata_port_abort(ap);
return nr_aborted;
}
/**
* sata_async_notification - SATA async notification handler
* @ap: ATA port where async notification is received
*
* Handler to be called when async notification via SDB FIS is
* received. This function schedules EH if necessary.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 1 if EH is scheduled, 0 otherwise.
*/
int sata_async_notification(struct ata_port *ap)
{
u32 sntf;
int rc;
if (!(ap->flags & ATA_FLAG_AN))
return 0;
rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
if (rc == 0)
sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
if (!sata_pmp_attached(ap) || rc) {
/* PMP is not attached or SNTF is not available */
if (!sata_pmp_attached(ap)) {
/* PMP is not attached. Check whether ATAPI
* AN is configured. If so, notify media
* change.
*/
struct ata_device *dev = ap->link.device;
if ((dev->class == ATA_DEV_ATAPI) &&
(dev->flags & ATA_DFLAG_AN))
ata_scsi_media_change_notify(dev);
return 0;
} else {
/* PMP is attached but SNTF is not available.
* ATAPI async media change notification is
* not used. The PMP must be reporting PHY
* status change, schedule EH.
*/
ata_port_schedule_eh(ap);
return 1;
}
} else {
/* PMP is attached and SNTF is available */
struct ata_link *link;
/* check and notify ATAPI AN */
ata_for_each_link(link, ap, EDGE) {
if (!(sntf & (1 << link->pmp)))
continue;
if ((link->device->class == ATA_DEV_ATAPI) &&
(link->device->flags & ATA_DFLAG_AN))
ata_scsi_media_change_notify(link->device);
}
/* If PMP is reporting that PHY status of some
* downstream ports has changed, schedule EH.
*/
if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
ata_port_schedule_eh(ap);
return 1;
}
return 0;
}
}
/**
* ata_eh_freeze_port - EH helper to freeze port
* @ap: ATA port to freeze
*
* Freeze @ap.
*
* LOCKING:
* None.
*/
void ata_eh_freeze_port(struct ata_port *ap)
{
unsigned long flags;
if (!ap->ops->error_handler)
return;
spin_lock_irqsave(ap->lock, flags);
__ata_port_freeze(ap);
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_port_thaw_port - EH helper to thaw port
* @ap: ATA port to thaw
*
* Thaw frozen port @ap.
*
* LOCKING:
* None.
*/
void ata_eh_thaw_port(struct ata_port *ap)
{
unsigned long flags;
if (!ap->ops->error_handler)
return;
spin_lock_irqsave(ap->lock, flags);
ap->pflags &= ~ATA_PFLAG_FROZEN;
if (ap->ops->thaw)
ap->ops->thaw(ap);
spin_unlock_irqrestore(ap->lock, flags);
DPRINTK("ata%u port thawed\n", ap->print_id);
}
static void ata_eh_scsidone(struct scsi_cmnd *scmd)
{
/* nada */
}
static void __ata_eh_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scsi_cmnd *scmd = qc->scsicmd;
unsigned long flags;
spin_lock_irqsave(ap->lock, flags);
qc->scsidone = ata_eh_scsidone;
__ata_qc_complete(qc);
WARN_ON(ata_tag_valid(qc->tag));
spin_unlock_irqrestore(ap->lock, flags);
scsi_eh_finish_cmd(scmd, &ap->eh_done_q);
}
/**
* ata_eh_qc_complete - Complete an active ATA command from EH
* @qc: Command to complete
*
* Indicate to the mid and upper layers that an ATA command has
* completed. To be used from EH.
*/
void ata_eh_qc_complete(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
scmd->retries = scmd->allowed;
__ata_eh_qc_complete(qc);
}
/**
* ata_eh_qc_retry - Tell midlayer to retry an ATA command after EH
* @qc: Command to retry
*
* Indicate to the mid and upper layers that an ATA command
* should be retried. To be used from EH.
*
* SCSI midlayer limits the number of retries to scmd->allowed.
* scmd->allowed is incremented for commands which get retried
* due to unrelated failures (qc->err_mask is zero).
*/
void ata_eh_qc_retry(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
if (!qc->err_mask)
scmd->allowed++;
__ata_eh_qc_complete(qc);
}
/**
* ata_dev_disable - disable ATA device
* @dev: ATA device to disable
*
* Disable @dev.
*
* Locking:
* EH context.
*/
void ata_dev_disable(struct ata_device *dev)
{
if (!ata_dev_enabled(dev))
return;
if (ata_msg_drv(dev->link->ap))
ata_dev_warn(dev, "disabled\n");
ata_acpi_on_disable(dev);
ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | ATA_DNXFER_QUIET);
dev->class++;
/* From now till the next successful probe, ering is used to
* track probe failures. Clear accumulated device error info.
*/
ata_ering_clear(&dev->ering);
}
/**
* ata_eh_detach_dev - detach ATA device
* @dev: ATA device to detach
*
* Detach @dev.
*
* LOCKING:
* None.
*/
void ata_eh_detach_dev(struct ata_device *dev)
{
struct ata_link *link = dev->link;
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
unsigned long flags;
ata_dev_disable(dev);
spin_lock_irqsave(ap->lock, flags);
dev->flags &= ~ATA_DFLAG_DETACH;
if (ata_scsi_offline_dev(dev)) {
dev->flags |= ATA_DFLAG_DETACHED;
ap->pflags |= ATA_PFLAG_SCSI_HOTPLUG;
}
/* clear per-dev EH info */
ata_eh_clear_action(link, dev, &link->eh_info, ATA_EH_PERDEV_MASK);
ata_eh_clear_action(link, dev, &link->eh_context.i, ATA_EH_PERDEV_MASK);
ehc->saved_xfer_mode[dev->devno] = 0;
ehc->saved_ncq_enabled &= ~(1 << dev->devno);
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_eh_about_to_do - about to perform eh_action
* @link: target ATA link
* @dev: target ATA dev for per-dev action (can be NULL)
* @action: action about to be performed
*
* Called just before performing EH actions to clear related bits
* in @link->eh_info such that eh actions are not unnecessarily
* repeated.
*
* LOCKING:
* None.
*/
void ata_eh_about_to_do(struct ata_link *link, struct ata_device *dev,
unsigned int action)
{
struct ata_port *ap = link->ap;
struct ata_eh_info *ehi = &link->eh_info;
struct ata_eh_context *ehc = &link->eh_context;
unsigned long flags;
spin_lock_irqsave(ap->lock, flags);
ata_eh_clear_action(link, dev, ehi, action);
/* About to take EH action, set RECOVERED. Ignore actions on
* slave links as master will do them again.
*/
if (!(ehc->i.flags & ATA_EHI_QUIET) && link != ap->slave_link)
ap->pflags |= ATA_PFLAG_RECOVERED;
spin_unlock_irqrestore(ap->lock, flags);
}
/**
* ata_eh_done - EH action complete
* @ap: target ATA port
* @dev: target ATA dev for per-dev action (can be NULL)
* @action: action just completed
*
* Called right after performing EH actions to clear related bits
* in @link->eh_context.
*
* LOCKING:
* None.
*/
void ata_eh_done(struct ata_link *link, struct ata_device *dev,
unsigned int action)
{
struct ata_eh_context *ehc = &link->eh_context;
ata_eh_clear_action(link, dev, &ehc->i, action);
}
/**
* ata_err_string - convert err_mask to descriptive string
* @err_mask: error mask to convert to string
*
* Convert @err_mask to descriptive string. Errors are
* prioritized according to severity and only the most severe
* error is reported.
*
* LOCKING:
* None.
*
* RETURNS:
* Descriptive string for @err_mask
*/
static const char *ata_err_string(unsigned int err_mask)
{
if (err_mask & AC_ERR_HOST_BUS)
return "host bus error";
if (err_mask & AC_ERR_ATA_BUS)
return "ATA bus error";
if (err_mask & AC_ERR_TIMEOUT)
return "timeout";
if (err_mask & AC_ERR_HSM)
return "HSM violation";
if (err_mask & AC_ERR_SYSTEM)
return "internal error";
if (err_mask & AC_ERR_MEDIA)
return "media error";
if (err_mask & AC_ERR_INVALID)
return "invalid argument";
if (err_mask & AC_ERR_DEV)
return "device error";
return "unknown error";
}
/**
* ata_read_log_page - read a specific log page
* @dev: target device
* @log: log to read
* @page: page to read
* @buf: buffer to store read page
* @sectors: number of sectors to read
*
* Read log page using READ_LOG_EXT command.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
u8 page, void *buf, unsigned int sectors)
{
unsigned long ap_flags = dev->link->ap->flags;
struct ata_taskfile tf;
unsigned int err_mask;
bool dma = false;
DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
/*
* Return error without actually issuing the command on controllers
* which e.g. lockup on a read log page.
*/
if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
return AC_ERR_DEV;
retry:
ata_tf_init(dev, &tf);
if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
!(dev->horkage & ATA_HORKAGE_NO_NCQ_LOG)) {
tf.command = ATA_CMD_READ_LOG_DMA_EXT;
tf.protocol = ATA_PROT_DMA;
dma = true;
} else {
tf.command = ATA_CMD_READ_LOG_EXT;
tf.protocol = ATA_PROT_PIO;
dma = false;
}
tf.lbal = log;
tf.lbam = page;
tf.nsect = sectors;
tf.hob_nsect = sectors >> 8;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
buf, sectors * ATA_SECT_SIZE, 0);
if (err_mask && dma) {
dev->horkage |= ATA_HORKAGE_NO_NCQ_LOG;
ata_dev_warn(dev, "READ LOG DMA EXT failed, trying unqueued\n");
goto retry;
}
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_eh_read_log_10h - Read log page 10h for NCQ error details
* @dev: Device to read log page 10h from
* @tag: Resulting tag of the failed command
* @tf: Resulting taskfile registers of the failed command
*
* Read log page 10h to obtain NCQ error details and clear error
* condition.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
static int ata_eh_read_log_10h(struct ata_device *dev,
int *tag, struct ata_taskfile *tf)
{
u8 *buf = dev->link->ap->sector_buf;
unsigned int err_mask;
u8 csum;
int i;
err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
if (err_mask)
return -EIO;
csum = 0;
for (i = 0; i < ATA_SECT_SIZE; i++)
csum += buf[i];
if (csum)
ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
csum);
if (buf[0] & 0x80)
return -ENOENT;
*tag = buf[0] & 0x1f;
tf->command = buf[2];
tf->feature = buf[3];
tf->lbal = buf[4];
tf->lbam = buf[5];
tf->lbah = buf[6];
tf->device = buf[7];
tf->hob_lbal = buf[8];
tf->hob_lbam = buf[9];
tf->hob_lbah = buf[10];
tf->nsect = buf[12];
tf->hob_nsect = buf[13];
return 0;
}
/**
* atapi_eh_tur - perform ATAPI TEST_UNIT_READY
* @dev: target ATAPI device
* @r_sense_key: out parameter for sense_key
*
* Perform ATAPI TEST_UNIT_READY.
*
* LOCKING:
* EH context (may sleep).
*
* RETURNS:
* 0 on success, AC_ERR_* mask on failure.
*/
unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key)
{
u8 cdb[ATAPI_CDB_LEN] = { TEST_UNIT_READY, 0, 0, 0, 0, 0 };
struct ata_taskfile tf;
unsigned int err_mask;
ata_tf_init(dev, &tf);
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.command = ATA_CMD_PACKET;
tf.protocol = ATAPI_PROT_NODATA;
err_mask = ata_exec_internal(dev, &tf, cdb, DMA_NONE, NULL, 0, 0);
if (err_mask == AC_ERR_DEV)
*r_sense_key = tf.feature >> 4;
return err_mask;
}
/**
* atapi_eh_request_sense - perform ATAPI REQUEST_SENSE
* @dev: device to perform REQUEST_SENSE to
* @sense_buf: result sense data buffer (SCSI_SENSE_BUFFERSIZE bytes long)
* @dfl_sense_key: default sense key to use
*
* Perform ATAPI REQUEST_SENSE after the device reported CHECK
* SENSE. This function is EH helper.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, AC_ERR_* mask on failure
*/
unsigned int atapi_eh_request_sense(struct ata_device *dev,
u8 *sense_buf, u8 dfl_sense_key)
{
u8 cdb[ATAPI_CDB_LEN] =
{ REQUEST_SENSE, 0, 0, 0, SCSI_SENSE_BUFFERSIZE, 0 };
struct ata_port *ap = dev->link->ap;
struct ata_taskfile tf;
DPRINTK("ATAPI request sense\n");
memset(sense_buf, 0, SCSI_SENSE_BUFFERSIZE);
/* initialize sense_buf with the error register,
* for the case where they are -not- overwritten
*/
sense_buf[0] = 0x70;
sense_buf[2] = dfl_sense_key;
/* some devices time out if garbage left in tf */
ata_tf_init(dev, &tf);
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.command = ATA_CMD_PACKET;
/* is it pointless to prefer PIO for "safety reasons"? */
if (ap->flags & ATA_FLAG_PIO_DMA) {
tf.protocol = ATAPI_PROT_DMA;
tf.feature |= ATAPI_PKT_DMA;
} else {
tf.protocol = ATAPI_PROT_PIO;
tf.lbam = SCSI_SENSE_BUFFERSIZE;
tf.lbah = 0;
}
return ata_exec_internal(dev, &tf, cdb, DMA_FROM_DEVICE,
sense_buf, SCSI_SENSE_BUFFERSIZE, 0);
}
/**
* ata_eh_analyze_serror - analyze SError for a failed port
* @link: ATA link to analyze SError for
*
* Analyze SError if available and further determine cause of
* failure.
*
* LOCKING:
* None.
*/
static void ata_eh_analyze_serror(struct ata_link *link)
{
struct ata_eh_context *ehc = &link->eh_context;
u32 serror = ehc->i.serror;
unsigned int err_mask = 0, action = 0;
u32 hotplug_mask;
if (serror & (SERR_PERSISTENT | SERR_DATA)) {
err_mask |= AC_ERR_ATA_BUS;
action |= ATA_EH_RESET;
}
if (serror & SERR_PROTOCOL) {
err_mask |= AC_ERR_HSM;
action |= ATA_EH_RESET;
}
if (serror & SERR_INTERNAL) {
err_mask |= AC_ERR_SYSTEM;
action |= ATA_EH_RESET;
}
/* Determine whether a hotplug event has occurred. Both
* SError.N/X are considered hotplug events for enabled or
* host links. For disabled PMP links, only N bit is
* considered as X bit is left at 1 for link plugging.
*/
if (link->lpm_policy > ATA_LPM_MAX_POWER)
hotplug_mask = 0; /* hotplug doesn't work w/ LPM */
else if (!(link->flags & ATA_LFLAG_DISABLED) || ata_is_host_link(link))
hotplug_mask = SERR_PHYRDY_CHG | SERR_DEV_XCHG;
else
hotplug_mask = SERR_PHYRDY_CHG;
if (serror & hotplug_mask)
ata_ehi_hotplugged(&ehc->i);
ehc->i.err_mask |= err_mask;
ehc->i.action |= action;
}
/**
* ata_eh_analyze_ncq_error - analyze NCQ error
* @link: ATA link to analyze NCQ error for
*
* Read log page 10h, determine the offending qc and acquire
* error status TF. For NCQ device errors, all LLDDs have to do
* is setting AC_ERR_DEV in ehi->err_mask. This function takes
* care of the rest.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_eh_analyze_ncq_error(struct ata_link *link)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
struct ata_device *dev = link->device;
struct ata_queued_cmd *qc;
struct ata_taskfile tf;
int tag, rc;
/* if frozen, we can't do much */
if (ap->pflags & ATA_PFLAG_FROZEN)
return;
/* is it NCQ device error? */
if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
return;
/* has LLDD analyzed already? */
for (tag = 0; tag < ATA_MAX_QUEUE; tag++) {
qc = __ata_qc_from_tag(ap, tag);
if (!(qc->flags & ATA_QCFLAG_FAILED))
continue;
if (qc->err_mask)
return;
}
/* okay, this error is ours */
memset(&tf, 0, sizeof(tf));
rc = ata_eh_read_log_10h(dev, &tag, &tf);
if (rc) {
ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
rc);
return;
}
if (!(link->sactive & (1 << tag))) {
ata_link_err(link, "log page 10h reported inactive tag %d\n",
tag);
return;
}
/* we've got the perpetrator, condemn it */
qc = __ata_qc_from_tag(ap, tag);
memcpy(&qc->result_tf, &tf, sizeof(tf));
qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
ehc->i.err_mask &= ~AC_ERR_DEV;
}
/**
* ata_eh_analyze_tf - analyze taskfile of a failed qc
* @qc: qc to analyze
* @tf: Taskfile registers to analyze
*
* Analyze taskfile of @qc and further determine cause of
* failure. This function also requests ATAPI sense data if
* available.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* Determined recovery action
*/
static unsigned int ata_eh_analyze_tf(struct ata_queued_cmd *qc,
const struct ata_taskfile *tf)
{
unsigned int tmp, action = 0;
u8 stat = tf->command, err = tf->feature;
if ((stat & (ATA_BUSY | ATA_DRQ | ATA_DRDY)) != ATA_DRDY) {
qc->err_mask |= AC_ERR_HSM;
return ATA_EH_RESET;
}
if (stat & (ATA_ERR | ATA_DF))
qc->err_mask |= AC_ERR_DEV;
else
return 0;
switch (qc->dev->class) {
case ATA_DEV_ATA:
case ATA_DEV_ZAC:
if (err & ATA_ICRC)
qc->err_mask |= AC_ERR_ATA_BUS;
if (err & (ATA_UNC | ATA_AMNF))
qc->err_mask |= AC_ERR_MEDIA;
if (err & ATA_IDNF)
qc->err_mask |= AC_ERR_INVALID;
break;
case ATA_DEV_ATAPI:
if (!(qc->ap->pflags & ATA_PFLAG_FROZEN)) {
tmp = atapi_eh_request_sense(qc->dev,
qc->scsicmd->sense_buffer,
qc->result_tf.feature >> 4);
if (!tmp) {
/* ATA_QCFLAG_SENSE_VALID is used to
* tell atapi_qc_complete() that sense
* data is already valid.
*
* TODO: interpret sense data and set
* appropriate err_mask.
*/
qc->flags |= ATA_QCFLAG_SENSE_VALID;
} else
qc->err_mask |= tmp;
}
}
if (qc->err_mask & (AC_ERR_HSM | AC_ERR_TIMEOUT | AC_ERR_ATA_BUS))
action |= ATA_EH_RESET;
return action;
}
static int ata_eh_categorize_error(unsigned int eflags, unsigned int err_mask,
int *xfer_ok)
{
int base = 0;
if (!(eflags & ATA_EFLAG_DUBIOUS_XFER))
*xfer_ok = 1;
if (!*xfer_ok)
base = ATA_ECAT_DUBIOUS_NONE;
if (err_mask & AC_ERR_ATA_BUS)
return base + ATA_ECAT_ATA_BUS;
if (err_mask & AC_ERR_TIMEOUT)
return base + ATA_ECAT_TOUT_HSM;
if (eflags & ATA_EFLAG_IS_IO) {
if (err_mask & AC_ERR_HSM)
return base + ATA_ECAT_TOUT_HSM;
if ((err_mask &
(AC_ERR_DEV|AC_ERR_MEDIA|AC_ERR_INVALID)) == AC_ERR_DEV)
return base + ATA_ECAT_UNK_DEV;
}
return 0;
}
struct speed_down_verdict_arg {
u64 since;
int xfer_ok;
int nr_errors[ATA_ECAT_NR];
};
static int speed_down_verdict_cb(struct ata_ering_entry *ent, void *void_arg)
{
struct speed_down_verdict_arg *arg = void_arg;
int cat;
if ((ent->eflags & ATA_EFLAG_OLD_ER) || (ent->timestamp < arg->since))
return -1;
cat = ata_eh_categorize_error(ent->eflags, ent->err_mask,
&arg->xfer_ok);
arg->nr_errors[cat]++;
return 0;
}
/**
* ata_eh_speed_down_verdict - Determine speed down verdict
* @dev: Device of interest
*
* This function examines error ring of @dev and determines
* whether NCQ needs to be turned off, transfer speed should be
* stepped down, or falling back to PIO is necessary.
*
* ECAT_ATA_BUS : ATA_BUS error for any command
*
* ECAT_TOUT_HSM : TIMEOUT for any command or HSM violation for
* IO commands
*
* ECAT_UNK_DEV : Unknown DEV error for IO commands
*
* ECAT_DUBIOUS_* : Identical to above three but occurred while
* data transfer hasn't been verified.
*
* Verdicts are
*
* NCQ_OFF : Turn off NCQ.
*
* SPEED_DOWN : Speed down transfer speed but don't fall back
* to PIO.
*
* FALLBACK_TO_PIO : Fall back to PIO.
*
* Even if multiple verdicts are returned, only one action is
* taken per error. An action triggered by non-DUBIOUS errors
* clears ering, while one triggered by DUBIOUS_* errors doesn't.
* This is to expedite speed down decisions right after device is
* initially configured.
*
* The followings are speed down rules. #1 and #2 deal with
* DUBIOUS errors.
*
* 1. If more than one DUBIOUS_ATA_BUS or DUBIOUS_TOUT_HSM errors
* occurred during last 5 mins, SPEED_DOWN and FALLBACK_TO_PIO.
*
* 2. If more than one DUBIOUS_TOUT_HSM or DUBIOUS_UNK_DEV errors
* occurred during last 5 mins, NCQ_OFF.
*
* 3. If more than 8 ATA_BUS, TOUT_HSM or UNK_DEV errors
* occurred during last 5 mins, FALLBACK_TO_PIO
*
* 4. If more than 3 TOUT_HSM or UNK_DEV errors occurred
* during last 10 mins, NCQ_OFF.
*
* 5. If more than 3 ATA_BUS or TOUT_HSM errors, or more than 6
* UNK_DEV errors occurred during last 10 mins, SPEED_DOWN.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* OR of ATA_EH_SPDN_* flags.
*/
static unsigned int ata_eh_speed_down_verdict(struct ata_device *dev)
{
const u64 j5mins = 5LLU * 60 * HZ, j10mins = 10LLU * 60 * HZ;
u64 j64 = get_jiffies_64();
struct speed_down_verdict_arg arg;
unsigned int verdict = 0;
/* scan past 5 mins of error history */
memset(&arg, 0, sizeof(arg));
arg.since = j64 - min(j64, j5mins);
ata_ering_map(&dev->ering, speed_down_verdict_cb, &arg);
if (arg.nr_errors[ATA_ECAT_DUBIOUS_ATA_BUS] +
arg.nr_errors[ATA_ECAT_DUBIOUS_TOUT_HSM] > 1)
verdict |= ATA_EH_SPDN_SPEED_DOWN |
ATA_EH_SPDN_FALLBACK_TO_PIO | ATA_EH_SPDN_KEEP_ERRORS;
if (arg.nr_errors[ATA_ECAT_DUBIOUS_TOUT_HSM] +
arg.nr_errors[ATA_ECAT_DUBIOUS_UNK_DEV] > 1)
verdict |= ATA_EH_SPDN_NCQ_OFF | ATA_EH_SPDN_KEEP_ERRORS;
if (arg.nr_errors[ATA_ECAT_ATA_BUS] +
arg.nr_errors[ATA_ECAT_TOUT_HSM] +
arg.nr_errors[ATA_ECAT_UNK_DEV] > 6)
verdict |= ATA_EH_SPDN_FALLBACK_TO_PIO;
/* scan past 10 mins of error history */
memset(&arg, 0, sizeof(arg));
arg.since = j64 - min(j64, j10mins);
ata_ering_map(&dev->ering, speed_down_verdict_cb, &arg);
if (arg.nr_errors[ATA_ECAT_TOUT_HSM] +
arg.nr_errors[ATA_ECAT_UNK_DEV] > 3)
verdict |= ATA_EH_SPDN_NCQ_OFF;
if (arg.nr_errors[ATA_ECAT_ATA_BUS] +
arg.nr_errors[ATA_ECAT_TOUT_HSM] > 3 ||
arg.nr_errors[ATA_ECAT_UNK_DEV] > 6)
verdict |= ATA_EH_SPDN_SPEED_DOWN;
return verdict;
}
/**
* ata_eh_speed_down - record error and speed down if necessary
* @dev: Failed device
* @eflags: mask of ATA_EFLAG_* flags
* @err_mask: err_mask of the error
*
* Record error and examine error history to determine whether
* adjusting transmission speed is necessary. It also sets
* transmission limits appropriately if such adjustment is
* necessary.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* Determined recovery action.
*/
static unsigned int ata_eh_speed_down(struct ata_device *dev,
unsigned int eflags, unsigned int err_mask)
{
struct ata_link *link = ata_dev_phys_link(dev);
int xfer_ok = 0;
unsigned int verdict;
unsigned int action = 0;
/* don't bother if Cat-0 error */
if (ata_eh_categorize_error(eflags, err_mask, &xfer_ok) == 0)
return 0;
/* record error and determine whether speed down is necessary */
ata_ering_record(&dev->ering, eflags, err_mask);
verdict = ata_eh_speed_down_verdict(dev);
/* turn off NCQ? */
if ((verdict & ATA_EH_SPDN_NCQ_OFF) &&
(dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ |
ATA_DFLAG_NCQ_OFF)) == ATA_DFLAG_NCQ) {
dev->flags |= ATA_DFLAG_NCQ_OFF;
ata_dev_warn(dev, "NCQ disabled due to excessive errors\n");
goto done;
}
/* speed down? */
if (verdict & ATA_EH_SPDN_SPEED_DOWN) {
/* speed down SATA link speed if possible */
if (sata_down_spd_limit(link, 0) == 0) {
action |= ATA_EH_RESET;
goto done;
}
/* lower transfer mode */
if (dev->spdn_cnt < 2) {
static const int dma_dnxfer_sel[] =
{ ATA_DNXFER_DMA, ATA_DNXFER_40C };
static const int pio_dnxfer_sel[] =
{ ATA_DNXFER_PIO, ATA_DNXFER_FORCE_PIO0 };
int sel;
if (dev->xfer_shift != ATA_SHIFT_PIO)
sel = dma_dnxfer_sel[dev->spdn_cnt];
else
sel = pio_dnxfer_sel[dev->spdn_cnt];
dev->spdn_cnt++;
if (ata_down_xfermask_limit(dev, sel) == 0) {
action |= ATA_EH_RESET;
goto done;
}
}
}
/* Fall back to PIO? Slowing down to PIO is meaningless for
* SATA ATA devices. Consider it only for PATA and SATAPI.
*/
if ((verdict & ATA_EH_SPDN_FALLBACK_TO_PIO) && (dev->spdn_cnt >= 2) &&
(link->ap->cbl != ATA_CBL_SATA || dev->class == ATA_DEV_ATAPI) &&
(dev->xfer_shift != ATA_SHIFT_PIO)) {
if (ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO) == 0) {
dev->spdn_cnt = 0;
action |= ATA_EH_RESET;
goto done;
}
}
return 0;
done:
/* device has been slowed down, blow error history */
if (!(verdict & ATA_EH_SPDN_KEEP_ERRORS))
ata_ering_clear(&dev->ering);
return action;
}
/**
* ata_eh_worth_retry - analyze error and decide whether to retry
* @qc: qc to possibly retry
*
* Look at the cause of the error and decide if a retry
* might be useful or not. We don't want to retry media errors
* because the drive itself has probably already taken 10-30 seconds
* doing its own internal retries before reporting the failure.
*/
static inline int ata_eh_worth_retry(struct ata_queued_cmd *qc)
{
if (qc->err_mask & AC_ERR_MEDIA)
return 0; /* don't retry media errors */
if (qc->flags & ATA_QCFLAG_IO)
return 1; /* otherwise retry anything from fs stack */
if (qc->err_mask & AC_ERR_INVALID)
return 0; /* don't retry these */
return qc->err_mask != AC_ERR_DEV; /* retry if not dev error */
}
/**
* ata_eh_link_autopsy - analyze error and determine recovery action
* @link: host link to perform autopsy on
*
* Analyze why @link failed and determine which recovery actions
* are needed. This function also sets more detailed AC_ERR_*
* values and fills sense data for ATAPI CHECK SENSE.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
static void ata_eh_link_autopsy(struct ata_link *link)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
struct ata_device *dev;
unsigned int all_err_mask = 0, eflags = 0;
int tag;
u32 serror;
int rc;
DPRINTK("ENTER\n");
if (ehc->i.flags & ATA_EHI_NO_AUTOPSY)
return;
/* obtain and analyze SError */
rc = sata_scr_read(link, SCR_ERROR, &serror);
if (rc == 0) {
ehc->i.serror |= serror;
ata_eh_analyze_serror(link);
} else if (rc != -EOPNOTSUPP) {
/* SError read failed, force reset and probing */
ehc->i.probe_mask |= ATA_ALL_DEVICES;
ehc->i.action |= ATA_EH_RESET;
ehc->i.err_mask |= AC_ERR_OTHER;
}
/* analyze NCQ failure */
ata_eh_analyze_ncq_error(link);
/* any real error trumps AC_ERR_OTHER */
if (ehc->i.err_mask & ~AC_ERR_OTHER)
ehc->i.err_mask &= ~AC_ERR_OTHER;
all_err_mask |= ehc->i.err_mask;
for (tag = 0; tag < ATA_MAX_QUEUE; tag++) {
struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag);
if (!(qc->flags & ATA_QCFLAG_FAILED) ||
ata_dev_phys_link(qc->dev) != link)
continue;
/* inherit upper level err_mask */
qc->err_mask |= ehc->i.err_mask;
/* analyze TF */
ehc->i.action |= ata_eh_analyze_tf(qc, &qc->result_tf);
/* DEV errors are probably spurious in case of ATA_BUS error */
if (qc->err_mask & AC_ERR_ATA_BUS)
qc->err_mask &= ~(AC_ERR_DEV | AC_ERR_MEDIA |
AC_ERR_INVALID);
/* any real error trumps unknown error */
if (qc->err_mask & ~AC_ERR_OTHER)
qc->err_mask &= ~AC_ERR_OTHER;
/* SENSE_VALID trumps dev/unknown error and revalidation */
if (qc->flags & ATA_QCFLAG_SENSE_VALID)
qc->err_mask &= ~(AC_ERR_DEV | AC_ERR_OTHER);
/* determine whether the command is worth retrying */
if (ata_eh_worth_retry(qc))
qc->flags |= ATA_QCFLAG_RETRY;
/* accumulate error info */
ehc->i.dev = qc->dev;
all_err_mask |= qc->err_mask;
if (qc->flags & ATA_QCFLAG_IO)
eflags |= ATA_EFLAG_IS_IO;
trace_ata_eh_link_autopsy_qc(qc);
}
/* enforce default EH actions */
if (ap->pflags & ATA_PFLAG_FROZEN ||
all_err_mask & (AC_ERR_HSM | AC_ERR_TIMEOUT))
ehc->i.action |= ATA_EH_RESET;
else if (((eflags & ATA_EFLAG_IS_IO) && all_err_mask) ||
(!(eflags & ATA_EFLAG_IS_IO) && (all_err_mask & ~AC_ERR_DEV)))
ehc->i.action |= ATA_EH_REVALIDATE;
/* If we have offending qcs and the associated failed device,
* perform per-dev EH action only on the offending device.
*/
if (ehc->i.dev) {
ehc->i.dev_action[ehc->i.dev->devno] |=
ehc->i.action & ATA_EH_PERDEV_MASK;
ehc->i.action &= ~ATA_EH_PERDEV_MASK;
}
/* propagate timeout to host link */
if ((all_err_mask & AC_ERR_TIMEOUT) && !ata_is_host_link(link))
ap->link.eh_context.i.err_mask |= AC_ERR_TIMEOUT;
/* record error and consider speeding down */
dev = ehc->i.dev;
if (!dev && ((ata_link_max_devices(link) == 1 &&
ata_dev_enabled(link->device))))
dev = link->device;
if (dev) {
if (dev->flags & ATA_DFLAG_DUBIOUS_XFER)
eflags |= ATA_EFLAG_DUBIOUS_XFER;
ehc->i.action |= ata_eh_speed_down(dev, eflags, all_err_mask);
}
trace_ata_eh_link_autopsy(dev, ehc->i.action, all_err_mask);
DPRINTK("EXIT\n");
}
/**
* ata_eh_autopsy - analyze error and determine recovery action
* @ap: host port to perform autopsy on
*
* Analyze all links of @ap and determine why they failed and
* which recovery actions are needed.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_eh_autopsy(struct ata_port *ap)
{
struct ata_link *link;
ata_for_each_link(link, ap, EDGE)
ata_eh_link_autopsy(link);
/* Handle the frigging slave link. Autopsy is done similarly
* but actions and flags are transferred over to the master
* link and handled from there.
*/
if (ap->slave_link) {
struct ata_eh_context *mehc = &ap->link.eh_context;
struct ata_eh_context *sehc = &ap->slave_link->eh_context;
/* transfer control flags from master to slave */
sehc->i.flags |= mehc->i.flags & ATA_EHI_TO_SLAVE_MASK;
/* perform autopsy on the slave link */
ata_eh_link_autopsy(ap->slave_link);
/* transfer actions from slave to master and clear slave */
ata_eh_about_to_do(ap->slave_link, NULL, ATA_EH_ALL_ACTIONS);
mehc->i.action |= sehc->i.action;
mehc->i.dev_action[1] |= sehc->i.dev_action[1];
mehc->i.flags |= sehc->i.flags;
ata_eh_done(ap->slave_link, NULL, ATA_EH_ALL_ACTIONS);
}
/* Autopsy of fanout ports can affect host link autopsy.
* Perform host link autopsy last.
*/
if (sata_pmp_attached(ap))
ata_eh_link_autopsy(&ap->link);
}
/**
* ata_get_cmd_descript - get description for ATA command
* @command: ATA command code to get description for
*
* Return a textual description of the given command, or NULL if the
* command is not known.
*
* LOCKING:
* None
*/
const char *ata_get_cmd_descript(u8 command)
{
#ifdef CONFIG_ATA_VERBOSE_ERROR
static const struct
{
u8 command;
const char *text;
} cmd_descr[] = {
{ ATA_CMD_DEV_RESET, "DEVICE RESET" },
{ ATA_CMD_CHK_POWER, "CHECK POWER MODE" },
{ ATA_CMD_STANDBY, "STANDBY" },
{ ATA_CMD_IDLE, "IDLE" },
{ ATA_CMD_EDD, "EXECUTE DEVICE DIAGNOSTIC" },
{ ATA_CMD_DOWNLOAD_MICRO, "DOWNLOAD MICROCODE" },
{ ATA_CMD_DOWNLOAD_MICRO_DMA, "DOWNLOAD MICROCODE DMA" },
{ ATA_CMD_NOP, "NOP" },
{ ATA_CMD_FLUSH, "FLUSH CACHE" },
{ ATA_CMD_FLUSH_EXT, "FLUSH CACHE EXT" },
{ ATA_CMD_ID_ATA, "IDENTIFY DEVICE" },
{ ATA_CMD_ID_ATAPI, "IDENTIFY PACKET DEVICE" },
{ ATA_CMD_SERVICE, "SERVICE" },
{ ATA_CMD_READ, "READ DMA" },
{ ATA_CMD_READ_EXT, "READ DMA EXT" },
{ ATA_CMD_READ_QUEUED, "READ DMA QUEUED" },
{ ATA_CMD_READ_STREAM_EXT, "READ STREAM EXT" },
{ ATA_CMD_READ_STREAM_DMA_EXT, "READ STREAM DMA EXT" },
{ ATA_CMD_WRITE, "WRITE DMA" },
{ ATA_CMD_WRITE_EXT, "WRITE DMA EXT" },
{ ATA_CMD_WRITE_QUEUED, "WRITE DMA QUEUED EXT" },
{ ATA_CMD_WRITE_STREAM_EXT, "WRITE STREAM EXT" },
{ ATA_CMD_WRITE_STREAM_DMA_EXT, "WRITE STREAM DMA EXT" },
{ ATA_CMD_WRITE_FUA_EXT, "WRITE DMA FUA EXT" },
{ ATA_CMD_WRITE_QUEUED_FUA_EXT, "WRITE DMA QUEUED FUA EXT" },
{ ATA_CMD_FPDMA_READ, "READ FPDMA QUEUED" },
{ ATA_CMD_FPDMA_WRITE, "WRITE FPDMA QUEUED" },
{ ATA_CMD_FPDMA_SEND, "SEND FPDMA QUEUED" },
{ ATA_CMD_FPDMA_RECV, "RECEIVE FPDMA QUEUED" },
{ ATA_CMD_PIO_READ, "READ SECTOR(S)" },
{ ATA_CMD_PIO_READ_EXT, "READ SECTOR(S) EXT" },
{ ATA_CMD_PIO_WRITE, "WRITE SECTOR(S)" },
{ ATA_CMD_PIO_WRITE_EXT, "WRITE SECTOR(S) EXT" },
{ ATA_CMD_READ_MULTI, "READ MULTIPLE" },
{ ATA_CMD_READ_MULTI_EXT, "READ MULTIPLE EXT" },
{ ATA_CMD_WRITE_MULTI, "WRITE MULTIPLE" },
{ ATA_CMD_WRITE_MULTI_EXT, "WRITE MULTIPLE EXT" },
{ ATA_CMD_WRITE_MULTI_FUA_EXT, "WRITE MULTIPLE FUA EXT" },
{ ATA_CMD_SET_FEATURES, "SET FEATURES" },
{ ATA_CMD_SET_MULTI, "SET MULTIPLE MODE" },
{ ATA_CMD_VERIFY, "READ VERIFY SECTOR(S)" },
{ ATA_CMD_VERIFY_EXT, "READ VERIFY SECTOR(S) EXT" },
{ ATA_CMD_WRITE_UNCORR_EXT, "WRITE UNCORRECTABLE EXT" },
{ ATA_CMD_STANDBYNOW1, "STANDBY IMMEDIATE" },
{ ATA_CMD_IDLEIMMEDIATE, "IDLE IMMEDIATE" },
{ ATA_CMD_SLEEP, "SLEEP" },
{ ATA_CMD_INIT_DEV_PARAMS, "INITIALIZE DEVICE PARAMETERS" },
{ ATA_CMD_READ_NATIVE_MAX, "READ NATIVE MAX ADDRESS" },
{ ATA_CMD_READ_NATIVE_MAX_EXT, "READ NATIVE MAX ADDRESS EXT" },
{ ATA_CMD_SET_MAX, "SET MAX ADDRESS" },
{ ATA_CMD_SET_MAX_EXT, "SET MAX ADDRESS EXT" },
{ ATA_CMD_READ_LOG_EXT, "READ LOG EXT" },
{ ATA_CMD_WRITE_LOG_EXT, "WRITE LOG EXT" },
{ ATA_CMD_READ_LOG_DMA_EXT, "READ LOG DMA EXT" },
{ ATA_CMD_WRITE_LOG_DMA_EXT, "WRITE LOG DMA EXT" },
{ ATA_CMD_TRUSTED_NONDATA, "TRUSTED NON-DATA" },
{ ATA_CMD_TRUSTED_RCV, "TRUSTED RECEIVE" },
{ ATA_CMD_TRUSTED_RCV_DMA, "TRUSTED RECEIVE DMA" },
{ ATA_CMD_TRUSTED_SND, "TRUSTED SEND" },
{ ATA_CMD_TRUSTED_SND_DMA, "TRUSTED SEND DMA" },
{ ATA_CMD_PMP_READ, "READ BUFFER" },
{ ATA_CMD_PMP_READ_DMA, "READ BUFFER DMA" },
{ ATA_CMD_PMP_WRITE, "WRITE BUFFER" },
{ ATA_CMD_PMP_WRITE_DMA, "WRITE BUFFER DMA" },
{ ATA_CMD_CONF_OVERLAY, "DEVICE CONFIGURATION OVERLAY" },
{ ATA_CMD_SEC_SET_PASS, "SECURITY SET PASSWORD" },
{ ATA_CMD_SEC_UNLOCK, "SECURITY UNLOCK" },
{ ATA_CMD_SEC_ERASE_PREP, "SECURITY ERASE PREPARE" },
{ ATA_CMD_SEC_ERASE_UNIT, "SECURITY ERASE UNIT" },
{ ATA_CMD_SEC_FREEZE_LOCK, "SECURITY FREEZE LOCK" },
{ ATA_CMD_SEC_DISABLE_PASS, "SECURITY DISABLE PASSWORD" },
{ ATA_CMD_CONFIG_STREAM, "CONFIGURE STREAM" },
{ ATA_CMD_SMART, "SMART" },
{ ATA_CMD_MEDIA_LOCK, "DOOR LOCK" },
{ ATA_CMD_MEDIA_UNLOCK, "DOOR UNLOCK" },
{ ATA_CMD_DSM, "DATA SET MANAGEMENT" },
{ ATA_CMD_CHK_MED_CRD_TYP, "CHECK MEDIA CARD TYPE" },
{ ATA_CMD_CFA_REQ_EXT_ERR, "CFA REQUEST EXTENDED ERROR" },
{ ATA_CMD_CFA_WRITE_NE, "CFA WRITE SECTORS WITHOUT ERASE" },
{ ATA_CMD_CFA_TRANS_SECT, "CFA TRANSLATE SECTOR" },
{ ATA_CMD_CFA_ERASE, "CFA ERASE SECTORS" },
{ ATA_CMD_CFA_WRITE_MULT_NE, "CFA WRITE MULTIPLE WITHOUT ERASE" },
{ ATA_CMD_REQ_SENSE_DATA, "REQUEST SENSE DATA EXT" },
{ ATA_CMD_SANITIZE_DEVICE, "SANITIZE DEVICE" },
{ ATA_CMD_READ_LONG, "READ LONG (with retries)" },
{ ATA_CMD_READ_LONG_ONCE, "READ LONG (without retries)" },
{ ATA_CMD_WRITE_LONG, "WRITE LONG (with retries)" },
{ ATA_CMD_WRITE_LONG_ONCE, "WRITE LONG (without retries)" },
{ ATA_CMD_RESTORE, "RECALIBRATE" },
{ 0, NULL } /* terminate list */
};
unsigned int i;
for (i = 0; cmd_descr[i].text; i++)
if (cmd_descr[i].command == command)
return cmd_descr[i].text;
#endif
return NULL;
}
EXPORT_SYMBOL_GPL(ata_get_cmd_descript);
/**
* ata_eh_link_report - report error handling to user
* @link: ATA link EH is going on
*
* Report EH to user.
*
* LOCKING:
* None.
*/
static void ata_eh_link_report(struct ata_link *link)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
const char *frozen, *desc;
char tries_buf[6] = "";
int tag, nr_failed = 0;
if (ehc->i.flags & ATA_EHI_QUIET)
return;
desc = NULL;
if (ehc->i.desc[0] != '\0')
desc = ehc->i.desc;
for (tag = 0; tag < ATA_MAX_QUEUE; tag++) {
struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag);
if (!(qc->flags & ATA_QCFLAG_FAILED) ||
ata_dev_phys_link(qc->dev) != link ||
((qc->flags & ATA_QCFLAG_QUIET) &&
qc->err_mask == AC_ERR_DEV))
continue;
if (qc->flags & ATA_QCFLAG_SENSE_VALID && !qc->err_mask)
continue;
nr_failed++;
}
if (!nr_failed && !ehc->i.err_mask)
return;
frozen = "";
if (ap->pflags & ATA_PFLAG_FROZEN)
frozen = " frozen";
if (ap->eh_tries < ATA_EH_MAX_TRIES)
snprintf(tries_buf, sizeof(tries_buf), " t%d",
ap->eh_tries);
if (ehc->i.dev) {
ata_dev_err(ehc->i.dev, "exception Emask 0x%x "
"SAct 0x%x SErr 0x%x action 0x%x%s%s\n",
ehc->i.err_mask, link->sactive, ehc->i.serror,
ehc->i.action, frozen, tries_buf);
if (desc)
ata_dev_err(ehc->i.dev, "%s\n", desc);
} else {
ata_link_err(link, "exception Emask 0x%x "
"SAct 0x%x SErr 0x%x action 0x%x%s%s\n",
ehc->i.err_mask, link->sactive, ehc->i.serror,
ehc->i.action, frozen, tries_buf);
if (desc)
ata_link_err(link, "%s\n", desc);
}
#ifdef CONFIG_ATA_VERBOSE_ERROR
if (ehc->i.serror)
ata_link_err(link,
"SError: { %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s}\n",
ehc->i.serror & SERR_DATA_RECOVERED ? "RecovData " : "",
ehc->i.serror & SERR_COMM_RECOVERED ? "RecovComm " : "",
ehc->i.serror & SERR_DATA ? "UnrecovData " : "",
ehc->i.serror & SERR_PERSISTENT ? "Persist " : "",
ehc->i.serror & SERR_PROTOCOL ? "Proto " : "",
ehc->i.serror & SERR_INTERNAL ? "HostInt " : "",
ehc->i.serror & SERR_PHYRDY_CHG ? "PHYRdyChg " : "",
ehc->i.serror & SERR_PHY_INT_ERR ? "PHYInt " : "",
ehc->i.serror & SERR_COMM_WAKE ? "CommWake " : "",
ehc->i.serror & SERR_10B_8B_ERR ? "10B8B " : "",
ehc->i.serror & SERR_DISPARITY ? "Dispar " : "",
ehc->i.serror & SERR_CRC ? "BadCRC " : "",
ehc->i.serror & SERR_HANDSHAKE ? "Handshk " : "",
ehc->i.serror & SERR_LINK_SEQ_ERR ? "LinkSeq " : "",
ehc->i.serror & SERR_TRANS_ST_ERROR ? "TrStaTrns " : "",
ehc->i.serror & SERR_UNRECOG_FIS ? "UnrecFIS " : "",
ehc->i.serror & SERR_DEV_XCHG ? "DevExch " : "");
#endif
for (tag = 0; tag < ATA_MAX_QUEUE; tag++) {
struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag);
struct ata_taskfile *cmd = &qc->tf, *res = &qc->result_tf;
char data_buf[20] = "";
char cdb_buf[70] = "";
if (!(qc->flags & ATA_QCFLAG_FAILED) ||
ata_dev_phys_link(qc->dev) != link || !qc->err_mask)
continue;
if (qc->dma_dir != DMA_NONE) {
static const char *dma_str[] = {
[DMA_BIDIRECTIONAL] = "bidi",
[DMA_TO_DEVICE] = "out",
[DMA_FROM_DEVICE] = "in",
};
static const char *prot_str[] = {
[ATA_PROT_PIO] = "pio",
[ATA_PROT_DMA] = "dma",
[ATA_PROT_NCQ] = "ncq",
[ATAPI_PROT_PIO] = "pio",
[ATAPI_PROT_DMA] = "dma",
};
snprintf(data_buf, sizeof(data_buf), " %s %u %s",
prot_str[qc->tf.protocol], qc->nbytes,
dma_str[qc->dma_dir]);
}
if (ata_is_atapi(qc->tf.protocol)) {
const u8 *cdb = qc->cdb;
size_t cdb_len = qc->dev->cdb_len;
if (qc->scsicmd) {
cdb = qc->scsicmd->cmnd;
cdb_len = qc->scsicmd->cmd_len;
}
__scsi_format_command(cdb_buf, sizeof(cdb_buf),
cdb, cdb_len);
} else {
const char *descr = ata_get_cmd_descript(cmd->command);
if (descr)
ata_dev_err(qc->dev, "failed command: %s\n",
descr);
}
ata_dev_err(qc->dev,
"cmd %02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x "
"tag %d%s\n %s"
"res %02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x "
"Emask 0x%x (%s)%s\n",
cmd->command, cmd->feature, cmd->nsect,
cmd->lbal, cmd->lbam, cmd->lbah,
cmd->hob_feature, cmd->hob_nsect,
cmd->hob_lbal, cmd->hob_lbam, cmd->hob_lbah,
cmd->device, qc->tag, data_buf, cdb_buf,
res->command, res->feature, res->nsect,
res->lbal, res->lbam, res->lbah,
res->hob_feature, res->hob_nsect,
res->hob_lbal, res->hob_lbam, res->hob_lbah,
res->device, qc->err_mask, ata_err_string(qc->err_mask),
qc->err_mask & AC_ERR_NCQ ? " <F>" : "");
#ifdef CONFIG_ATA_VERBOSE_ERROR
if (res->command & (ATA_BUSY | ATA_DRDY | ATA_DF | ATA_DRQ |
ATA_ERR)) {
if (res->command & ATA_BUSY)
ata_dev_err(qc->dev, "status: { Busy }\n");
else
ata_dev_err(qc->dev, "status: { %s%s%s%s}\n",
res->command & ATA_DRDY ? "DRDY " : "",
res->command & ATA_DF ? "DF " : "",
res->command & ATA_DRQ ? "DRQ " : "",
res->command & ATA_ERR ? "ERR " : "");
}
if (cmd->command != ATA_CMD_PACKET &&
(res->feature & (ATA_ICRC | ATA_UNC | ATA_AMNF |
ATA_IDNF | ATA_ABORTED)))
ata_dev_err(qc->dev, "error: { %s%s%s%s%s}\n",
res->feature & ATA_ICRC ? "ICRC " : "",
res->feature & ATA_UNC ? "UNC " : "",
res->feature & ATA_AMNF ? "AMNF " : "",
res->feature & ATA_IDNF ? "IDNF " : "",
res->feature & ATA_ABORTED ? "ABRT " : "");
#endif
}
}
/**
* ata_eh_report - report error handling to user
* @ap: ATA port to report EH about
*
* Report EH to user.
*
* LOCKING:
* None.
*/
void ata_eh_report(struct ata_port *ap)
{
struct ata_link *link;
ata_for_each_link(link, ap, HOST_FIRST)
ata_eh_link_report(link);
}
static int ata_do_reset(struct ata_link *link, ata_reset_fn_t reset,
unsigned int *classes, unsigned long deadline,
bool clear_classes)
{
struct ata_device *dev;
if (clear_classes)
ata_for_each_dev(dev, link, ALL)
classes[dev->devno] = ATA_DEV_UNKNOWN;
return reset(link, classes, deadline);
}
static int ata_eh_followup_srst_needed(struct ata_link *link, int rc)
{
if ((link->flags & ATA_LFLAG_NO_SRST) || ata_link_offline(link))
return 0;
if (rc == -EAGAIN)
return 1;
if (sata_pmp_supported(link->ap) && ata_is_host_link(link))
return 1;
return 0;
}
int ata_eh_reset(struct ata_link *link, int classify,
ata_prereset_fn_t prereset, ata_reset_fn_t softreset,
ata_reset_fn_t hardreset, ata_postreset_fn_t postreset)
{
struct ata_port *ap = link->ap;
struct ata_link *slave = ap->slave_link;
struct ata_eh_context *ehc = &link->eh_context;
struct ata_eh_context *sehc = slave ? &slave->eh_context : NULL;
unsigned int *classes = ehc->classes;
unsigned int lflags = link->flags;
int verbose = !(ehc->i.flags & ATA_EHI_QUIET);
int max_tries = 0, try = 0;
struct ata_link *failed_link;
struct ata_device *dev;
unsigned long deadline, now;
ata_reset_fn_t reset;
unsigned long flags;
u32 sstatus;
int nr_unknown, rc;
/*
* Prepare to reset
*/
while (ata_eh_reset_timeouts[max_tries] != ULONG_MAX)
max_tries++;
if (link->flags & ATA_LFLAG_RST_ONCE)
max_tries = 1;
if (link->flags & ATA_LFLAG_NO_HRST)
hardreset = NULL;
if (link->flags & ATA_LFLAG_NO_SRST)
softreset = NULL;
/* make sure each reset attempt is at least COOL_DOWN apart */
if (ehc->i.flags & ATA_EHI_DID_RESET) {
now = jiffies;
WARN_ON(time_after(ehc->last_reset, now));
deadline = ata_deadline(ehc->last_reset,
ATA_EH_RESET_COOL_DOWN);
if (time_before(now, deadline))
schedule_timeout_uninterruptible(deadline - now);
}
spin_lock_irqsave(ap->lock, flags);
ap->pflags |= ATA_PFLAG_RESETTING;
spin_unlock_irqrestore(ap->lock, flags);
ata_eh_about_to_do(link, NULL, ATA_EH_RESET);
ata_for_each_dev(dev, link, ALL) {
/* If we issue an SRST then an ATA drive (not ATAPI)
* may change configuration and be in PIO0 timing. If
* we do a hard reset (or are coming from power on)
* this is true for ATA or ATAPI. Until we've set a
* suitable controller mode we should not touch the
* bus as we may be talking too fast.
*/
dev->pio_mode = XFER_PIO_0;
dev->dma_mode = 0xff;
/* If the controller has a pio mode setup function
* then use it to set the chipset to rights. Don't
* touch the DMA setup as that will be dealt with when
* configuring devices.
*/
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
/* prefer hardreset */
reset = NULL;
ehc->i.action &= ~ATA_EH_RESET;
if (hardreset) {
reset = hardreset;
ehc->i.action |= ATA_EH_HARDRESET;
} else if (softreset) {
reset = softreset;
ehc->i.action |= ATA_EH_SOFTRESET;
}
if (prereset) {
unsigned long deadline = ata_deadline(jiffies,
ATA_EH_PRERESET_TIMEOUT);
if (slave) {
sehc->i.action &= ~ATA_EH_RESET;
sehc->i.action |= ehc->i.action;
}
rc = prereset(link, deadline);
/* If present, do prereset on slave link too. Reset
* is skipped iff both master and slave links report
* -ENOENT or clear ATA_EH_RESET.
*/
if (slave && (rc == 0 || rc == -ENOENT)) {
int tmp;
tmp = prereset(slave, deadline);
if (tmp != -ENOENT)
rc = tmp;
ehc->i.action |= sehc->i.action;
}
if (rc) {
if (rc == -ENOENT) {
ata_link_dbg(link, "port disabled--ignoring\n");
ehc->i.action &= ~ATA_EH_RESET;
ata_for_each_dev(dev, link, ALL)
classes[dev->devno] = ATA_DEV_NONE;
rc = 0;
} else
ata_link_err(link,
"prereset failed (errno=%d)\n",
rc);
goto out;
}
/* prereset() might have cleared ATA_EH_RESET. If so,
* bang classes, thaw and return.
*/
if (reset && !(ehc->i.action & ATA_EH_RESET)) {
ata_for_each_dev(dev, link, ALL)
classes[dev->devno] = ATA_DEV_NONE;
if ((ap->pflags & ATA_PFLAG_FROZEN) &&
ata_is_host_link(link))
ata_eh_thaw_port(ap);
rc = 0;
goto out;
}
}
retry:
/*
* Perform reset
*/
if (ata_is_host_link(link))
ata_eh_freeze_port(ap);
deadline = ata_deadline(jiffies, ata_eh_reset_timeouts[try++]);
if (reset) {
if (verbose)
ata_link_info(link, "%s resetting link\n",
reset == softreset ? "soft" : "hard");
/* mark that this EH session started with reset */
ehc->last_reset = jiffies;
if (reset == hardreset)
ehc->i.flags |= ATA_EHI_DID_HARDRESET;
else
ehc->i.flags |= ATA_EHI_DID_SOFTRESET;
rc = ata_do_reset(link, reset, classes, deadline, true);
if (rc && rc != -EAGAIN) {
failed_link = link;
goto fail;
}
/* hardreset slave link if existent */
if (slave && reset == hardreset) {
int tmp;
if (verbose)
ata_link_info(slave, "hard resetting link\n");
ata_eh_about_to_do(slave, NULL, ATA_EH_RESET);
tmp = ata_do_reset(slave, reset, classes, deadline,
false);
switch (tmp) {
case -EAGAIN:
rc = -EAGAIN;
case 0:
break;
default:
failed_link = slave;
rc = tmp;
goto fail;
}
}
/* perform follow-up SRST if necessary */
if (reset == hardreset &&
ata_eh_followup_srst_needed(link, rc)) {
reset = softreset;
if (!reset) {
ata_link_err(link,
"follow-up softreset required but no softreset available\n");
failed_link = link;
rc = -EINVAL;
goto fail;
}
ata_eh_about_to_do(link, NULL, ATA_EH_RESET);
rc = ata_do_reset(link, reset, classes, deadline, true);
if (rc) {
failed_link = link;
goto fail;
}
}
} else {
if (verbose)
ata_link_info(link,
"no reset method available, skipping reset\n");
if (!(lflags & ATA_LFLAG_ASSUME_CLASS))
lflags |= ATA_LFLAG_ASSUME_ATA;
}
/*
* Post-reset processing
*/
ata_for_each_dev(dev, link, ALL) {
/* After the reset, the device state is PIO 0 and the
* controller state is undefined. Reset also wakes up
* drives from sleeping mode.
*/
dev->pio_mode = XFER_PIO_0;
dev->flags &= ~ATA_DFLAG_SLEEPING;
if (ata_phys_link_offline(ata_dev_phys_link(dev)))
continue;
/* apply class override */
if (lflags & ATA_LFLAG_ASSUME_ATA)
classes[dev->devno] = ATA_DEV_ATA;
else if (lflags & ATA_LFLAG_ASSUME_SEMB)
classes[dev->devno] = ATA_DEV_SEMB_UNSUP;
}
/* record current link speed */
if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0)
link->sata_spd = (sstatus >> 4) & 0xf;
if (slave && sata_scr_read(slave, SCR_STATUS, &sstatus) == 0)
slave->sata_spd = (sstatus >> 4) & 0xf;
/* thaw the port */
if (ata_is_host_link(link))
ata_eh_thaw_port(ap);
/* postreset() should clear hardware SError. Although SError
* is cleared during link resume, clearing SError here is
* necessary as some PHYs raise hotplug events after SRST.
* This introduces race condition where hotplug occurs between
* reset and here. This race is mediated by cross checking
* link onlineness and classification result later.
*/
if (postreset) {
postreset(link, classes);
if (slave)
postreset(slave, classes);
}
/*
* Some controllers can't be frozen very well and may set spurious
* error conditions during reset. Clear accumulated error
* information and re-thaw the port if frozen. As reset is the
* final recovery action and we cross check link onlineness against
* device classification later, no hotplug event is lost by this.
*/
spin_lock_irqsave(link->ap->lock, flags);
memset(&link->eh_info, 0, sizeof(link->eh_info));
if (slave)
memset(&slave->eh_info, 0, sizeof(link->eh_info));
ap->pflags &= ~ATA_PFLAG_EH_PENDING;
spin_unlock_irqrestore(link->ap->lock, flags);
if (ap->pflags & ATA_PFLAG_FROZEN)
ata_eh_thaw_port(ap);
/*
* Make sure onlineness and classification result correspond.
* Hotplug could have happened during reset and some
* controllers fail to wait while a drive is spinning up after
* being hotplugged causing misdetection. By cross checking
* link on/offlineness and classification result, those
* conditions can be reliably detected and retried.
*/
nr_unknown = 0;
ata_for_each_dev(dev, link, ALL) {
if (ata_phys_link_online(ata_dev_phys_link(dev))) {
if (classes[dev->devno] == ATA_DEV_UNKNOWN) {
ata_dev_dbg(dev, "link online but device misclassified\n");
classes[dev->devno] = ATA_DEV_NONE;
nr_unknown++;
}
} else if (ata_phys_link_offline(ata_dev_phys_link(dev))) {
if (ata_class_enabled(classes[dev->devno]))
ata_dev_dbg(dev,
"link offline, clearing class %d to NONE\n",
classes[dev->devno]);
classes[dev->devno] = ATA_DEV_NONE;
} else if (classes[dev->devno] == ATA_DEV_UNKNOWN) {
ata_dev_dbg(dev,
"link status unknown, clearing UNKNOWN to NONE\n");
classes[dev->devno] = ATA_DEV_NONE;
}
}
if (classify && nr_unknown) {
if (try < max_tries) {
ata_link_warn(link,
"link online but %d devices misclassified, retrying\n",
nr_unknown);
failed_link = link;
rc = -EAGAIN;
goto fail;
}
ata_link_warn(link,
"link online but %d devices misclassified, "
"device detection might fail\n", nr_unknown);
}
/* reset successful, schedule revalidation */
ata_eh_done(link, NULL, ATA_EH_RESET);
if (slave)
ata_eh_done(slave, NULL, ATA_EH_RESET);
ehc->last_reset = jiffies; /* update to completion time */
ehc->i.action |= ATA_EH_REVALIDATE;
link->lpm_policy = ATA_LPM_UNKNOWN; /* reset LPM state */
rc = 0;
out:
/* clear hotplug flag */
ehc->i.flags &= ~ATA_EHI_HOTPLUGGED;
if (slave)
sehc->i.flags &= ~ATA_EHI_HOTPLUGGED;
spin_lock_irqsave(ap->lock, flags);
ap->pflags &= ~ATA_PFLAG_RESETTING;
spin_unlock_irqrestore(ap->lock, flags);
return rc;
fail:
/* if SCR isn't accessible on a fan-out port, PMP needs to be reset */
if (!ata_is_host_link(link) &&
sata_scr_read(link, SCR_STATUS, &sstatus))
rc = -ERESTART;
if (try >= max_tries) {
/*
* Thaw host port even if reset failed, so that the port
* can be retried on the next phy event. This risks
* repeated EH runs but seems to be a better tradeoff than
* shutting down a port after a botched hotplug attempt.
*/
if (ata_is_host_link(link))
ata_eh_thaw_port(ap);
goto out;
}
now = jiffies;
if (time_before(now, deadline)) {
unsigned long delta = deadline - now;
ata_link_warn(failed_link,
"reset failed (errno=%d), retrying in %u secs\n",
rc, DIV_ROUND_UP(jiffies_to_msecs(delta), 1000));
ata_eh_release(ap);
while (delta)
delta = schedule_timeout_uninterruptible(delta);
ata_eh_acquire(ap);
}
/*
* While disks spinup behind PMP, some controllers fail sending SRST.
* They need to be reset - as well as the PMP - before retrying.
*/
if (rc == -ERESTART) {
if (ata_is_host_link(link))
ata_eh_thaw_port(ap);
goto out;
}
if (try == max_tries - 1) {
sata_down_spd_limit(link, 0);
if (slave)
sata_down_spd_limit(slave, 0);
} else if (rc == -EPIPE)
sata_down_spd_limit(failed_link, 0);
if (hardreset)
reset = hardreset;
goto retry;
}
static inline void ata_eh_pull_park_action(struct ata_port *ap)
{
struct ata_link *link;
struct ata_device *dev;
unsigned long flags;
/*
* This function can be thought of as an extended version of
* ata_eh_about_to_do() specially crafted to accommodate the
* requirements of ATA_EH_PARK handling. Since the EH thread
* does not leave the do {} while () loop in ata_eh_recover as
* long as the timeout for a park request to *one* device on
* the port has not expired, and since we still want to pick
* up park requests to other devices on the same port or
* timeout updates for the same device, we have to pull
* ATA_EH_PARK actions from eh_info into eh_context.i
* ourselves at the beginning of each pass over the loop.
*
* Additionally, all write accesses to &ap->park_req_pending
* through reinit_completion() (see below) or complete_all()
* (see ata_scsi_park_store()) are protected by the host lock.
* As a result we have that park_req_pending.done is zero on
* exit from this function, i.e. when ATA_EH_PARK actions for
* *all* devices on port ap have been pulled into the
* respective eh_context structs. If, and only if,
* park_req_pending.done is non-zero by the time we reach
* wait_for_completion_timeout(), another ATA_EH_PARK action
* has been scheduled for at least one of the devices on port
* ap and we have to cycle over the do {} while () loop in
* ata_eh_recover() again.
*/
spin_lock_irqsave(ap->lock, flags);
reinit_completion(&ap->park_req_pending);
ata_for_each_link(link, ap, EDGE) {
ata_for_each_dev(dev, link, ALL) {
struct ata_eh_info *ehi = &link->eh_info;
link->eh_context.i.dev_action[dev->devno] |=
ehi->dev_action[dev->devno] & ATA_EH_PARK;
ata_eh_clear_action(link, dev, ehi, ATA_EH_PARK);
}
}
spin_unlock_irqrestore(ap->lock, flags);
}
static void ata_eh_park_issue_cmd(struct ata_device *dev, int park)
{
struct ata_eh_context *ehc = &dev->link->eh_context;
struct ata_taskfile tf;
unsigned int err_mask;
ata_tf_init(dev, &tf);
if (park) {
ehc->unloaded_mask |= 1 << dev->devno;
tf.command = ATA_CMD_IDLEIMMEDIATE;
tf.feature = 0x44;
tf.lbal = 0x4c;
tf.lbam = 0x4e;
tf.lbah = 0x55;
} else {
ehc->unloaded_mask &= ~(1 << dev->devno);
tf.command = ATA_CMD_CHK_POWER;
}
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
tf.protocol |= ATA_PROT_NODATA;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
if (park && (err_mask || tf.lbal != 0xc4)) {
ata_dev_err(dev, "head unload failed!\n");
ehc->unloaded_mask &= ~(1 << dev->devno);
}
}
static int ata_eh_revalidate_and_attach(struct ata_link *link,
struct ata_device **r_failed_dev)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
struct ata_device *dev;
unsigned int new_mask = 0;
unsigned long flags;
int rc = 0;
DPRINTK("ENTER\n");
/* For PATA drive side cable detection to work, IDENTIFY must
* be done backwards such that PDIAG- is released by the slave
* device before the master device is identified.
*/
ata_for_each_dev(dev, link, ALL_REVERSE) {
unsigned int action = ata_eh_dev_action(dev);
unsigned int readid_flags = 0;
if (ehc->i.flags & ATA_EHI_DID_RESET)
readid_flags |= ATA_READID_POSTRESET;
if ((action & ATA_EH_REVALIDATE) && ata_dev_enabled(dev)) {
WARN_ON(dev->class == ATA_DEV_PMP);
if (ata_phys_link_offline(ata_dev_phys_link(dev))) {
rc = -EIO;
goto err;
}
ata_eh_about_to_do(link, dev, ATA_EH_REVALIDATE);
rc = ata_dev_revalidate(dev, ehc->classes[dev->devno],
readid_flags);
if (rc)
goto err;
ata_eh_done(link, dev, ATA_EH_REVALIDATE);
/* Configuration may have changed, reconfigure
* transfer mode.
*/
ehc->i.flags |= ATA_EHI_SETMODE;
/* schedule the scsi_rescan_device() here */
schedule_work(&(ap->scsi_rescan_task));
} else if (dev->class == ATA_DEV_UNKNOWN &&
ehc->tries[dev->devno] &&
ata_class_enabled(ehc->classes[dev->devno])) {
/* Temporarily set dev->class, it will be
* permanently set once all configurations are
* complete. This is necessary because new
* device configuration is done in two
* separate loops.
*/
dev->class = ehc->classes[dev->devno];
if (dev->class == ATA_DEV_PMP)
rc = sata_pmp_attach(dev);
else
rc = ata_dev_read_id(dev, &dev->class,
readid_flags, dev->id);
/* read_id might have changed class, store and reset */
ehc->classes[dev->devno] = dev->class;
dev->class = ATA_DEV_UNKNOWN;
switch (rc) {
case 0:
/* clear error info accumulated during probe */
ata_ering_clear(&dev->ering);
new_mask |= 1 << dev->devno;
break;
case -ENOENT:
/* IDENTIFY was issued to non-existent
* device. No need to reset. Just
* thaw and ignore the device.
*/
ata_eh_thaw_port(ap);
break;
default:
goto err;
}
}
}
/* PDIAG- should have been released, ask cable type if post-reset */
if ((ehc->i.flags & ATA_EHI_DID_RESET) && ata_is_host_link(link)) {
if (ap->ops->cable_detect)
ap->