| /* |
| * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights |
| * reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the NetLogic |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| |
| #include <asm/mipsregs.h> |
| #include <asm/time.h> |
| |
| #include <asm/netlogic/common.h> |
| #include <asm/netlogic/haldefs.h> |
| #include <asm/netlogic/xlp-hal/iomap.h> |
| #include <asm/netlogic/xlp-hal/xlp.h> |
| #include <asm/netlogic/xlp-hal/bridge.h> |
| #include <asm/netlogic/xlp-hal/pic.h> |
| #include <asm/netlogic/xlp-hal/sys.h> |
| |
| /* Main initialization */ |
| void nlm_node_init(int node) |
| { |
| struct nlm_soc_info *nodep; |
| |
| nodep = nlm_get_node(node); |
| if (node == 0) |
| nodep->coremask = 1; /* node 0, boot cpu */ |
| nodep->sysbase = nlm_get_sys_regbase(node); |
| nodep->picbase = nlm_get_pic_regbase(node); |
| nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1)); |
| if (cpu_is_xlp9xx()) |
| nodep->socbus = xlp9xx_get_socbus(node); |
| else |
| nodep->socbus = 0; |
| spin_lock_init(&nodep->piclock); |
| } |
| |
| static int xlp9xx_irq_to_irt(int irq) |
| { |
| switch (irq) { |
| case PIC_GPIO_IRQ: |
| return 12; |
| case PIC_I2C_0_IRQ: |
| return 125; |
| case PIC_I2C_1_IRQ: |
| return 126; |
| case PIC_I2C_2_IRQ: |
| return 127; |
| case PIC_I2C_3_IRQ: |
| return 128; |
| case PIC_9XX_XHCI_0_IRQ: |
| return 114; |
| case PIC_9XX_XHCI_1_IRQ: |
| return 115; |
| case PIC_9XX_XHCI_2_IRQ: |
| return 116; |
| case PIC_UART_0_IRQ: |
| return 133; |
| case PIC_UART_1_IRQ: |
| return 134; |
| case PIC_SATA_IRQ: |
| return 143; |
| case PIC_NAND_IRQ: |
| return 151; |
| case PIC_SPI_IRQ: |
| return 152; |
| case PIC_MMC_IRQ: |
| return 153; |
| case PIC_PCIE_LINK_LEGACY_IRQ(0): |
| case PIC_PCIE_LINK_LEGACY_IRQ(1): |
| case PIC_PCIE_LINK_LEGACY_IRQ(2): |
| case PIC_PCIE_LINK_LEGACY_IRQ(3): |
| return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE; |
| } |
| return -1; |
| } |
| |
| static int xlp_irq_to_irt(int irq) |
| { |
| uint64_t pcibase; |
| int devoff, irt; |
| |
| devoff = 0; |
| switch (irq) { |
| case PIC_UART_0_IRQ: |
| devoff = XLP_IO_UART0_OFFSET(0); |
| break; |
| case PIC_UART_1_IRQ: |
| devoff = XLP_IO_UART1_OFFSET(0); |
| break; |
| case PIC_MMC_IRQ: |
| devoff = XLP_IO_MMC_OFFSET(0); |
| break; |
| case PIC_I2C_0_IRQ: /* I2C will be fixed up */ |
| case PIC_I2C_1_IRQ: |
| case PIC_I2C_2_IRQ: |
| case PIC_I2C_3_IRQ: |
| if (cpu_is_xlpii()) |
| devoff = XLP2XX_IO_I2C_OFFSET(0); |
| else |
| devoff = XLP_IO_I2C0_OFFSET(0); |
| break; |
| case PIC_SATA_IRQ: |
| devoff = XLP_IO_SATA_OFFSET(0); |
| break; |
| case PIC_GPIO_IRQ: |
| devoff = XLP_IO_GPIO_OFFSET(0); |
| break; |
| case PIC_NAND_IRQ: |
| devoff = XLP_IO_NAND_OFFSET(0); |
| break; |
| case PIC_SPI_IRQ: |
| devoff = XLP_IO_SPI_OFFSET(0); |
| break; |
| default: |
| if (cpu_is_xlpii()) { |
| switch (irq) { |
| /* XLP2XX has three XHCI USB controller */ |
| case PIC_2XX_XHCI_0_IRQ: |
| devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0); |
| break; |
| case PIC_2XX_XHCI_1_IRQ: |
| devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0); |
| break; |
| case PIC_2XX_XHCI_2_IRQ: |
| devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0); |
| break; |
| } |
| } else { |
| switch (irq) { |
| case PIC_EHCI_0_IRQ: |
| devoff = XLP_IO_USB_EHCI0_OFFSET(0); |
| break; |
| case PIC_EHCI_1_IRQ: |
| devoff = XLP_IO_USB_EHCI1_OFFSET(0); |
| break; |
| case PIC_OHCI_0_IRQ: |
| devoff = XLP_IO_USB_OHCI0_OFFSET(0); |
| break; |
| case PIC_OHCI_1_IRQ: |
| devoff = XLP_IO_USB_OHCI1_OFFSET(0); |
| break; |
| case PIC_OHCI_2_IRQ: |
| devoff = XLP_IO_USB_OHCI2_OFFSET(0); |
| break; |
| case PIC_OHCI_3_IRQ: |
| devoff = XLP_IO_USB_OHCI3_OFFSET(0); |
| break; |
| } |
| } |
| } |
| |
| if (devoff != 0) { |
| uint32_t val; |
| |
| pcibase = nlm_pcicfg_base(devoff); |
| val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG); |
| if (val == 0xffffffff) { |
| irt = -1; |
| } else { |
| irt = val & 0xffff; |
| /* HW weirdness, I2C IRT entry has to be fixed up */ |
| switch (irq) { |
| case PIC_I2C_1_IRQ: |
| irt = irt + 1; break; |
| case PIC_I2C_2_IRQ: |
| irt = irt + 2; break; |
| case PIC_I2C_3_IRQ: |
| irt = irt + 3; break; |
| } |
| } |
| } else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) && |
| irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) { |
| /* HW bug, PCI IRT entries are bad on early silicon, fix */ |
| irt = PIC_IRT_PCIE_LINK_INDEX(irq - |
| PIC_PCIE_LINK_LEGACY_IRQ_BASE); |
| } else { |
| irt = -1; |
| } |
| return irt; |
| } |
| |
| int nlm_irq_to_irt(int irq) |
| { |
| /* return -2 for irqs without 1-1 mapping */ |
| if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3)) |
| return -2; |
| if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3)) |
| return -2; |
| |
| if (cpu_is_xlp9xx()) |
| return xlp9xx_irq_to_irt(irq); |
| else |
| return xlp_irq_to_irt(irq); |
| } |
| |
| static unsigned int nlm_xlp2_get_core_frequency(int node, int core) |
| { |
| unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom; |
| uint64_t num, sysbase, clockbase; |
| |
| if (cpu_is_xlp9xx()) { |
| clockbase = nlm_get_clock_regbase(node); |
| ctrl_val0 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_CPU_PLL_CTRL0(core)); |
| ctrl_val1 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_CPU_PLL_CTRL1(core)); |
| } else { |
| sysbase = nlm_get_node(node)->sysbase; |
| ctrl_val0 = nlm_read_sys_reg(sysbase, |
| SYS_CPU_PLL_CTRL0(core)); |
| ctrl_val1 = nlm_read_sys_reg(sysbase, |
| SYS_CPU_PLL_CTRL1(core)); |
| } |
| |
| /* Find PLL post divider value */ |
| switch ((ctrl_val0 >> 24) & 0x7) { |
| case 1: |
| pll_post_div = 2; |
| break; |
| case 3: |
| pll_post_div = 4; |
| break; |
| case 7: |
| pll_post_div = 8; |
| break; |
| case 6: |
| pll_post_div = 16; |
| break; |
| case 0: |
| default: |
| pll_post_div = 1; |
| break; |
| } |
| |
| num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f)); |
| denom = 3 * pll_post_div; |
| do_div(num, denom); |
| |
| return (unsigned int)num; |
| } |
| |
| static unsigned int nlm_xlp_get_core_frequency(int node, int core) |
| { |
| unsigned int pll_divf, pll_divr, dfs_div, ext_div; |
| unsigned int rstval, dfsval, denom; |
| uint64_t num, sysbase; |
| |
| sysbase = nlm_get_node(node)->sysbase; |
| rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG); |
| dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE); |
| pll_divf = ((rstval >> 10) & 0x7f) + 1; |
| pll_divr = ((rstval >> 8) & 0x3) + 1; |
| ext_div = ((rstval >> 30) & 0x3) + 1; |
| dfs_div = ((dfsval >> (core * 4)) & 0xf) + 1; |
| |
| num = 800000000ULL * pll_divf; |
| denom = 3 * pll_divr * ext_div * dfs_div; |
| do_div(num, denom); |
| |
| return (unsigned int)num; |
| } |
| |
| unsigned int nlm_get_core_frequency(int node, int core) |
| { |
| if (cpu_is_xlpii()) |
| return nlm_xlp2_get_core_frequency(node, core); |
| else |
| return nlm_xlp_get_core_frequency(node, core); |
| } |
| |
| /* |
| * Calculate PIC frequency from PLL registers. |
| * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) / |
| * ((2^ctrl0[7:5]) * Table(ctrl0[26:24])) |
| */ |
| static unsigned int nlm_xlp2_get_pic_frequency(int node) |
| { |
| u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx; |
| u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div; |
| u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk; |
| |
| sysbase = nlm_get_node(node)->sysbase; |
| clockbase = nlm_get_clock_regbase(node); |
| cpu_xlp9xx = cpu_is_xlp9xx(); |
| |
| /* Find ref_clk_base */ |
| if (cpu_xlp9xx) |
| ref_clk_select = (nlm_read_sys_reg(sysbase, |
| SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3; |
| else |
| ref_clk_select = (nlm_read_sys_reg(sysbase, |
| SYS_POWER_ON_RESET_CFG) >> 18) & 0x3; |
| switch (ref_clk_select) { |
| case 0: |
| ref_clk = 200000000ULL; |
| ref_div = 3; |
| break; |
| case 1: |
| ref_clk = 100000000ULL; |
| ref_div = 1; |
| break; |
| case 2: |
| ref_clk = 125000000ULL; |
| ref_div = 1; |
| break; |
| case 3: |
| ref_clk = 400000000ULL; |
| ref_div = 3; |
| break; |
| } |
| |
| /* Find the clock source PLL device for PIC */ |
| if (cpu_xlp9xx) { |
| reg_select = nlm_read_sys_reg(clockbase, |
| SYS_9XX_CLK_DEV_SEL_REG) & 0x3; |
| switch (reg_select) { |
| case 0: |
| ctrl_val0 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL0); |
| ctrl_val2 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL2); |
| break; |
| case 1: |
| ctrl_val0 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL0_DEVX(0)); |
| ctrl_val2 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL2_DEVX(0)); |
| break; |
| case 2: |
| ctrl_val0 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL0_DEVX(1)); |
| ctrl_val2 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL2_DEVX(1)); |
| break; |
| case 3: |
| ctrl_val0 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL0_DEVX(2)); |
| ctrl_val2 = nlm_read_sys_reg(clockbase, |
| SYS_9XX_PLL_CTRL2_DEVX(2)); |
| break; |
| } |
| } else { |
| reg_select = (nlm_read_sys_reg(sysbase, |
| SYS_CLK_DEV_SEL_REG) >> 22) & 0x3; |
| switch (reg_select) { |
| case 0: |
| ctrl_val0 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL0); |
| ctrl_val2 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL2); |
| break; |
| case 1: |
| ctrl_val0 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL0_DEVX(0)); |
| ctrl_val2 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL2_DEVX(0)); |
| break; |
| case 2: |
| ctrl_val0 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL0_DEVX(1)); |
| ctrl_val2 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL2_DEVX(1)); |
| break; |
| case 3: |
| ctrl_val0 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL0_DEVX(2)); |
| ctrl_val2 = nlm_read_sys_reg(sysbase, |
| SYS_PLL_CTRL2_DEVX(2)); |
| break; |
| } |
| } |
| |
| vco_post_div = (ctrl_val0 >> 5) & 0x7; |
| pll_post_div = (ctrl_val0 >> 24) & 0x7; |
| mdiv = ctrl_val2 & 0xff; |
| fdiv = (ctrl_val2 >> 8) & 0x1fff; |
| |
| /* Find PLL post divider value */ |
| switch (pll_post_div) { |
| case 1: |
| pll_post_div = 2; |
| break; |
| case 3: |
| pll_post_div = 4; |
| break; |
| case 7: |
| pll_post_div = 8; |
| break; |
| case 6: |
| pll_post_div = 16; |
| break; |
| case 0: |
| default: |
| pll_post_div = 1; |
| break; |
| } |
| |
| fdiv = fdiv/(1 << 13); |
| pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv; |
| pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div; |
| |
| if (pll_out_freq_den > 0) |
| do_div(pll_out_freq_num, pll_out_freq_den); |
| |
| /* PIC post divider, which happens after PLL */ |
| if (cpu_xlp9xx) |
| pic_div = nlm_read_sys_reg(clockbase, |
| SYS_9XX_CLK_DEV_DIV_REG) & 0x3; |
| else |
| pic_div = (nlm_read_sys_reg(sysbase, |
| SYS_CLK_DEV_DIV_REG) >> 22) & 0x3; |
| do_div(pll_out_freq_num, 1 << pic_div); |
| |
| return pll_out_freq_num; |
| } |
| |
| unsigned int nlm_get_pic_frequency(int node) |
| { |
| if (cpu_is_xlpii()) |
| return nlm_xlp2_get_pic_frequency(node); |
| else |
| return 133333333; |
| } |
| |
| unsigned int nlm_get_cpu_frequency(void) |
| { |
| return nlm_get_core_frequency(0, 0); |
| } |
| |
| /* |
| * Fills upto 8 pairs of entries containing the DRAM map of a node |
| * if node < 0, get dram map for all nodes |
| */ |
| int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries) |
| { |
| uint64_t bridgebase, base, lim; |
| uint32_t val; |
| unsigned int barreg, limreg, xlatreg; |
| int i, n, rv; |
| |
| /* Look only at mapping on Node 0, we don't handle crazy configs */ |
| bridgebase = nlm_get_bridge_regbase(0); |
| rv = 0; |
| for (i = 0; i < 8; i++) { |
| if (rv + 1 >= nentries) |
| break; |
| if (cpu_is_xlp9xx()) { |
| barreg = BRIDGE_9XX_DRAM_BAR(i); |
| limreg = BRIDGE_9XX_DRAM_LIMIT(i); |
| xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i); |
| } else { |
| barreg = BRIDGE_DRAM_BAR(i); |
| limreg = BRIDGE_DRAM_LIMIT(i); |
| xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i); |
| } |
| if (node >= 0) { |
| /* node specified, get node mapping of BAR */ |
| val = nlm_read_bridge_reg(bridgebase, xlatreg); |
| n = (val >> 1) & 0x3; |
| if (n != node) |
| continue; |
| } |
| val = nlm_read_bridge_reg(bridgebase, barreg); |
| val = (val >> 12) & 0xfffff; |
| base = (uint64_t) val << 20; |
| val = nlm_read_bridge_reg(bridgebase, limreg); |
| val = (val >> 12) & 0xfffff; |
| if (val == 0) /* BAR not used */ |
| continue; |
| lim = ((uint64_t)val + 1) << 20; |
| dram_map[rv] = base; |
| dram_map[rv + 1] = lim; |
| rv += 2; |
| } |
| return rv; |
| } |