blob: 42f4da620f2e9f97062b9183b6ebf3ed54e56cfe [file] [log] [blame]
/*
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
* Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "iscsi_iser.h"
#define ISCSI_ISER_MAX_CONN 8
#define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
ISCSI_ISER_MAX_CONN)
static int iser_cq_poll_limit = 512;
static void iser_cq_tasklet_fn(unsigned long data);
static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
static void iser_cq_event_callback(struct ib_event *cause, void *context)
{
iser_err("cq event %s (%d)\n",
ib_event_msg(cause->event), cause->event);
}
static void iser_qp_event_callback(struct ib_event *cause, void *context)
{
iser_err("qp event %s (%d)\n",
ib_event_msg(cause->event), cause->event);
}
static void iser_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
iser_err("async event %s (%d) on device %s port %d\n",
ib_event_msg(event->event), event->event,
event->device->name, event->element.port_num);
}
/**
* iser_create_device_ib_res - creates Protection Domain (PD), Completion
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
* the adapator.
*
* returns 0 on success, -1 on failure
*/
static int iser_create_device_ib_res(struct iser_device *device)
{
struct ib_device_attr *dev_attr = &device->dev_attr;
int ret, i, max_cqe;
ret = ib_query_device(device->ib_device, dev_attr);
if (ret) {
pr_warn("Query device failed for %s\n", device->ib_device->name);
return ret;
}
ret = iser_assign_reg_ops(device);
if (ret)
return ret;
device->comps_used = min_t(int, num_online_cpus(),
device->ib_device->num_comp_vectors);
device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
GFP_KERNEL);
if (!device->comps)
goto comps_err;
max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
device->comps_used, device->ib_device->name,
device->ib_device->num_comp_vectors, max_cqe);
device->pd = ib_alloc_pd(device->ib_device);
if (IS_ERR(device->pd))
goto pd_err;
for (i = 0; i < device->comps_used; i++) {
struct ib_cq_init_attr cq_attr = {};
struct iser_comp *comp = &device->comps[i];
comp->device = device;
cq_attr.cqe = max_cqe;
cq_attr.comp_vector = i;
comp->cq = ib_create_cq(device->ib_device,
iser_cq_callback,
iser_cq_event_callback,
(void *)comp,
&cq_attr);
if (IS_ERR(comp->cq)) {
comp->cq = NULL;
goto cq_err;
}
if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
goto cq_err;
tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
(unsigned long)comp);
}
if (!iser_always_reg) {
int access = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ;
device->mr = ib_get_dma_mr(device->pd, access);
if (IS_ERR(device->mr))
goto dma_mr_err;
}
INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
iser_event_handler);
if (ib_register_event_handler(&device->event_handler))
goto handler_err;
return 0;
handler_err:
if (device->mr)
ib_dereg_mr(device->mr);
dma_mr_err:
for (i = 0; i < device->comps_used; i++)
tasklet_kill(&device->comps[i].tasklet);
cq_err:
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
if (comp->cq)
ib_destroy_cq(comp->cq);
}
ib_dealloc_pd(device->pd);
pd_err:
kfree(device->comps);
comps_err:
iser_err("failed to allocate an IB resource\n");
return -1;
}
/**
* iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
* CQ and PD created with the device associated with the adapator.
*/
static void iser_free_device_ib_res(struct iser_device *device)
{
int i;
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
tasklet_kill(&comp->tasklet);
ib_destroy_cq(comp->cq);
comp->cq = NULL;
}
(void)ib_unregister_event_handler(&device->event_handler);
if (device->mr)
(void)ib_dereg_mr(device->mr);
ib_dealloc_pd(device->pd);
kfree(device->comps);
device->comps = NULL;
device->mr = NULL;
device->pd = NULL;
}
/**
* iser_alloc_fmr_pool - Creates FMR pool and page_vector
*
* returns 0 on success, or errno code on failure
*/
int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
unsigned cmds_max,
unsigned int size)
{
struct iser_device *device = ib_conn->device;
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_page_vec *page_vec;
struct iser_fr_desc *desc;
struct ib_fmr_pool *fmr_pool;
struct ib_fmr_pool_param params;
int ret;
INIT_LIST_HEAD(&fr_pool->list);
spin_lock_init(&fr_pool->lock);
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
GFP_KERNEL);
if (!page_vec) {
ret = -ENOMEM;
goto err_frpl;
}
page_vec->pages = (u64 *)(page_vec + 1);
params.page_shift = SHIFT_4K;
params.max_pages_per_fmr = size;
/* make the pool size twice the max number of SCSI commands *
* the ML is expected to queue, watermark for unmap at 50% */
params.pool_size = cmds_max * 2;
params.dirty_watermark = cmds_max;
params.cache = 0;
params.flush_function = NULL;
params.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
fmr_pool = ib_create_fmr_pool(device->pd, &params);
if (IS_ERR(fmr_pool)) {
ret = PTR_ERR(fmr_pool);
iser_err("FMR allocation failed, err %d\n", ret);
goto err_fmr;
}
desc->rsc.page_vec = page_vec;
desc->rsc.fmr_pool = fmr_pool;
list_add(&desc->list, &fr_pool->list);
return 0;
err_fmr:
kfree(page_vec);
err_frpl:
kfree(desc);
return ret;
}
/**
* iser_free_fmr_pool - releases the FMR pool and page vec
*/
void iser_free_fmr_pool(struct ib_conn *ib_conn)
{
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc;
desc = list_first_entry(&fr_pool->list,
struct iser_fr_desc, list);
list_del(&desc->list);
iser_info("freeing conn %p fmr pool %p\n",
ib_conn, desc->rsc.fmr_pool);
ib_destroy_fmr_pool(desc->rsc.fmr_pool);
kfree(desc->rsc.page_vec);
kfree(desc);
}
static int
iser_alloc_reg_res(struct ib_device *ib_device,
struct ib_pd *pd,
struct iser_reg_resources *res,
unsigned int size)
{
int ret;
res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size);
if (IS_ERR(res->mr)) {
ret = PTR_ERR(res->mr);
iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
return ret;
}
res->mr_valid = 1;
return 0;
}
static void
iser_free_reg_res(struct iser_reg_resources *rsc)
{
ib_dereg_mr(rsc->mr);
}
static int
iser_alloc_pi_ctx(struct ib_device *ib_device,
struct ib_pd *pd,
struct iser_fr_desc *desc,
unsigned int size)
{
struct iser_pi_context *pi_ctx = NULL;
int ret;
desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
if (!desc->pi_ctx)
return -ENOMEM;
pi_ctx = desc->pi_ctx;
ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size);
if (ret) {
iser_err("failed to allocate reg_resources\n");
goto alloc_reg_res_err;
}
pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
if (IS_ERR(pi_ctx->sig_mr)) {
ret = PTR_ERR(pi_ctx->sig_mr);
goto sig_mr_failure;
}
pi_ctx->sig_mr_valid = 1;
desc->pi_ctx->sig_protected = 0;
return 0;
sig_mr_failure:
iser_free_reg_res(&pi_ctx->rsc);
alloc_reg_res_err:
kfree(desc->pi_ctx);
return ret;
}
static void
iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
{
iser_free_reg_res(&pi_ctx->rsc);
ib_dereg_mr(pi_ctx->sig_mr);
kfree(pi_ctx);
}
static struct iser_fr_desc *
iser_create_fastreg_desc(struct ib_device *ib_device,
struct ib_pd *pd,
bool pi_enable,
unsigned int size)
{
struct iser_fr_desc *desc;
int ret;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size);
if (ret)
goto reg_res_alloc_failure;
if (pi_enable) {
ret = iser_alloc_pi_ctx(ib_device, pd, desc, size);
if (ret)
goto pi_ctx_alloc_failure;
}
return desc;
pi_ctx_alloc_failure:
iser_free_reg_res(&desc->rsc);
reg_res_alloc_failure:
kfree(desc);
return ERR_PTR(ret);
}
/**
* iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
* for fast registration work requests.
* returns 0 on success, or errno code on failure
*/
int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
unsigned cmds_max,
unsigned int size)
{
struct iser_device *device = ib_conn->device;
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc;
int i, ret;
INIT_LIST_HEAD(&fr_pool->list);
spin_lock_init(&fr_pool->lock);
fr_pool->size = 0;
for (i = 0; i < cmds_max; i++) {
desc = iser_create_fastreg_desc(device->ib_device, device->pd,
ib_conn->pi_support, size);
if (IS_ERR(desc)) {
ret = PTR_ERR(desc);
goto err;
}
list_add_tail(&desc->list, &fr_pool->list);
fr_pool->size++;
}
return 0;
err:
iser_free_fastreg_pool(ib_conn);
return ret;
}
/**
* iser_free_fastreg_pool - releases the pool of fast_reg descriptors
*/
void iser_free_fastreg_pool(struct ib_conn *ib_conn)
{
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc, *tmp;
int i = 0;
if (list_empty(&fr_pool->list))
return;
iser_info("freeing conn %p fr pool\n", ib_conn);
list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) {
list_del(&desc->list);
iser_free_reg_res(&desc->rsc);
if (desc->pi_ctx)
iser_free_pi_ctx(desc->pi_ctx);
kfree(desc);
++i;
}
if (i < fr_pool->size)
iser_warn("pool still has %d regions registered\n",
fr_pool->size - i);
}
/**
* iser_create_ib_conn_res - Queue-Pair (QP)
*
* returns 0 on success, -1 on failure
*/
static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
{
struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
ib_conn);
struct iser_device *device;
struct ib_device_attr *dev_attr;
struct ib_qp_init_attr init_attr;
int ret = -ENOMEM;
int index, min_index = 0;
BUG_ON(ib_conn->device == NULL);
device = ib_conn->device;
dev_attr = &device->dev_attr;
memset(&init_attr, 0, sizeof init_attr);
mutex_lock(&ig.connlist_mutex);
/* select the CQ with the minimal number of usages */
for (index = 0; index < device->comps_used; index++) {
if (device->comps[index].active_qps <
device->comps[min_index].active_qps)
min_index = index;
}
ib_conn->comp = &device->comps[min_index];
ib_conn->comp->active_qps++;
mutex_unlock(&ig.connlist_mutex);
iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
init_attr.event_handler = iser_qp_event_callback;
init_attr.qp_context = (void *)ib_conn;
init_attr.send_cq = ib_conn->comp->cq;
init_attr.recv_cq = ib_conn->comp->cq;
init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
init_attr.cap.max_send_sge = 2;
init_attr.cap.max_recv_sge = 1;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
if (ib_conn->pi_support) {
init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
} else {
if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
} else {
init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
iser_dbg("device %s supports max_send_wr %d\n",
device->ib_device->name, dev_attr->max_qp_wr);
}
}
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
if (ret)
goto out_err;
ib_conn->qp = ib_conn->cma_id->qp;
iser_info("setting conn %p cma_id %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->cma_id->qp);
return ret;
out_err:
mutex_lock(&ig.connlist_mutex);
ib_conn->comp->active_qps--;
mutex_unlock(&ig.connlist_mutex);
iser_err("unable to alloc mem or create resource, err %d\n", ret);
return ret;
}
/**
* based on the resolved device node GUID see if there already allocated
* device for this device. If there's no such, create one.
*/
static
struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
mutex_lock(&ig.device_list_mutex);
list_for_each_entry(device, &ig.device_list, ig_list)
/* find if there's a match using the node GUID */
if (device->ib_device->node_guid == cma_id->device->node_guid)
goto inc_refcnt;
device = kzalloc(sizeof *device, GFP_KERNEL);
if (device == NULL)
goto out;
/* assign this device to the device */
device->ib_device = cma_id->device;
/* init the device and link it into ig device list */
if (iser_create_device_ib_res(device)) {
kfree(device);
device = NULL;
goto out;
}
list_add(&device->ig_list, &ig.device_list);
inc_refcnt:
device->refcount++;
out:
mutex_unlock(&ig.device_list_mutex);
return device;
}
/* if there's no demand for this device, release it */
static void iser_device_try_release(struct iser_device *device)
{
mutex_lock(&ig.device_list_mutex);
device->refcount--;
iser_info("device %p refcount %d\n", device, device->refcount);
if (!device->refcount) {
iser_free_device_ib_res(device);
list_del(&device->ig_list);
kfree(device);
}
mutex_unlock(&ig.device_list_mutex);
}
/**
* Called with state mutex held
**/
static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
enum iser_conn_state comp,
enum iser_conn_state exch)
{
int ret;
ret = (iser_conn->state == comp);
if (ret)
iser_conn->state = exch;
return ret;
}
void iser_release_work(struct work_struct *work)
{
struct iser_conn *iser_conn;
iser_conn = container_of(work, struct iser_conn, release_work);
/* Wait for conn_stop to complete */
wait_for_completion(&iser_conn->stop_completion);
/* Wait for IB resouces cleanup to complete */
wait_for_completion(&iser_conn->ib_completion);
mutex_lock(&iser_conn->state_mutex);
iser_conn->state = ISER_CONN_DOWN;
mutex_unlock(&iser_conn->state_mutex);
iser_conn_release(iser_conn);
}
/**
* iser_free_ib_conn_res - release IB related resources
* @iser_conn: iser connection struct
* @destroy: indicator if we need to try to release the
* iser device and memory regoins pool (only iscsi
* shutdown and DEVICE_REMOVAL will use this).
*
* This routine is called with the iser state mutex held
* so the cm_id removal is out of here. It is Safe to
* be invoked multiple times.
*/
static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
bool destroy)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
iser_info("freeing conn %p cma_id %p qp %p\n",
iser_conn, ib_conn->cma_id, ib_conn->qp);
if (ib_conn->qp != NULL) {
ib_conn->comp->active_qps--;
rdma_destroy_qp(ib_conn->cma_id);
ib_conn->qp = NULL;
}
if (destroy) {
if (iser_conn->rx_descs)
iser_free_rx_descriptors(iser_conn);
if (device != NULL) {
iser_device_try_release(device);
ib_conn->device = NULL;
}
}
}
/**
* Frees all conn objects and deallocs conn descriptor
*/
void iser_conn_release(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
mutex_lock(&ig.connlist_mutex);
list_del(&iser_conn->conn_list);
mutex_unlock(&ig.connlist_mutex);
mutex_lock(&iser_conn->state_mutex);
/* In case we endup here without ep_disconnect being invoked. */
if (iser_conn->state != ISER_CONN_DOWN) {
iser_warn("iser conn %p state %d, expected state down.\n",
iser_conn, iser_conn->state);
iscsi_destroy_endpoint(iser_conn->ep);
iser_conn->state = ISER_CONN_DOWN;
}
/*
* In case we never got to bind stage, we still need to
* release IB resources (which is safe to call more than once).
*/
iser_free_ib_conn_res(iser_conn, true);
mutex_unlock(&iser_conn->state_mutex);
if (ib_conn->cma_id != NULL) {
rdma_destroy_id(ib_conn->cma_id);
ib_conn->cma_id = NULL;
}
kfree(iser_conn);
}
/**
* triggers start of the disconnect procedures and wait for them to be done
* Called with state mutex held
*/
int iser_conn_terminate(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct ib_send_wr *bad_wr;
int err = 0;
/* terminate the iser conn only if the conn state is UP */
if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
return 0;
iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
/* suspend queuing of new iscsi commands */
if (iser_conn->iscsi_conn)
iscsi_suspend_queue(iser_conn->iscsi_conn);
/*
* In case we didn't already clean up the cma_id (peer initiated
* a disconnection), we need to Cause the CMA to change the QP
* state to ERROR.
*/
if (ib_conn->cma_id) {
err = rdma_disconnect(ib_conn->cma_id);
if (err)
iser_err("Failed to disconnect, conn: 0x%p err %d\n",
iser_conn, err);
/* post an indication that all flush errors were consumed */
err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
if (err) {
iser_err("conn %p failed to post beacon", ib_conn);
return 1;
}
wait_for_completion(&ib_conn->flush_comp);
}
return 1;
}
/**
* Called with state mutex held
**/
static void iser_connect_error(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn;
iser_conn = (struct iser_conn *)cma_id->context;
iser_conn->state = ISER_CONN_TERMINATING;
}
static void
iser_calc_scsi_params(struct iser_conn *iser_conn,
unsigned int max_sectors)
{
struct iser_device *device = iser_conn->ib_conn.device;
unsigned short sg_tablesize, sup_sg_tablesize;
sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE,
device->dev_attr.max_fast_reg_page_list_len);
if (sg_tablesize > sup_sg_tablesize) {
sg_tablesize = sup_sg_tablesize;
iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512;
} else {
iser_conn->scsi_max_sectors = max_sectors;
}
iser_conn->scsi_sg_tablesize = sg_tablesize;
iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n",
iser_conn, iser_conn->scsi_sg_tablesize,
iser_conn->scsi_max_sectors);
}
/**
* Called with state mutex held
**/
static void iser_addr_handler(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
struct iser_conn *iser_conn;
struct ib_conn *ib_conn;
int ret;
iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
ib_conn = &iser_conn->ib_conn;
device = iser_device_find_by_ib_device(cma_id);
if (!device) {
iser_err("device lookup/creation failed\n");
iser_connect_error(cma_id);
return;
}
ib_conn->device = device;
/* connection T10-PI support */
if (iser_pi_enable) {
if (!(device->dev_attr.device_cap_flags &
IB_DEVICE_SIGNATURE_HANDOVER)) {
iser_warn("T10-PI requested but not supported on %s, "
"continue without T10-PI\n",
ib_conn->device->ib_device->name);
ib_conn->pi_support = false;
} else {
ib_conn->pi_support = true;
}
}
iser_calc_scsi_params(iser_conn, iser_max_sectors);
ret = rdma_resolve_route(cma_id, 1000);
if (ret) {
iser_err("resolve route failed: %d\n", ret);
iser_connect_error(cma_id);
return;
}
}
/**
* Called with state mutex held
**/
static void iser_route_handler(struct rdma_cm_id *cma_id)
{
struct rdma_conn_param conn_param;
int ret;
struct iser_cm_hdr req_hdr;
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
ret = iser_create_ib_conn_res(ib_conn);
if (ret)
goto failure;
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
conn_param.initiator_depth = 1;
conn_param.retry_count = 7;
conn_param.rnr_retry_count = 6;
memset(&req_hdr, 0, sizeof(req_hdr));
req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
ISER_SEND_W_INV_NOT_SUPPORTED);
conn_param.private_data = (void *)&req_hdr;
conn_param.private_data_len = sizeof(struct iser_cm_hdr);
ret = rdma_connect(cma_id, &conn_param);
if (ret) {
iser_err("failure connecting: %d\n", ret);
goto failure;
}
return;
failure:
iser_connect_error(cma_id);
}
static void iser_connected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn;
struct ib_qp_attr attr;
struct ib_qp_init_attr init_attr;
iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
(void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
iser_conn->state = ISER_CONN_UP;
complete(&iser_conn->up_completion);
}
static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn_terminate(iser_conn)) {
if (iser_conn->iscsi_conn)
iscsi_conn_failure(iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
else
iser_err("iscsi_iser connection isn't bound\n");
}
}
static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
bool destroy)
{
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
/*
* We are not guaranteed that we visited disconnected_handler
* by now, call it here to be safe that we handle CM drep
* and flush errors.
*/
iser_disconnected_handler(cma_id);
iser_free_ib_conn_res(iser_conn, destroy);
complete(&iser_conn->ib_completion);
};
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
{
struct iser_conn *iser_conn;
int ret = 0;
iser_conn = (struct iser_conn *)cma_id->context;
iser_info("%s (%d): status %d conn %p id %p\n",
rdma_event_msg(event->event), event->event,
event->status, cma_id->context, cma_id);
mutex_lock(&iser_conn->state_mutex);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
iser_addr_handler(cma_id);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
iser_route_handler(cma_id);
break;
case RDMA_CM_EVENT_ESTABLISHED:
iser_connected_handler(cma_id);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
iser_connect_error(cma_id);
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
iser_cleanup_handler(cma_id, false);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/*
* we *must* destroy the device as we cannot rely
* on iscsid to be around to initiate error handling.
* also if we are not in state DOWN implicitly destroy
* the cma_id.
*/
iser_cleanup_handler(cma_id, true);
if (iser_conn->state != ISER_CONN_DOWN) {
iser_conn->ib_conn.cma_id = NULL;
ret = 1;
}
break;
default:
iser_err("Unexpected RDMA CM event: %s (%d)\n",
rdma_event_msg(event->event), event->event);
break;
}
mutex_unlock(&iser_conn->state_mutex);
return ret;
}
void iser_conn_init(struct iser_conn *iser_conn)
{
iser_conn->state = ISER_CONN_INIT;
iser_conn->ib_conn.post_recv_buf_count = 0;
init_completion(&iser_conn->ib_conn.flush_comp);
init_completion(&iser_conn->stop_completion);
init_completion(&iser_conn->ib_completion);
init_completion(&iser_conn->up_completion);
INIT_LIST_HEAD(&iser_conn->conn_list);
mutex_init(&iser_conn->state_mutex);
}
/**
* starts the process of connecting to the target
* sleeps until the connection is established or rejected
*/
int iser_connect(struct iser_conn *iser_conn,
struct sockaddr *src_addr,
struct sockaddr *dst_addr,
int non_blocking)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
int err = 0;
mutex_lock(&iser_conn->state_mutex);
sprintf(iser_conn->name, "%pISp", dst_addr);
iser_info("connecting to: %s\n", iser_conn->name);
/* the device is known only --after-- address resolution */
ib_conn->device = NULL;
iser_conn->state = ISER_CONN_PENDING;
ib_conn->beacon.wr_id = ISER_BEACON_WRID;
ib_conn->beacon.opcode = IB_WR_SEND;
ib_conn->cma_id = rdma_create_id(&init_net, iser_cma_handler,
(void *)iser_conn,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(ib_conn->cma_id)) {
err = PTR_ERR(ib_conn->cma_id);
iser_err("rdma_create_id failed: %d\n", err);
goto id_failure;
}
err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
if (err) {
iser_err("rdma_resolve_addr failed: %d\n", err);
goto addr_failure;
}
if (!non_blocking) {
wait_for_completion_interruptible(&iser_conn->up_completion);
if (iser_conn->state != ISER_CONN_UP) {
err = -EIO;
goto connect_failure;
}
}
mutex_unlock(&iser_conn->state_mutex);
mutex_lock(&ig.connlist_mutex);
list_add(&iser_conn->conn_list, &ig.connlist);
mutex_unlock(&ig.connlist_mutex);
return 0;
id_failure:
ib_conn->cma_id = NULL;
addr_failure:
iser_conn->state = ISER_CONN_DOWN;
connect_failure:
mutex_unlock(&iser_conn->state_mutex);
iser_conn_release(iser_conn);
return err;
}
int iser_post_recvl(struct iser_conn *iser_conn)
{
struct ib_recv_wr rx_wr, *rx_wr_failed;
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct ib_sge sge;
int ib_ret;
sge.addr = iser_conn->login_resp_dma;
sge.length = ISER_RX_LOGIN_SIZE;
sge.lkey = ib_conn->device->pd->local_dma_lkey;
rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf;
rx_wr.sg_list = &sge;
rx_wr.num_sge = 1;
rx_wr.next = NULL;
ib_conn->post_recv_buf_count++;
ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count--;
}
return ib_ret;
}
int iser_post_recvm(struct iser_conn *iser_conn, int count)
{
struct ib_recv_wr *rx_wr, *rx_wr_failed;
int i, ib_ret;
struct ib_conn *ib_conn = &iser_conn->ib_conn;
unsigned int my_rx_head = iser_conn->rx_desc_head;
struct iser_rx_desc *rx_desc;
for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
rx_desc = &iser_conn->rx_descs[my_rx_head];
rx_wr->wr_id = (uintptr_t)rx_desc;
rx_wr->sg_list = &rx_desc->rx_sg;
rx_wr->num_sge = 1;
rx_wr->next = rx_wr + 1;
my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
}
rx_wr--;
rx_wr->next = NULL; /* mark end of work requests list */
ib_conn->post_recv_buf_count += count;
ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count -= count;
} else
iser_conn->rx_desc_head = my_rx_head;
return ib_ret;
}
/**
* iser_start_send - Initiate a Send DTO operation
*
* returns 0 on success, -1 on failure
*/
int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
bool signal)
{
struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc);
int ib_ret;
ib_dma_sync_single_for_device(ib_conn->device->ib_device,
tx_desc->dma_addr, ISER_HEADERS_LEN,
DMA_TO_DEVICE);
wr->next = NULL;
wr->wr_id = (uintptr_t)tx_desc;
wr->sg_list = tx_desc->tx_sg;
wr->num_sge = tx_desc->num_sge;
wr->opcode = IB_WR_SEND;
wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0].send, &bad_wr);
if (ib_ret)
iser_err("ib_post_send failed, ret:%d opcode:%d\n",
ib_ret, bad_wr->opcode);
return ib_ret;
}
/**
* is_iser_tx_desc - Indicate if the completion wr_id
* is a TX descriptor or not.
* @iser_conn: iser connection
* @wr_id: completion WR identifier
*
* Since we cannot rely on wc opcode in FLUSH errors
* we must work around it by checking if the wr_id address
* falls in the iser connection rx_descs buffer. If so
* it is an RX descriptor, otherwize it is a TX.
*/
static inline bool
is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
{
void *start = iser_conn->rx_descs;
int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
if (wr_id >= start && wr_id < start + len)
return false;
return true;
}
/**
* iser_handle_comp_error() - Handle error completion
* @ib_conn: connection RDMA resources
* @wc: work completion
*
* Notes: We may handle a FLUSH error completion and in this case
* we only cleanup in case TX type was DATAOUT. For non-FLUSH
* error completion we should also notify iscsi layer that
* connection is failed (in case we passed bind stage).
*/
static void
iser_handle_comp_error(struct ib_conn *ib_conn,
struct ib_wc *wc)
{
void *wr_id = (void *)(uintptr_t)wc->wr_id;
struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
ib_conn);
if (wc->status != IB_WC_WR_FLUSH_ERR)
if (iser_conn->iscsi_conn)
iscsi_conn_failure(iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
if (wc->wr_id == ISER_FASTREG_LI_WRID)
return;
if (is_iser_tx_desc(iser_conn, wr_id)) {
struct iser_tx_desc *desc = wr_id;
if (desc->type == ISCSI_TX_DATAOUT)
kmem_cache_free(ig.desc_cache, desc);
} else {
ib_conn->post_recv_buf_count--;
}
}
/**
* iser_handle_wc - handle a single work completion
* @wc: work completion
*
* Soft-IRQ context, work completion can be either
* SEND or RECV, and can turn out successful or
* with error (or flush error).
*/
static void iser_handle_wc(struct ib_wc *wc)
{
struct ib_conn *ib_conn;
struct iser_tx_desc *tx_desc;
struct iser_rx_desc *rx_desc;
ib_conn = wc->qp->qp_context;
if (likely(wc->status == IB_WC_SUCCESS)) {
if (wc->opcode == IB_WC_RECV) {
rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
iser_rcv_completion(rx_desc, wc->byte_len,
ib_conn);
} else
if (wc->opcode == IB_WC_SEND) {
tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
iser_snd_completion(tx_desc, ib_conn);
} else {
iser_err("Unknown wc opcode %d\n", wc->opcode);
}
} else {
if (wc->status != IB_WC_WR_FLUSH_ERR)
iser_err("%s (%d): wr id %llx vend_err %x\n",
ib_wc_status_msg(wc->status), wc->status,
wc->wr_id, wc->vendor_err);
else
iser_dbg("%s (%d): wr id %llx\n",
ib_wc_status_msg(wc->status), wc->status,
wc->wr_id);
if (wc->wr_id == ISER_BEACON_WRID)
/* all flush errors were consumed */
complete(&ib_conn->flush_comp);
else
iser_handle_comp_error(ib_conn, wc);
}
}
/**
* iser_cq_tasklet_fn - iSER completion polling loop
* @data: iSER completion context
*
* Soft-IRQ context, polling connection CQ until
* either CQ was empty or we exausted polling budget
*/
static void iser_cq_tasklet_fn(unsigned long data)
{
struct iser_comp *comp = (struct iser_comp *)data;
struct ib_cq *cq = comp->cq;
struct ib_wc *const wcs = comp->wcs;
int i, n, completed = 0;
while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
for (i = 0; i < n; i++)
iser_handle_wc(&wcs[i]);
completed += n;
if (completed >= iser_cq_poll_limit)
break;
}
/*
* It is assumed here that arming CQ only once its empty
* would not cause interrupts to be missed.
*/
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
iser_dbg("got %d completions\n", completed);
}
static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
{
struct iser_comp *comp = cq_context;
tasklet_schedule(&comp->tasklet);
}
u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir, sector_t *sector)
{
struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
struct iser_fr_desc *desc = reg->mem_h;
unsigned long sector_size = iser_task->sc->device->sector_size;
struct ib_mr_status mr_status;
int ret;
if (desc && desc->pi_ctx->sig_protected) {
desc->pi_ctx->sig_protected = 0;
ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
IB_MR_CHECK_SIG_STATUS, &mr_status);
if (ret) {
pr_err("ib_check_mr_status failed, ret %d\n", ret);
goto err;
}
if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
sector_t sector_off = mr_status.sig_err.sig_err_offset;
sector_div(sector_off, sector_size + 8);
*sector = scsi_get_lba(iser_task->sc) + sector_off;
pr_err("PI error found type %d at sector %llx "
"expected %x vs actual %x\n",
mr_status.sig_err.err_type,
(unsigned long long)*sector,
mr_status.sig_err.expected,
mr_status.sig_err.actual);
switch (mr_status.sig_err.err_type) {
case IB_SIG_BAD_GUARD:
return 0x1;
case IB_SIG_BAD_REFTAG:
return 0x3;
case IB_SIG_BAD_APPTAG:
return 0x2;
}
}
}
return 0;
err:
/* Not alot we can do here, return ambiguous guard error */
return 0x1;
}