| #ifndef _ASM_POWERPC_PTE_44x_H |
| #define _ASM_POWERPC_PTE_44x_H |
| #ifdef __KERNEL__ |
| |
| /* |
| * Definitions for PPC440 |
| * |
| * Because of the 3 word TLB entries to support 36-bit addressing, |
| * the attribute are difficult to map in such a fashion that they |
| * are easily loaded during exception processing. I decided to |
| * organize the entry so the ERPN is the only portion in the |
| * upper word of the PTE and the attribute bits below are packed |
| * in as sensibly as they can be in the area below a 4KB page size |
| * oriented RPN. This at least makes it easy to load the RPN and |
| * ERPN fields in the TLB. -Matt |
| * |
| * This isn't entirely true anymore, at least some bits are now |
| * easier to move into the TLB from the PTE. -BenH. |
| * |
| * Note that these bits preclude future use of a page size |
| * less than 4KB. |
| * |
| * |
| * PPC 440 core has following TLB attribute fields; |
| * |
| * TLB1: |
| * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| * RPN................................. - - - - - - ERPN....... |
| * |
| * TLB2: |
| * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR |
| * |
| * Newer 440 cores (440x6 as used on AMCC 460EX/460GT) have additional |
| * TLB2 storage attibute fields. Those are: |
| * |
| * TLB2: |
| * 0...10 11 12 13 14 15 16...31 |
| * no change WL1 IL1I IL1D IL2I IL2D no change |
| * |
| * There are some constrains and options, to decide mapping software bits |
| * into TLB entry. |
| * |
| * - PRESENT *must* be in the bottom three bits because swap cache |
| * entries use the top 29 bits for TLB2. |
| * |
| * - CACHE COHERENT bit (M) has no effect on original PPC440 cores, |
| * because it doesn't support SMP. However, some later 460 variants |
| * have -some- form of SMP support and so I keep the bit there for |
| * future use |
| * |
| * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used |
| * for memory protection related functions (see PTE structure in |
| * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the |
| * above bits. Note that the bit values are CPU specific, not architecture |
| * specific. |
| * |
| * The kernel PTE entry holds an arch-dependent swp_entry structure under |
| * certain situations. In other words, in such situations some portion of |
| * the PTE bits are used as a swp_entry. In the PPC implementation, the |
| * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still |
| * hold protection values. That means the three protection bits are |
| * reserved for both PTE and SWAP entry at the most significant three |
| * LSBs. |
| * |
| * There are three protection bits available for SWAP entry: |
| * _PAGE_PRESENT |
| * _PAGE_HASHPTE (if HW has) |
| * |
| * So those three bits have to be inside of 0-2nd LSB of PTE. |
| * |
| */ |
| |
| #define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ |
| #define _PAGE_RW 0x00000002 /* S: Write permission */ |
| #define _PAGE_EXEC 0x00000004 /* H: Execute permission */ |
| #define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ |
| #define _PAGE_DIRTY 0x00000010 /* S: Page dirty */ |
| #define _PAGE_SPECIAL 0x00000020 /* S: Special page */ |
| #define _PAGE_USER 0x00000040 /* S: User page */ |
| #define _PAGE_ENDIAN 0x00000080 /* H: E bit */ |
| #define _PAGE_GUARDED 0x00000100 /* H: G bit */ |
| #define _PAGE_COHERENT 0x00000200 /* H: M bit */ |
| #define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ |
| #define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ |
| |
| /* TODO: Add large page lowmem mapping support */ |
| #define _PMD_PRESENT 0 |
| #define _PMD_PRESENT_MASK (PAGE_MASK) |
| #define _PMD_BAD (~PAGE_MASK) |
| |
| /* ERPN in a PTE never gets cleared, ignore it */ |
| #define _PTE_NONE_MASK 0xffffffff00000000ULL |
| |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _ASM_POWERPC_PTE_44x_H */ |