| /* |
| * A fairly generic DMA-API to IOMMU-API glue layer. |
| * |
| * Copyright (C) 2014-2015 ARM Ltd. |
| * |
| * based in part on arch/arm/mm/dma-mapping.c: |
| * Copyright (C) 2000-2004 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/dma-iommu.h> |
| #include <linux/gfp.h> |
| #include <linux/huge_mm.h> |
| #include <linux/iommu.h> |
| #include <linux/iova.h> |
| #include <linux/mm.h> |
| #include <linux/scatterlist.h> |
| #include <linux/vmalloc.h> |
| |
| int iommu_dma_init(void) |
| { |
| return iova_cache_get(); |
| } |
| |
| /** |
| * iommu_get_dma_cookie - Acquire DMA-API resources for a domain |
| * @domain: IOMMU domain to prepare for DMA-API usage |
| * |
| * IOMMU drivers should normally call this from their domain_alloc |
| * callback when domain->type == IOMMU_DOMAIN_DMA. |
| */ |
| int iommu_get_dma_cookie(struct iommu_domain *domain) |
| { |
| struct iova_domain *iovad; |
| |
| if (domain->iova_cookie) |
| return -EEXIST; |
| |
| iovad = kzalloc(sizeof(*iovad), GFP_KERNEL); |
| domain->iova_cookie = iovad; |
| |
| return iovad ? 0 : -ENOMEM; |
| } |
| EXPORT_SYMBOL(iommu_get_dma_cookie); |
| |
| /** |
| * iommu_put_dma_cookie - Release a domain's DMA mapping resources |
| * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| * |
| * IOMMU drivers should normally call this from their domain_free callback. |
| */ |
| void iommu_put_dma_cookie(struct iommu_domain *domain) |
| { |
| struct iova_domain *iovad = domain->iova_cookie; |
| |
| if (!iovad) |
| return; |
| |
| if (iovad->granule) |
| put_iova_domain(iovad); |
| kfree(iovad); |
| domain->iova_cookie = NULL; |
| } |
| EXPORT_SYMBOL(iommu_put_dma_cookie); |
| |
| /** |
| * iommu_dma_init_domain - Initialise a DMA mapping domain |
| * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| * @base: IOVA at which the mappable address space starts |
| * @size: Size of IOVA space |
| * |
| * @base and @size should be exact multiples of IOMMU page granularity to |
| * avoid rounding surprises. If necessary, we reserve the page at address 0 |
| * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but |
| * any change which could make prior IOVAs invalid will fail. |
| */ |
| int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size) |
| { |
| struct iova_domain *iovad = domain->iova_cookie; |
| unsigned long order, base_pfn, end_pfn; |
| |
| if (!iovad) |
| return -ENODEV; |
| |
| /* Use the smallest supported page size for IOVA granularity */ |
| order = __ffs(domain->ops->pgsize_bitmap); |
| base_pfn = max_t(unsigned long, 1, base >> order); |
| end_pfn = (base + size - 1) >> order; |
| |
| /* Check the domain allows at least some access to the device... */ |
| if (domain->geometry.force_aperture) { |
| if (base > domain->geometry.aperture_end || |
| base + size <= domain->geometry.aperture_start) { |
| pr_warn("specified DMA range outside IOMMU capability\n"); |
| return -EFAULT; |
| } |
| /* ...then finally give it a kicking to make sure it fits */ |
| base_pfn = max_t(unsigned long, base_pfn, |
| domain->geometry.aperture_start >> order); |
| end_pfn = min_t(unsigned long, end_pfn, |
| domain->geometry.aperture_end >> order); |
| } |
| |
| /* All we can safely do with an existing domain is enlarge it */ |
| if (iovad->start_pfn) { |
| if (1UL << order != iovad->granule || |
| base_pfn != iovad->start_pfn || |
| end_pfn < iovad->dma_32bit_pfn) { |
| pr_warn("Incompatible range for DMA domain\n"); |
| return -EFAULT; |
| } |
| iovad->dma_32bit_pfn = end_pfn; |
| } else { |
| init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(iommu_dma_init_domain); |
| |
| /** |
| * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags |
| * @dir: Direction of DMA transfer |
| * @coherent: Is the DMA master cache-coherent? |
| * |
| * Return: corresponding IOMMU API page protection flags |
| */ |
| int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) |
| { |
| int prot = coherent ? IOMMU_CACHE : 0; |
| |
| switch (dir) { |
| case DMA_BIDIRECTIONAL: |
| return prot | IOMMU_READ | IOMMU_WRITE; |
| case DMA_TO_DEVICE: |
| return prot | IOMMU_READ; |
| case DMA_FROM_DEVICE: |
| return prot | IOMMU_WRITE; |
| default: |
| return 0; |
| } |
| } |
| |
| static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size, |
| dma_addr_t dma_limit) |
| { |
| unsigned long shift = iova_shift(iovad); |
| unsigned long length = iova_align(iovad, size) >> shift; |
| |
| /* |
| * Enforce size-alignment to be safe - there could perhaps be an |
| * attribute to control this per-device, or at least per-domain... |
| */ |
| return alloc_iova(iovad, length, dma_limit >> shift, true); |
| } |
| |
| /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ |
| static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) |
| { |
| struct iova_domain *iovad = domain->iova_cookie; |
| unsigned long shift = iova_shift(iovad); |
| unsigned long pfn = dma_addr >> shift; |
| struct iova *iova = find_iova(iovad, pfn); |
| size_t size; |
| |
| if (WARN_ON(!iova)) |
| return; |
| |
| size = iova_size(iova) << shift; |
| size -= iommu_unmap(domain, pfn << shift, size); |
| /* ...and if we can't, then something is horribly, horribly wrong */ |
| WARN_ON(size > 0); |
| __free_iova(iovad, iova); |
| } |
| |
| static void __iommu_dma_free_pages(struct page **pages, int count) |
| { |
| while (count--) |
| __free_page(pages[count]); |
| kvfree(pages); |
| } |
| |
| static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp) |
| { |
| struct page **pages; |
| unsigned int i = 0, array_size = count * sizeof(*pages); |
| unsigned int order = MAX_ORDER; |
| |
| if (array_size <= PAGE_SIZE) |
| pages = kzalloc(array_size, GFP_KERNEL); |
| else |
| pages = vzalloc(array_size); |
| if (!pages) |
| return NULL; |
| |
| /* IOMMU can map any pages, so himem can also be used here */ |
| gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| |
| while (count) { |
| struct page *page = NULL; |
| int j; |
| |
| /* |
| * Higher-order allocations are a convenience rather |
| * than a necessity, hence using __GFP_NORETRY until |
| * falling back to single-page allocations. |
| */ |
| for (order = min_t(unsigned int, order, __fls(count)); |
| order > 0; order--) { |
| page = alloc_pages(gfp | __GFP_NORETRY, order); |
| if (!page) |
| continue; |
| if (PageCompound(page)) { |
| if (!split_huge_page(page)) |
| break; |
| __free_pages(page, order); |
| } else { |
| split_page(page, order); |
| break; |
| } |
| } |
| if (!page) |
| page = alloc_page(gfp); |
| if (!page) { |
| __iommu_dma_free_pages(pages, i); |
| return NULL; |
| } |
| j = 1 << order; |
| count -= j; |
| while (j--) |
| pages[i++] = page++; |
| } |
| return pages; |
| } |
| |
| /** |
| * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() |
| * @dev: Device which owns this buffer |
| * @pages: Array of buffer pages as returned by iommu_dma_alloc() |
| * @size: Size of buffer in bytes |
| * @handle: DMA address of buffer |
| * |
| * Frees both the pages associated with the buffer, and the array |
| * describing them |
| */ |
| void iommu_dma_free(struct device *dev, struct page **pages, size_t size, |
| dma_addr_t *handle) |
| { |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); |
| __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| *handle = DMA_ERROR_CODE; |
| } |
| |
| /** |
| * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space |
| * @dev: Device to allocate memory for. Must be a real device |
| * attached to an iommu_dma_domain |
| * @size: Size of buffer in bytes |
| * @gfp: Allocation flags |
| * @prot: IOMMU mapping flags |
| * @handle: Out argument for allocated DMA handle |
| * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the |
| * given VA/PA are visible to the given non-coherent device. |
| * |
| * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, |
| * but an IOMMU which supports smaller pages might not map the whole thing. |
| * |
| * Return: Array of struct page pointers describing the buffer, |
| * or NULL on failure. |
| */ |
| struct page **iommu_dma_alloc(struct device *dev, size_t size, |
| gfp_t gfp, int prot, dma_addr_t *handle, |
| void (*flush_page)(struct device *, const void *, phys_addr_t)) |
| { |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iova_domain *iovad = domain->iova_cookie; |
| struct iova *iova; |
| struct page **pages; |
| struct sg_table sgt; |
| dma_addr_t dma_addr; |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| |
| *handle = DMA_ERROR_CODE; |
| |
| pages = __iommu_dma_alloc_pages(count, gfp); |
| if (!pages) |
| return NULL; |
| |
| iova = __alloc_iova(iovad, size, dev->coherent_dma_mask); |
| if (!iova) |
| goto out_free_pages; |
| |
| size = iova_align(iovad, size); |
| if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) |
| goto out_free_iova; |
| |
| if (!(prot & IOMMU_CACHE)) { |
| struct sg_mapping_iter miter; |
| /* |
| * The CPU-centric flushing implied by SG_MITER_TO_SG isn't |
| * sufficient here, so skip it by using the "wrong" direction. |
| */ |
| sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); |
| while (sg_miter_next(&miter)) |
| flush_page(dev, miter.addr, page_to_phys(miter.page)); |
| sg_miter_stop(&miter); |
| } |
| |
| dma_addr = iova_dma_addr(iovad, iova); |
| if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) |
| < size) |
| goto out_free_sg; |
| |
| *handle = dma_addr; |
| sg_free_table(&sgt); |
| return pages; |
| |
| out_free_sg: |
| sg_free_table(&sgt); |
| out_free_iova: |
| __free_iova(iovad, iova); |
| out_free_pages: |
| __iommu_dma_free_pages(pages, count); |
| return NULL; |
| } |
| |
| /** |
| * iommu_dma_mmap - Map a buffer into provided user VMA |
| * @pages: Array representing buffer from iommu_dma_alloc() |
| * @size: Size of buffer in bytes |
| * @vma: VMA describing requested userspace mapping |
| * |
| * Maps the pages of the buffer in @pages into @vma. The caller is responsible |
| * for verifying the correct size and protection of @vma beforehand. |
| */ |
| |
| int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) |
| { |
| unsigned long uaddr = vma->vm_start; |
| unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| int ret = -ENXIO; |
| |
| for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { |
| ret = vm_insert_page(vma, uaddr, pages[i]); |
| if (ret) |
| break; |
| uaddr += PAGE_SIZE; |
| } |
| return ret; |
| } |
| |
| dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, int prot) |
| { |
| dma_addr_t dma_addr; |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iova_domain *iovad = domain->iova_cookie; |
| phys_addr_t phys = page_to_phys(page) + offset; |
| size_t iova_off = iova_offset(iovad, phys); |
| size_t len = iova_align(iovad, size + iova_off); |
| struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev)); |
| |
| if (!iova) |
| return DMA_ERROR_CODE; |
| |
| dma_addr = iova_dma_addr(iovad, iova); |
| if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { |
| __free_iova(iovad, iova); |
| return DMA_ERROR_CODE; |
| } |
| return dma_addr + iova_off; |
| } |
| |
| void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); |
| } |
| |
| /* |
| * Prepare a successfully-mapped scatterlist to give back to the caller. |
| * Handling IOVA concatenation can come later, if needed |
| */ |
| static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, |
| dma_addr_t dma_addr) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| /* Un-swizzling the fields here, hence the naming mismatch */ |
| unsigned int s_offset = sg_dma_address(s); |
| unsigned int s_length = sg_dma_len(s); |
| unsigned int s_dma_len = s->length; |
| |
| s->offset += s_offset; |
| s->length = s_length; |
| sg_dma_address(s) = dma_addr + s_offset; |
| dma_addr += s_dma_len; |
| } |
| return i; |
| } |
| |
| /* |
| * If mapping failed, then just restore the original list, |
| * but making sure the DMA fields are invalidated. |
| */ |
| static void __invalidate_sg(struct scatterlist *sg, int nents) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| if (sg_dma_address(s) != DMA_ERROR_CODE) |
| s->offset += sg_dma_address(s); |
| if (sg_dma_len(s)) |
| s->length = sg_dma_len(s); |
| sg_dma_address(s) = DMA_ERROR_CODE; |
| sg_dma_len(s) = 0; |
| } |
| } |
| |
| /* |
| * The DMA API client is passing in a scatterlist which could describe |
| * any old buffer layout, but the IOMMU API requires everything to be |
| * aligned to IOMMU pages. Hence the need for this complicated bit of |
| * impedance-matching, to be able to hand off a suitably-aligned list, |
| * but still preserve the original offsets and sizes for the caller. |
| */ |
| int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, int prot) |
| { |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iova_domain *iovad = domain->iova_cookie; |
| struct iova *iova; |
| struct scatterlist *s, *prev = NULL; |
| dma_addr_t dma_addr; |
| size_t iova_len = 0; |
| int i; |
| |
| /* |
| * Work out how much IOVA space we need, and align the segments to |
| * IOVA granules for the IOMMU driver to handle. With some clever |
| * trickery we can modify the list in-place, but reversibly, by |
| * hiding the original data in the as-yet-unused DMA fields. |
| */ |
| for_each_sg(sg, s, nents, i) { |
| size_t s_offset = iova_offset(iovad, s->offset); |
| size_t s_length = s->length; |
| |
| sg_dma_address(s) = s_offset; |
| sg_dma_len(s) = s_length; |
| s->offset -= s_offset; |
| s_length = iova_align(iovad, s_length + s_offset); |
| s->length = s_length; |
| |
| /* |
| * The simple way to avoid the rare case of a segment |
| * crossing the boundary mask is to pad the previous one |
| * to end at a naturally-aligned IOVA for this one's size, |
| * at the cost of potentially over-allocating a little. |
| */ |
| if (prev) { |
| size_t pad_len = roundup_pow_of_two(s_length); |
| |
| pad_len = (pad_len - iova_len) & (pad_len - 1); |
| prev->length += pad_len; |
| iova_len += pad_len; |
| } |
| |
| iova_len += s_length; |
| prev = s; |
| } |
| |
| iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev)); |
| if (!iova) |
| goto out_restore_sg; |
| |
| /* |
| * We'll leave any physical concatenation to the IOMMU driver's |
| * implementation - it knows better than we do. |
| */ |
| dma_addr = iova_dma_addr(iovad, iova); |
| if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) |
| goto out_free_iova; |
| |
| return __finalise_sg(dev, sg, nents, dma_addr); |
| |
| out_free_iova: |
| __free_iova(iovad, iova); |
| out_restore_sg: |
| __invalidate_sg(sg, nents); |
| return 0; |
| } |
| |
| void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| /* |
| * The scatterlist segments are mapped into a single |
| * contiguous IOVA allocation, so this is incredibly easy. |
| */ |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); |
| } |
| |
| int iommu_dma_supported(struct device *dev, u64 mask) |
| { |
| /* |
| * 'Special' IOMMUs which don't have the same addressing capability |
| * as the CPU will have to wait until we have some way to query that |
| * before they'll be able to use this framework. |
| */ |
| return 1; |
| } |
| |
| int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return dma_addr == DMA_ERROR_CODE; |
| } |