| /* |
| * GICv3 distributor and redistributor emulation |
| * |
| * GICv3 emulation is currently only supported on a GICv3 host (because |
| * we rely on the hardware's CPU interface virtualization support), but |
| * supports both hardware with or without the optional GICv2 backwards |
| * compatibility features. |
| * |
| * Limitations of the emulation: |
| * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) |
| * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. |
| * - We do not support the message based interrupts (MBIs) triggered by |
| * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. |
| * - We do not support the (optional) backwards compatibility feature. |
| * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports |
| * the compatiblity feature, you can use a GICv2 in the guest, though. |
| * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. |
| * - Priorities are not emulated (same as the GICv2 emulation). Linux |
| * as a guest is fine with this, because it does not use priorities. |
| * - We only support Group1 interrupts. Again Linux uses only those. |
| * |
| * Copyright (C) 2014 ARM Ltd. |
| * Author: Andre Przywara <andre.przywara@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <kvm/arm_vgic.h> |
| |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_mmu.h> |
| |
| #include "vgic.h" |
| |
| static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 reg = 0xffffffff; |
| |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| |
| return false; |
| } |
| |
| static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 reg = 0; |
| |
| /* |
| * Force ARE and DS to 1, the guest cannot change this. |
| * For the time being we only support Group1 interrupts. |
| */ |
| if (vcpu->kvm->arch.vgic.enabled) |
| reg = GICD_CTLR_ENABLE_SS_G1; |
| reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; |
| |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| if (mmio->is_write) { |
| vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * As this implementation does not provide compatibility |
| * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. |
| * Also LPIs and MBIs are not supported, so we set the respective bits to 0. |
| * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). |
| */ |
| #define INTERRUPT_ID_BITS 10 |
| static bool handle_mmio_typer(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 reg; |
| |
| reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; |
| |
| reg |= (INTERRUPT_ID_BITS - 1) << 19; |
| |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| |
| return false; |
| } |
| |
| static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 reg; |
| |
| reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| |
| return false; |
| } |
| |
| static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| vcpu->vcpu_id, |
| ACCESS_WRITE_SETBIT); |
| |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| vcpu->vcpu_id, |
| ACCESS_WRITE_CLEARBIT); |
| |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, |
| vcpu->vcpu_id); |
| |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, |
| vcpu->vcpu_id); |
| |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_set_active_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset, |
| vcpu->vcpu_id); |
| |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_clear_active_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset, |
| vcpu->vcpu_id); |
| |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg; |
| |
| if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, |
| vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| return false; |
| } |
| |
| static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg; |
| |
| if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, |
| vcpu->vcpu_id, offset >> 1); |
| |
| return vgic_handle_cfg_reg(reg, mmio, offset); |
| } |
| |
| /* |
| * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) |
| * when we store the target MPIDR written by the guest. |
| */ |
| static u32 compress_mpidr(unsigned long mpidr) |
| { |
| u32 ret; |
| |
| ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; |
| ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; |
| ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; |
| |
| return ret; |
| } |
| |
| static unsigned long uncompress_mpidr(u32 value) |
| { |
| unsigned long mpidr; |
| |
| mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); |
| mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); |
| mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); |
| mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); |
| |
| return mpidr; |
| } |
| |
| /* |
| * Lookup the given MPIDR value to get the vcpu_id (if there is one) |
| * and store that in the irq_spi_cpu[] array. |
| * This limits the number of VCPUs to 255 for now, extending the data |
| * type (or storing kvm_vcpu pointers) should lift the limit. |
| * Store the original MPIDR value in an extra array to support read-as-written. |
| * Unallocated MPIDRs are translated to a special value and caught |
| * before any array accesses. |
| */ |
| static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int spi; |
| u32 reg; |
| int vcpu_id; |
| unsigned long *bmap, mpidr; |
| |
| /* |
| * The upper 32 bits of each 64 bit register are zero, |
| * as we don't support Aff3. |
| */ |
| if ((offset & 4)) { |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| /* This region only covers SPIs, so no handling of private IRQs here. */ |
| spi = offset / 8; |
| |
| /* get the stored MPIDR for this IRQ */ |
| mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); |
| reg = mpidr; |
| |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| |
| if (!mmio->is_write) |
| return false; |
| |
| /* |
| * Now clear the currently assigned vCPU from the map, making room |
| * for the new one to be written below |
| */ |
| vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); |
| if (likely(vcpu)) { |
| vcpu_id = vcpu->vcpu_id; |
| bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); |
| __clear_bit(spi, bmap); |
| } |
| |
| dist->irq_spi_mpidr[spi] = compress_mpidr(reg); |
| vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); |
| |
| /* |
| * The spec says that non-existent MPIDR values should not be |
| * forwarded to any existent (v)CPU, but should be able to become |
| * pending anyway. We simply keep the irq_spi_target[] array empty, so |
| * the interrupt will never be injected. |
| * irq_spi_cpu[irq] gets a magic value in this case. |
| */ |
| if (likely(vcpu)) { |
| vcpu_id = vcpu->vcpu_id; |
| dist->irq_spi_cpu[spi] = vcpu_id; |
| bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); |
| __set_bit(spi, bmap); |
| } else { |
| dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; |
| } |
| |
| vgic_update_state(kvm); |
| |
| return true; |
| } |
| |
| /* |
| * We should be careful about promising too much when a guest reads |
| * this register. Don't claim to be like any hardware implementation, |
| * but just report the GIC as version 3 - which is what a Linux guest |
| * would check. |
| */ |
| static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 reg = 0; |
| |
| switch (offset + GICD_IDREGS) { |
| case GICD_PIDR2: |
| reg = 0x3b; |
| break; |
| } |
| |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| |
| return false; |
| } |
| |
| static const struct vgic_io_range vgic_v3_dist_ranges[] = { |
| { |
| .base = GICD_CTLR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_ctlr, |
| }, |
| { |
| .base = GICD_TYPER, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_typer, |
| }, |
| { |
| .base = GICD_IIDR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_iidr, |
| }, |
| { |
| /* this register is optional, it is RAZ/WI if not implemented */ |
| .base = GICD_STATUSR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this write only register is WI when TYPER.MBIS=0 */ |
| .base = GICD_SETSPI_NSR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this write only register is WI when TYPER.MBIS=0 */ |
| .base = GICD_CLRSPI_NSR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this is RAZ/WI when DS=1 */ |
| .base = GICD_SETSPI_SR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this is RAZ/WI when DS=1 */ |
| .base = GICD_CLRSPI_SR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GICD_IGROUPR, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_rao_wi, |
| }, |
| { |
| .base = GICD_ISENABLER, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_set_enable_reg_dist, |
| }, |
| { |
| .base = GICD_ICENABLER, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_clear_enable_reg_dist, |
| }, |
| { |
| .base = GICD_ISPENDR, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_set_pending_reg_dist, |
| }, |
| { |
| .base = GICD_ICPENDR, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_clear_pending_reg_dist, |
| }, |
| { |
| .base = GICD_ISACTIVER, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_set_active_reg_dist, |
| }, |
| { |
| .base = GICD_ICACTIVER, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_clear_active_reg_dist, |
| }, |
| { |
| .base = GICD_IPRIORITYR, |
| .len = 0x400, |
| .bits_per_irq = 8, |
| .handle_mmio = handle_mmio_priority_reg_dist, |
| }, |
| { |
| /* TARGETSRn is RES0 when ARE=1 */ |
| .base = GICD_ITARGETSR, |
| .len = 0x400, |
| .bits_per_irq = 8, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GICD_ICFGR, |
| .len = 0x100, |
| .bits_per_irq = 2, |
| .handle_mmio = handle_mmio_cfg_reg_dist, |
| }, |
| { |
| /* this is RAZ/WI when DS=1 */ |
| .base = GICD_IGRPMODR, |
| .len = 0x80, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this is RAZ/WI when DS=1 */ |
| .base = GICD_NSACR, |
| .len = 0x100, |
| .bits_per_irq = 2, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this is RAZ/WI when ARE=1 */ |
| .base = GICD_SGIR, |
| .len = 0x04, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this is RAZ/WI when ARE=1 */ |
| .base = GICD_CPENDSGIR, |
| .len = 0x10, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| /* this is RAZ/WI when ARE=1 */ |
| .base = GICD_SPENDSGIR, |
| .len = 0x10, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GICD_IROUTER + 0x100, |
| .len = 0x1ee0, |
| .bits_per_irq = 64, |
| .handle_mmio = handle_mmio_route_reg, |
| }, |
| { |
| .base = GICD_IDREGS, |
| .len = 0x30, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_idregs, |
| }, |
| {}, |
| }; |
| |
| static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| /* since we don't support LPIs, this register is zero for now */ |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 reg; |
| u64 mpidr; |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| int target_vcpu_id = redist_vcpu->vcpu_id; |
| |
| /* the upper 32 bits contain the affinity value */ |
| if ((offset & ~3) == 4) { |
| mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); |
| reg = compress_mpidr(mpidr); |
| |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| reg = redist_vcpu->vcpu_id << 8; |
| if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) |
| reg |= GICR_TYPER_LAST; |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| redist_vcpu->vcpu_id, |
| ACCESS_WRITE_SETBIT); |
| } |
| |
| static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| redist_vcpu->vcpu_id, |
| ACCESS_WRITE_CLEARBIT); |
| } |
| |
| static bool handle_mmio_set_active_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset, |
| redist_vcpu->vcpu_id); |
| } |
| |
| static bool handle_mmio_clear_active_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset, |
| redist_vcpu->vcpu_id); |
| } |
| |
| static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, |
| redist_vcpu->vcpu_id); |
| } |
| |
| static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, |
| redist_vcpu->vcpu_id); |
| } |
| |
| static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| u32 *reg; |
| |
| reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, |
| redist_vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| return false; |
| } |
| |
| static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| struct kvm_vcpu *redist_vcpu = mmio->private; |
| |
| u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, |
| redist_vcpu->vcpu_id, offset >> 1); |
| |
| return vgic_handle_cfg_reg(reg, mmio, offset); |
| } |
| |
| #define SGI_base(x) ((x) + SZ_64K) |
| |
| static const struct vgic_io_range vgic_redist_ranges[] = { |
| { |
| .base = GICR_CTLR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_ctlr_redist, |
| }, |
| { |
| .base = GICR_TYPER, |
| .len = 0x08, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_typer_redist, |
| }, |
| { |
| .base = GICR_IIDR, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_iidr, |
| }, |
| { |
| .base = GICR_WAKER, |
| .len = 0x04, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GICR_IDREGS, |
| .len = 0x30, |
| .bits_per_irq = 0, |
| .handle_mmio = handle_mmio_idregs, |
| }, |
| { |
| .base = SGI_base(GICR_IGROUPR0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_rao_wi, |
| }, |
| { |
| .base = SGI_base(GICR_ISENABLER0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_set_enable_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_ICENABLER0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_clear_enable_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_ISPENDR0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_set_pending_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_ICPENDR0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_clear_pending_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_ISACTIVER0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_set_active_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_ICACTIVER0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_clear_active_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_IPRIORITYR0), |
| .len = 0x20, |
| .bits_per_irq = 8, |
| .handle_mmio = handle_mmio_priority_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_ICFGR0), |
| .len = 0x08, |
| .bits_per_irq = 2, |
| .handle_mmio = handle_mmio_cfg_reg_redist, |
| }, |
| { |
| .base = SGI_base(GICR_IGRPMODR0), |
| .len = 0x04, |
| .bits_per_irq = 1, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = SGI_base(GICR_NSACR), |
| .len = 0x04, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| {}, |
| }; |
| |
| static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (vgic_queue_irq(vcpu, 0, irq)) { |
| vgic_dist_irq_clear_pending(vcpu, irq); |
| vgic_cpu_irq_clear(vcpu, irq); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int vgic_v3_map_resources(struct kvm *kvm, |
| const struct vgic_params *params) |
| { |
| int ret = 0; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| gpa_t rdbase = dist->vgic_redist_base; |
| struct vgic_io_device *iodevs = NULL; |
| int i; |
| |
| if (!irqchip_in_kernel(kvm)) |
| return 0; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (vgic_ready(kvm)) |
| goto out; |
| |
| if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || |
| IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { |
| kvm_err("Need to set vgic distributor addresses first\n"); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| /* |
| * For a VGICv3 we require the userland to explicitly initialize |
| * the VGIC before we need to use it. |
| */ |
| if (!vgic_initialized(kvm)) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| ret = vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base, |
| GIC_V3_DIST_SIZE, vgic_v3_dist_ranges, |
| -1, &dist->dist_iodev); |
| if (ret) |
| goto out; |
| |
| iodevs = kcalloc(dist->nr_cpus, sizeof(iodevs[0]), GFP_KERNEL); |
| if (!iodevs) { |
| ret = -ENOMEM; |
| goto out_unregister; |
| } |
| |
| for (i = 0; i < dist->nr_cpus; i++) { |
| ret = vgic_register_kvm_io_dev(kvm, rdbase, |
| SZ_128K, vgic_redist_ranges, |
| i, &iodevs[i]); |
| if (ret) |
| goto out_unregister; |
| rdbase += GIC_V3_REDIST_SIZE; |
| } |
| |
| dist->redist_iodevs = iodevs; |
| dist->ready = true; |
| goto out; |
| |
| out_unregister: |
| kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev); |
| if (iodevs) { |
| for (i = 0; i < dist->nr_cpus; i++) { |
| if (iodevs[i].dev.ops) |
| kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, |
| &iodevs[i].dev); |
| } |
| } |
| |
| out: |
| if (ret) |
| kvm_vgic_destroy(kvm); |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| static int vgic_v3_init_model(struct kvm *kvm) |
| { |
| int i; |
| u32 mpidr; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; |
| |
| dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), |
| GFP_KERNEL); |
| |
| if (!dist->irq_spi_mpidr) |
| return -ENOMEM; |
| |
| /* Initialize the target VCPUs for each IRQ to VCPU 0 */ |
| mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); |
| for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { |
| dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; |
| dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; |
| vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); |
| } |
| |
| return 0; |
| } |
| |
| /* GICv3 does not keep track of SGI sources anymore. */ |
| static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) |
| { |
| } |
| |
| void vgic_v3_init_emulation(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; |
| dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; |
| dist->vm_ops.init_model = vgic_v3_init_model; |
| dist->vm_ops.map_resources = vgic_v3_map_resources; |
| |
| kvm->arch.max_vcpus = KVM_MAX_VCPUS; |
| } |
| |
| /* |
| * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI |
| * generation register ICC_SGI1R_EL1) with a given VCPU. |
| * If the VCPU's MPIDR matches, return the level0 affinity, otherwise |
| * return -1. |
| */ |
| static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) |
| { |
| unsigned long affinity; |
| int level0; |
| |
| /* |
| * Split the current VCPU's MPIDR into affinity level 0 and the |
| * rest as this is what we have to compare against. |
| */ |
| affinity = kvm_vcpu_get_mpidr_aff(vcpu); |
| level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); |
| affinity &= ~MPIDR_LEVEL_MASK; |
| |
| /* bail out if the upper three levels don't match */ |
| if (sgi_aff != affinity) |
| return -1; |
| |
| /* Is this VCPU's bit set in the mask ? */ |
| if (!(sgi_cpu_mask & BIT(level0))) |
| return -1; |
| |
| return level0; |
| } |
| |
| #define SGI_AFFINITY_LEVEL(reg, level) \ |
| ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ |
| >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) |
| |
| /** |
| * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs |
| * @vcpu: The VCPU requesting a SGI |
| * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU |
| * |
| * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. |
| * This will trap in sys_regs.c and call this function. |
| * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the |
| * target processors as well as a bitmask of 16 Aff0 CPUs. |
| * If the interrupt routing mode bit is not set, we iterate over all VCPUs to |
| * check for matching ones. If this bit is set, we signal all, but not the |
| * calling VCPU. |
| */ |
| void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_vcpu *c_vcpu; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| u16 target_cpus; |
| u64 mpidr; |
| int sgi, c; |
| int vcpu_id = vcpu->vcpu_id; |
| bool broadcast; |
| int updated = 0; |
| |
| sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; |
| broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); |
| target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; |
| mpidr = SGI_AFFINITY_LEVEL(reg, 3); |
| mpidr |= SGI_AFFINITY_LEVEL(reg, 2); |
| mpidr |= SGI_AFFINITY_LEVEL(reg, 1); |
| |
| /* |
| * We take the dist lock here, because we come from the sysregs |
| * code path and not from the MMIO one (which already takes the lock). |
| */ |
| spin_lock(&dist->lock); |
| |
| /* |
| * We iterate over all VCPUs to find the MPIDRs matching the request. |
| * If we have handled one CPU, we clear it's bit to detect early |
| * if we are already finished. This avoids iterating through all |
| * VCPUs when most of the times we just signal a single VCPU. |
| */ |
| kvm_for_each_vcpu(c, c_vcpu, kvm) { |
| |
| /* Exit early if we have dealt with all requested CPUs */ |
| if (!broadcast && target_cpus == 0) |
| break; |
| |
| /* Don't signal the calling VCPU */ |
| if (broadcast && c == vcpu_id) |
| continue; |
| |
| if (!broadcast) { |
| int level0; |
| |
| level0 = match_mpidr(mpidr, target_cpus, c_vcpu); |
| if (level0 == -1) |
| continue; |
| |
| /* remove this matching VCPU from the mask */ |
| target_cpus &= ~BIT(level0); |
| } |
| |
| /* Flag the SGI as pending */ |
| vgic_dist_irq_set_pending(c_vcpu, sgi); |
| updated = 1; |
| kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); |
| } |
| if (updated) |
| vgic_update_state(vcpu->kvm); |
| spin_unlock(&dist->lock); |
| if (updated) |
| vgic_kick_vcpus(vcpu->kvm); |
| } |
| |
| static int vgic_v3_create(struct kvm_device *dev, u32 type) |
| { |
| return kvm_vgic_create(dev->kvm, type); |
| } |
| |
| static void vgic_v3_destroy(struct kvm_device *dev) |
| { |
| kfree(dev); |
| } |
| |
| static int vgic_v3_set_attr(struct kvm_device *dev, |
| struct kvm_device_attr *attr) |
| { |
| int ret; |
| |
| ret = vgic_set_common_attr(dev, attr); |
| if (ret != -ENXIO) |
| return ret; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| return -ENXIO; |
| } |
| |
| return -ENXIO; |
| } |
| |
| static int vgic_v3_get_attr(struct kvm_device *dev, |
| struct kvm_device_attr *attr) |
| { |
| int ret; |
| |
| ret = vgic_get_common_attr(dev, attr); |
| if (ret != -ENXIO) |
| return ret; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| return -ENXIO; |
| } |
| |
| return -ENXIO; |
| } |
| |
| static int vgic_v3_has_attr(struct kvm_device *dev, |
| struct kvm_device_attr *attr) |
| { |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_ADDR: |
| switch (attr->attr) { |
| case KVM_VGIC_V2_ADDR_TYPE_DIST: |
| case KVM_VGIC_V2_ADDR_TYPE_CPU: |
| return -ENXIO; |
| case KVM_VGIC_V3_ADDR_TYPE_DIST: |
| case KVM_VGIC_V3_ADDR_TYPE_REDIST: |
| return 0; |
| } |
| break; |
| case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| return -ENXIO; |
| case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: |
| return 0; |
| case KVM_DEV_ARM_VGIC_GRP_CTRL: |
| switch (attr->attr) { |
| case KVM_DEV_ARM_VGIC_CTRL_INIT: |
| return 0; |
| } |
| } |
| return -ENXIO; |
| } |
| |
| struct kvm_device_ops kvm_arm_vgic_v3_ops = { |
| .name = "kvm-arm-vgic-v3", |
| .create = vgic_v3_create, |
| .destroy = vgic_v3_destroy, |
| .set_attr = vgic_v3_set_attr, |
| .get_attr = vgic_v3_get_attr, |
| .has_attr = vgic_v3_has_attr, |
| }; |