| /** |
| * SHA-256 routines supporting the Power 7+ Nest Accelerators driver |
| * |
| * Copyright (C) 2011-2012 International Business Machines Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 only. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Author: Kent Yoder <yoder1@us.ibm.com> |
| */ |
| |
| #include <crypto/internal/hash.h> |
| #include <crypto/sha.h> |
| #include <linux/module.h> |
| #include <asm/vio.h> |
| |
| #include "nx_csbcpb.h" |
| #include "nx.h" |
| |
| |
| static int nx_sha256_init(struct shash_desc *desc) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_sg *out_sg; |
| |
| nx_ctx_init(nx_ctx, HCOP_FC_SHA); |
| |
| memset(sctx, 0, sizeof *sctx); |
| |
| nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; |
| |
| NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); |
| out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, |
| SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); |
| nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); |
| |
| return 0; |
| } |
| |
| static int nx_sha256_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; |
| struct nx_sg *in_sg; |
| u64 to_process, leftover, total; |
| u32 max_sg_len; |
| unsigned long irq_flags; |
| int rc = 0; |
| |
| spin_lock_irqsave(&nx_ctx->lock, irq_flags); |
| |
| /* 2 cases for total data len: |
| * 1: < SHA256_BLOCK_SIZE: copy into state, return 0 |
| * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover |
| */ |
| total = sctx->count + len; |
| if (total < SHA256_BLOCK_SIZE) { |
| memcpy(sctx->buf + sctx->count, data, len); |
| sctx->count += len; |
| goto out; |
| } |
| |
| in_sg = nx_ctx->in_sg; |
| max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), |
| nx_ctx->ap->sglen); |
| |
| do { |
| /* |
| * to_process: the SHA256_BLOCK_SIZE data chunk to process in |
| * this update. This value is also restricted by the sg list |
| * limits. |
| */ |
| to_process = min_t(u64, total, nx_ctx->ap->databytelen); |
| to_process = min_t(u64, to_process, |
| NX_PAGE_SIZE * (max_sg_len - 1)); |
| to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); |
| leftover = total - to_process; |
| |
| if (sctx->count) { |
| in_sg = nx_build_sg_list(nx_ctx->in_sg, |
| (u8 *) sctx->buf, |
| sctx->count, max_sg_len); |
| } |
| in_sg = nx_build_sg_list(in_sg, (u8 *) data, |
| to_process - sctx->count, |
| max_sg_len); |
| nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * |
| sizeof(struct nx_sg); |
| |
| if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { |
| /* |
| * we've hit the nx chip previously and we're updating |
| * again, so copy over the partial digest. |
| */ |
| memcpy(csbcpb->cpb.sha256.input_partial_digest, |
| csbcpb->cpb.sha256.message_digest, |
| SHA256_DIGEST_SIZE); |
| } |
| |
| NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; |
| if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, |
| desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); |
| if (rc) |
| goto out; |
| |
| atomic_inc(&(nx_ctx->stats->sha256_ops)); |
| csbcpb->cpb.sha256.message_bit_length += (u64) |
| (csbcpb->cpb.sha256.spbc * 8); |
| |
| /* everything after the first update is continuation */ |
| NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; |
| |
| total -= to_process; |
| data += to_process; |
| sctx->count = 0; |
| in_sg = nx_ctx->in_sg; |
| } while (leftover >= SHA256_BLOCK_SIZE); |
| |
| /* copy the leftover back into the state struct */ |
| if (leftover) |
| memcpy(sctx->buf, data, leftover); |
| sctx->count = leftover; |
| out: |
| spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); |
| return rc; |
| } |
| |
| static int nx_sha256_final(struct shash_desc *desc, u8 *out) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; |
| struct nx_sg *in_sg, *out_sg; |
| u32 max_sg_len; |
| unsigned long irq_flags; |
| int rc; |
| |
| spin_lock_irqsave(&nx_ctx->lock, irq_flags); |
| |
| max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); |
| |
| if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { |
| /* we've hit the nx chip previously, now we're finalizing, |
| * so copy over the partial digest */ |
| memcpy(csbcpb->cpb.sha256.input_partial_digest, |
| csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); |
| } |
| |
| /* final is represented by continuing the operation and indicating that |
| * this is not an intermediate operation */ |
| NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; |
| |
| csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); |
| |
| in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, |
| sctx->count, max_sg_len); |
| out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE, |
| max_sg_len); |
| nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); |
| nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); |
| |
| if (!nx_ctx->op.outlen) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, |
| desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); |
| if (rc) |
| goto out; |
| |
| atomic_inc(&(nx_ctx->stats->sha256_ops)); |
| |
| atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8, |
| &(nx_ctx->stats->sha256_bytes)); |
| memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); |
| out: |
| spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); |
| return rc; |
| } |
| |
| static int nx_sha256_export(struct shash_desc *desc, void *out) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; |
| struct sha256_state *octx = out; |
| unsigned long irq_flags; |
| |
| spin_lock_irqsave(&nx_ctx->lock, irq_flags); |
| |
| octx->count = sctx->count + |
| (csbcpb->cpb.sha256.message_bit_length / 8); |
| memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); |
| |
| /* if no data has been processed yet, we need to export SHA256's |
| * initial data, in case this context gets imported into a software |
| * context */ |
| if (csbcpb->cpb.sha256.message_bit_length) |
| memcpy(octx->state, csbcpb->cpb.sha256.message_digest, |
| SHA256_DIGEST_SIZE); |
| else { |
| octx->state[0] = SHA256_H0; |
| octx->state[1] = SHA256_H1; |
| octx->state[2] = SHA256_H2; |
| octx->state[3] = SHA256_H3; |
| octx->state[4] = SHA256_H4; |
| octx->state[5] = SHA256_H5; |
| octx->state[6] = SHA256_H6; |
| octx->state[7] = SHA256_H7; |
| } |
| |
| spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); |
| return 0; |
| } |
| |
| static int nx_sha256_import(struct shash_desc *desc, const void *in) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; |
| const struct sha256_state *ictx = in; |
| unsigned long irq_flags; |
| |
| spin_lock_irqsave(&nx_ctx->lock, irq_flags); |
| |
| memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); |
| |
| sctx->count = ictx->count & 0x3f; |
| csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8; |
| |
| if (csbcpb->cpb.sha256.message_bit_length) { |
| memcpy(csbcpb->cpb.sha256.message_digest, ictx->state, |
| SHA256_DIGEST_SIZE); |
| |
| NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; |
| NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; |
| } |
| |
| spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); |
| return 0; |
| } |
| |
| struct shash_alg nx_shash_sha256_alg = { |
| .digestsize = SHA256_DIGEST_SIZE, |
| .init = nx_sha256_init, |
| .update = nx_sha256_update, |
| .final = nx_sha256_final, |
| .export = nx_sha256_export, |
| .import = nx_sha256_import, |
| .descsize = sizeof(struct sha256_state), |
| .statesize = sizeof(struct sha256_state), |
| .base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-nx", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_SHASH, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_module = THIS_MODULE, |
| .cra_ctxsize = sizeof(struct nx_crypto_ctx), |
| .cra_init = nx_crypto_ctx_sha_init, |
| .cra_exit = nx_crypto_ctx_exit, |
| } |
| }; |