| /** |
| * kmemcheck - a heavyweight memory checker for the linux kernel |
| * Copyright (C) 2007, 2008 Vegard Nossum <vegardno@ifi.uio.no> |
| * (With a lot of help from Ingo Molnar and Pekka Enberg.) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License (version 2) as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kernel.h> |
| #include <linux/kmemcheck.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/page-flags.h> |
| #include <linux/percpu.h> |
| #include <linux/ptrace.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/kmemcheck.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| |
| #include "error.h" |
| #include "opcode.h" |
| #include "pte.h" |
| #include "selftest.h" |
| #include "shadow.h" |
| |
| |
| #ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT |
| # define KMEMCHECK_ENABLED 0 |
| #endif |
| |
| #ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT |
| # define KMEMCHECK_ENABLED 1 |
| #endif |
| |
| #ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT |
| # define KMEMCHECK_ENABLED 2 |
| #endif |
| |
| int kmemcheck_enabled = KMEMCHECK_ENABLED; |
| |
| int __init kmemcheck_init(void) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * Limit SMP to use a single CPU. We rely on the fact that this code |
| * runs before SMP is set up. |
| */ |
| if (setup_max_cpus > 1) { |
| printk(KERN_INFO |
| "kmemcheck: Limiting number of CPUs to 1.\n"); |
| setup_max_cpus = 1; |
| } |
| #endif |
| |
| if (!kmemcheck_selftest()) { |
| printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n"); |
| kmemcheck_enabled = 0; |
| return -EINVAL; |
| } |
| |
| printk(KERN_INFO "kmemcheck: Initialized\n"); |
| return 0; |
| } |
| |
| early_initcall(kmemcheck_init); |
| |
| /* |
| * We need to parse the kmemcheck= option before any memory is allocated. |
| */ |
| static int __init param_kmemcheck(char *str) |
| { |
| int val; |
| int ret; |
| |
| if (!str) |
| return -EINVAL; |
| |
| ret = kstrtoint(str, 0, &val); |
| if (ret) |
| return ret; |
| kmemcheck_enabled = val; |
| return 0; |
| } |
| |
| early_param("kmemcheck", param_kmemcheck); |
| |
| int kmemcheck_show_addr(unsigned long address) |
| { |
| pte_t *pte; |
| |
| pte = kmemcheck_pte_lookup(address); |
| if (!pte) |
| return 0; |
| |
| set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); |
| __flush_tlb_one(address); |
| return 1; |
| } |
| |
| int kmemcheck_hide_addr(unsigned long address) |
| { |
| pte_t *pte; |
| |
| pte = kmemcheck_pte_lookup(address); |
| if (!pte) |
| return 0; |
| |
| set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); |
| __flush_tlb_one(address); |
| return 1; |
| } |
| |
| struct kmemcheck_context { |
| bool busy; |
| int balance; |
| |
| /* |
| * There can be at most two memory operands to an instruction, but |
| * each address can cross a page boundary -- so we may need up to |
| * four addresses that must be hidden/revealed for each fault. |
| */ |
| unsigned long addr[4]; |
| unsigned long n_addrs; |
| unsigned long flags; |
| |
| /* Data size of the instruction that caused a fault. */ |
| unsigned int size; |
| }; |
| |
| static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context); |
| |
| bool kmemcheck_active(struct pt_regs *regs) |
| { |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| |
| return data->balance > 0; |
| } |
| |
| /* Save an address that needs to be shown/hidden */ |
| static void kmemcheck_save_addr(unsigned long addr) |
| { |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| |
| BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr)); |
| data->addr[data->n_addrs++] = addr; |
| } |
| |
| static unsigned int kmemcheck_show_all(void) |
| { |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| unsigned int i; |
| unsigned int n; |
| |
| n = 0; |
| for (i = 0; i < data->n_addrs; ++i) |
| n += kmemcheck_show_addr(data->addr[i]); |
| |
| return n; |
| } |
| |
| static unsigned int kmemcheck_hide_all(void) |
| { |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| unsigned int i; |
| unsigned int n; |
| |
| n = 0; |
| for (i = 0; i < data->n_addrs; ++i) |
| n += kmemcheck_hide_addr(data->addr[i]); |
| |
| return n; |
| } |
| |
| /* |
| * Called from the #PF handler. |
| */ |
| void kmemcheck_show(struct pt_regs *regs) |
| { |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| |
| BUG_ON(!irqs_disabled()); |
| |
| if (unlikely(data->balance != 0)) { |
| kmemcheck_show_all(); |
| kmemcheck_error_save_bug(regs); |
| data->balance = 0; |
| return; |
| } |
| |
| /* |
| * None of the addresses actually belonged to kmemcheck. Note that |
| * this is not an error. |
| */ |
| if (kmemcheck_show_all() == 0) |
| return; |
| |
| ++data->balance; |
| |
| /* |
| * The IF needs to be cleared as well, so that the faulting |
| * instruction can run "uninterrupted". Otherwise, we might take |
| * an interrupt and start executing that before we've had a chance |
| * to hide the page again. |
| * |
| * NOTE: In the rare case of multiple faults, we must not override |
| * the original flags: |
| */ |
| if (!(regs->flags & X86_EFLAGS_TF)) |
| data->flags = regs->flags; |
| |
| regs->flags |= X86_EFLAGS_TF; |
| regs->flags &= ~X86_EFLAGS_IF; |
| } |
| |
| /* |
| * Called from the #DB handler. |
| */ |
| void kmemcheck_hide(struct pt_regs *regs) |
| { |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| int n; |
| |
| BUG_ON(!irqs_disabled()); |
| |
| if (unlikely(data->balance != 1)) { |
| kmemcheck_show_all(); |
| kmemcheck_error_save_bug(regs); |
| data->n_addrs = 0; |
| data->balance = 0; |
| |
| if (!(data->flags & X86_EFLAGS_TF)) |
| regs->flags &= ~X86_EFLAGS_TF; |
| if (data->flags & X86_EFLAGS_IF) |
| regs->flags |= X86_EFLAGS_IF; |
| return; |
| } |
| |
| if (kmemcheck_enabled) |
| n = kmemcheck_hide_all(); |
| else |
| n = kmemcheck_show_all(); |
| |
| if (n == 0) |
| return; |
| |
| --data->balance; |
| |
| data->n_addrs = 0; |
| |
| if (!(data->flags & X86_EFLAGS_TF)) |
| regs->flags &= ~X86_EFLAGS_TF; |
| if (data->flags & X86_EFLAGS_IF) |
| regs->flags |= X86_EFLAGS_IF; |
| } |
| |
| void kmemcheck_show_pages(struct page *p, unsigned int n) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < n; ++i) { |
| unsigned long address; |
| pte_t *pte; |
| unsigned int level; |
| |
| address = (unsigned long) page_address(&p[i]); |
| pte = lookup_address(address, &level); |
| BUG_ON(!pte); |
| BUG_ON(level != PG_LEVEL_4K); |
| |
| set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); |
| set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN)); |
| __flush_tlb_one(address); |
| } |
| } |
| |
| bool kmemcheck_page_is_tracked(struct page *p) |
| { |
| /* This will also check the "hidden" flag of the PTE. */ |
| return kmemcheck_pte_lookup((unsigned long) page_address(p)); |
| } |
| |
| void kmemcheck_hide_pages(struct page *p, unsigned int n) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < n; ++i) { |
| unsigned long address; |
| pte_t *pte; |
| unsigned int level; |
| |
| address = (unsigned long) page_address(&p[i]); |
| pte = lookup_address(address, &level); |
| BUG_ON(!pte); |
| BUG_ON(level != PG_LEVEL_4K); |
| |
| set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); |
| set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN)); |
| __flush_tlb_one(address); |
| } |
| } |
| |
| /* Access may NOT cross page boundary */ |
| static void kmemcheck_read_strict(struct pt_regs *regs, |
| unsigned long addr, unsigned int size) |
| { |
| void *shadow; |
| enum kmemcheck_shadow status; |
| |
| shadow = kmemcheck_shadow_lookup(addr); |
| if (!shadow) |
| return; |
| |
| kmemcheck_save_addr(addr); |
| status = kmemcheck_shadow_test(shadow, size); |
| if (status == KMEMCHECK_SHADOW_INITIALIZED) |
| return; |
| |
| if (kmemcheck_enabled) |
| kmemcheck_error_save(status, addr, size, regs); |
| |
| if (kmemcheck_enabled == 2) |
| kmemcheck_enabled = 0; |
| |
| /* Don't warn about it again. */ |
| kmemcheck_shadow_set(shadow, size); |
| } |
| |
| bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size) |
| { |
| enum kmemcheck_shadow status; |
| void *shadow; |
| |
| shadow = kmemcheck_shadow_lookup(addr); |
| if (!shadow) |
| return true; |
| |
| status = kmemcheck_shadow_test_all(shadow, size); |
| |
| return status == KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| |
| /* Access may cross page boundary */ |
| static void kmemcheck_read(struct pt_regs *regs, |
| unsigned long addr, unsigned int size) |
| { |
| unsigned long page = addr & PAGE_MASK; |
| unsigned long next_addr = addr + size - 1; |
| unsigned long next_page = next_addr & PAGE_MASK; |
| |
| if (likely(page == next_page)) { |
| kmemcheck_read_strict(regs, addr, size); |
| return; |
| } |
| |
| /* |
| * What we do is basically to split the access across the |
| * two pages and handle each part separately. Yes, this means |
| * that we may now see reads that are 3 + 5 bytes, for |
| * example (and if both are uninitialized, there will be two |
| * reports), but it makes the code a lot simpler. |
| */ |
| kmemcheck_read_strict(regs, addr, next_page - addr); |
| kmemcheck_read_strict(regs, next_page, next_addr - next_page); |
| } |
| |
| static void kmemcheck_write_strict(struct pt_regs *regs, |
| unsigned long addr, unsigned int size) |
| { |
| void *shadow; |
| |
| shadow = kmemcheck_shadow_lookup(addr); |
| if (!shadow) |
| return; |
| |
| kmemcheck_save_addr(addr); |
| kmemcheck_shadow_set(shadow, size); |
| } |
| |
| static void kmemcheck_write(struct pt_regs *regs, |
| unsigned long addr, unsigned int size) |
| { |
| unsigned long page = addr & PAGE_MASK; |
| unsigned long next_addr = addr + size - 1; |
| unsigned long next_page = next_addr & PAGE_MASK; |
| |
| if (likely(page == next_page)) { |
| kmemcheck_write_strict(regs, addr, size); |
| return; |
| } |
| |
| /* See comment in kmemcheck_read(). */ |
| kmemcheck_write_strict(regs, addr, next_page - addr); |
| kmemcheck_write_strict(regs, next_page, next_addr - next_page); |
| } |
| |
| /* |
| * Copying is hard. We have two addresses, each of which may be split across |
| * a page (and each page will have different shadow addresses). |
| */ |
| static void kmemcheck_copy(struct pt_regs *regs, |
| unsigned long src_addr, unsigned long dst_addr, unsigned int size) |
| { |
| uint8_t shadow[8]; |
| enum kmemcheck_shadow status; |
| |
| unsigned long page; |
| unsigned long next_addr; |
| unsigned long next_page; |
| |
| uint8_t *x; |
| unsigned int i; |
| unsigned int n; |
| |
| BUG_ON(size > sizeof(shadow)); |
| |
| page = src_addr & PAGE_MASK; |
| next_addr = src_addr + size - 1; |
| next_page = next_addr & PAGE_MASK; |
| |
| if (likely(page == next_page)) { |
| /* Same page */ |
| x = kmemcheck_shadow_lookup(src_addr); |
| if (x) { |
| kmemcheck_save_addr(src_addr); |
| for (i = 0; i < size; ++i) |
| shadow[i] = x[i]; |
| } else { |
| for (i = 0; i < size; ++i) |
| shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| } else { |
| n = next_page - src_addr; |
| BUG_ON(n > sizeof(shadow)); |
| |
| /* First page */ |
| x = kmemcheck_shadow_lookup(src_addr); |
| if (x) { |
| kmemcheck_save_addr(src_addr); |
| for (i = 0; i < n; ++i) |
| shadow[i] = x[i]; |
| } else { |
| /* Not tracked */ |
| for (i = 0; i < n; ++i) |
| shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| |
| /* Second page */ |
| x = kmemcheck_shadow_lookup(next_page); |
| if (x) { |
| kmemcheck_save_addr(next_page); |
| for (i = n; i < size; ++i) |
| shadow[i] = x[i - n]; |
| } else { |
| /* Not tracked */ |
| for (i = n; i < size; ++i) |
| shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| } |
| |
| page = dst_addr & PAGE_MASK; |
| next_addr = dst_addr + size - 1; |
| next_page = next_addr & PAGE_MASK; |
| |
| if (likely(page == next_page)) { |
| /* Same page */ |
| x = kmemcheck_shadow_lookup(dst_addr); |
| if (x) { |
| kmemcheck_save_addr(dst_addr); |
| for (i = 0; i < size; ++i) { |
| x[i] = shadow[i]; |
| shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| } |
| } else { |
| n = next_page - dst_addr; |
| BUG_ON(n > sizeof(shadow)); |
| |
| /* First page */ |
| x = kmemcheck_shadow_lookup(dst_addr); |
| if (x) { |
| kmemcheck_save_addr(dst_addr); |
| for (i = 0; i < n; ++i) { |
| x[i] = shadow[i]; |
| shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| } |
| |
| /* Second page */ |
| x = kmemcheck_shadow_lookup(next_page); |
| if (x) { |
| kmemcheck_save_addr(next_page); |
| for (i = n; i < size; ++i) { |
| x[i - n] = shadow[i]; |
| shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; |
| } |
| } |
| } |
| |
| status = kmemcheck_shadow_test(shadow, size); |
| if (status == KMEMCHECK_SHADOW_INITIALIZED) |
| return; |
| |
| if (kmemcheck_enabled) |
| kmemcheck_error_save(status, src_addr, size, regs); |
| |
| if (kmemcheck_enabled == 2) |
| kmemcheck_enabled = 0; |
| } |
| |
| enum kmemcheck_method { |
| KMEMCHECK_READ, |
| KMEMCHECK_WRITE, |
| }; |
| |
| static void kmemcheck_access(struct pt_regs *regs, |
| unsigned long fallback_address, enum kmemcheck_method fallback_method) |
| { |
| const uint8_t *insn; |
| const uint8_t *insn_primary; |
| unsigned int size; |
| |
| struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context); |
| |
| /* Recursive fault -- ouch. */ |
| if (data->busy) { |
| kmemcheck_show_addr(fallback_address); |
| kmemcheck_error_save_bug(regs); |
| return; |
| } |
| |
| data->busy = true; |
| |
| insn = (const uint8_t *) regs->ip; |
| insn_primary = kmemcheck_opcode_get_primary(insn); |
| |
| kmemcheck_opcode_decode(insn, &size); |
| |
| switch (insn_primary[0]) { |
| #ifdef CONFIG_KMEMCHECK_BITOPS_OK |
| /* AND, OR, XOR */ |
| /* |
| * Unfortunately, these instructions have to be excluded from |
| * our regular checking since they access only some (and not |
| * all) bits. This clears out "bogus" bitfield-access warnings. |
| */ |
| case 0x80: |
| case 0x81: |
| case 0x82: |
| case 0x83: |
| switch ((insn_primary[1] >> 3) & 7) { |
| /* OR */ |
| case 1: |
| /* AND */ |
| case 4: |
| /* XOR */ |
| case 6: |
| kmemcheck_write(regs, fallback_address, size); |
| goto out; |
| |
| /* ADD */ |
| case 0: |
| /* ADC */ |
| case 2: |
| /* SBB */ |
| case 3: |
| /* SUB */ |
| case 5: |
| /* CMP */ |
| case 7: |
| break; |
| } |
| break; |
| #endif |
| |
| /* MOVS, MOVSB, MOVSW, MOVSD */ |
| case 0xa4: |
| case 0xa5: |
| /* |
| * These instructions are special because they take two |
| * addresses, but we only get one page fault. |
| */ |
| kmemcheck_copy(regs, regs->si, regs->di, size); |
| goto out; |
| |
| /* CMPS, CMPSB, CMPSW, CMPSD */ |
| case 0xa6: |
| case 0xa7: |
| kmemcheck_read(regs, regs->si, size); |
| kmemcheck_read(regs, regs->di, size); |
| goto out; |
| } |
| |
| /* |
| * If the opcode isn't special in any way, we use the data from the |
| * page fault handler to determine the address and type of memory |
| * access. |
| */ |
| switch (fallback_method) { |
| case KMEMCHECK_READ: |
| kmemcheck_read(regs, fallback_address, size); |
| goto out; |
| case KMEMCHECK_WRITE: |
| kmemcheck_write(regs, fallback_address, size); |
| goto out; |
| } |
| |
| out: |
| data->busy = false; |
| } |
| |
| bool kmemcheck_fault(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| pte_t *pte; |
| |
| /* |
| * XXX: Is it safe to assume that memory accesses from virtual 86 |
| * mode or non-kernel code segments will _never_ access kernel |
| * memory (e.g. tracked pages)? For now, we need this to avoid |
| * invoking kmemcheck for PnP BIOS calls. |
| */ |
| if (regs->flags & X86_VM_MASK) |
| return false; |
| if (regs->cs != __KERNEL_CS) |
| return false; |
| |
| pte = kmemcheck_pte_lookup(address); |
| if (!pte) |
| return false; |
| |
| WARN_ON_ONCE(in_nmi()); |
| |
| if (error_code & 2) |
| kmemcheck_access(regs, address, KMEMCHECK_WRITE); |
| else |
| kmemcheck_access(regs, address, KMEMCHECK_READ); |
| |
| kmemcheck_show(regs); |
| return true; |
| } |
| |
| bool kmemcheck_trap(struct pt_regs *regs) |
| { |
| if (!kmemcheck_active(regs)) |
| return false; |
| |
| /* We're done. */ |
| kmemcheck_hide(regs); |
| return true; |
| } |