| #ifndef _ASM_POWERPC_PAGE_H |
| #define _ASM_POWERPC_PAGE_H |
| |
| /* |
| * Copyright (C) 2001,2005 IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #else |
| #include <asm/types.h> |
| #endif |
| #include <asm/asm-compat.h> |
| #include <asm/kdump.h> |
| |
| /* |
| * On regular PPC32 page size is 4K (but we support 4K/16K/64K/256K pages |
| * on PPC44x). For PPC64 we support either 4K or 64K software |
| * page size. When using 64K pages however, whether we are really supporting |
| * 64K pages in HW or not is irrelevant to those definitions. |
| */ |
| #if defined(CONFIG_PPC_256K_PAGES) |
| #define PAGE_SHIFT 18 |
| #elif defined(CONFIG_PPC_64K_PAGES) |
| #define PAGE_SHIFT 16 |
| #elif defined(CONFIG_PPC_16K_PAGES) |
| #define PAGE_SHIFT 14 |
| #else |
| #define PAGE_SHIFT 12 |
| #endif |
| |
| #define PAGE_SIZE (ASM_CONST(1) << PAGE_SHIFT) |
| |
| #ifndef __ASSEMBLY__ |
| #ifdef CONFIG_HUGETLB_PAGE |
| extern unsigned int HPAGE_SHIFT; |
| #else |
| #define HPAGE_SHIFT PAGE_SHIFT |
| #endif |
| #define HPAGE_SIZE ((1UL) << HPAGE_SHIFT) |
| #define HPAGE_MASK (~(HPAGE_SIZE - 1)) |
| #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) |
| #define HUGE_MAX_HSTATE (MMU_PAGE_COUNT-1) |
| #endif |
| |
| /* |
| * Subtle: (1 << PAGE_SHIFT) is an int, not an unsigned long. So if we |
| * assign PAGE_MASK to a larger type it gets extended the way we want |
| * (i.e. with 1s in the high bits) |
| */ |
| #define PAGE_MASK (~((1 << PAGE_SHIFT) - 1)) |
| |
| /* |
| * KERNELBASE is the virtual address of the start of the kernel, it's often |
| * the same as PAGE_OFFSET, but _might not be_. |
| * |
| * The kdump dump kernel is one example where KERNELBASE != PAGE_OFFSET. |
| * |
| * PAGE_OFFSET is the virtual address of the start of lowmem. |
| * |
| * PHYSICAL_START is the physical address of the start of the kernel. |
| * |
| * MEMORY_START is the physical address of the start of lowmem. |
| * |
| * KERNELBASE, PAGE_OFFSET, and PHYSICAL_START are all configurable on |
| * ppc32 and based on how they are set we determine MEMORY_START. |
| * |
| * For the linear mapping the following equation should be true: |
| * KERNELBASE - PAGE_OFFSET = PHYSICAL_START - MEMORY_START |
| * |
| * Also, KERNELBASE >= PAGE_OFFSET and PHYSICAL_START >= MEMORY_START |
| * |
| * There are two ways to determine a physical address from a virtual one: |
| * va = pa + PAGE_OFFSET - MEMORY_START |
| * va = pa + KERNELBASE - PHYSICAL_START |
| * |
| * If you want to know something's offset from the start of the kernel you |
| * should subtract KERNELBASE. |
| * |
| * If you want to test if something's a kernel address, use is_kernel_addr(). |
| */ |
| |
| #define KERNELBASE ASM_CONST(CONFIG_KERNEL_START) |
| #define PAGE_OFFSET ASM_CONST(CONFIG_PAGE_OFFSET) |
| #define LOAD_OFFSET ASM_CONST((CONFIG_KERNEL_START-CONFIG_PHYSICAL_START)) |
| |
| #if defined(CONFIG_NONSTATIC_KERNEL) |
| #ifndef __ASSEMBLY__ |
| |
| extern phys_addr_t memstart_addr; |
| extern phys_addr_t kernstart_addr; |
| |
| #ifdef CONFIG_RELOCATABLE_PPC32 |
| extern long long virt_phys_offset; |
| #endif |
| |
| #endif /* __ASSEMBLY__ */ |
| #define PHYSICAL_START kernstart_addr |
| |
| #else /* !CONFIG_NONSTATIC_KERNEL */ |
| #define PHYSICAL_START ASM_CONST(CONFIG_PHYSICAL_START) |
| #endif |
| |
| /* See Description below for VIRT_PHYS_OFFSET */ |
| #if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE) |
| #ifdef CONFIG_RELOCATABLE |
| #define VIRT_PHYS_OFFSET virt_phys_offset |
| #else |
| #define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START) |
| #endif |
| #endif |
| |
| #ifdef CONFIG_PPC64 |
| #define MEMORY_START 0UL |
| #elif defined(CONFIG_NONSTATIC_KERNEL) |
| #define MEMORY_START memstart_addr |
| #else |
| #define MEMORY_START (PHYSICAL_START + PAGE_OFFSET - KERNELBASE) |
| #endif |
| |
| #ifdef CONFIG_FLATMEM |
| #define ARCH_PFN_OFFSET ((unsigned long)(MEMORY_START >> PAGE_SHIFT)) |
| #define pfn_valid(pfn) ((pfn) >= ARCH_PFN_OFFSET && (pfn) < max_mapnr) |
| #endif |
| |
| #define virt_to_pfn(kaddr) (__pa(kaddr) >> PAGE_SHIFT) |
| #define virt_to_page(kaddr) pfn_to_page(virt_to_pfn(kaddr)) |
| #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) |
| #define virt_addr_valid(kaddr) pfn_valid(virt_to_pfn(kaddr)) |
| |
| /* |
| * On Book-E parts we need __va to parse the device tree and we can't |
| * determine MEMORY_START until then. However we can determine PHYSICAL_START |
| * from information at hand (program counter, TLB lookup). |
| * |
| * On BookE with RELOCATABLE (RELOCATABLE_PPC32) |
| * |
| * With RELOCATABLE_PPC32, we support loading the kernel at any physical |
| * address without any restriction on the page alignment. |
| * |
| * We find the runtime address of _stext and relocate ourselves based on |
| * the following calculation: |
| * |
| * virtual_base = ALIGN_DOWN(KERNELBASE,256M) + |
| * MODULO(_stext.run,256M) |
| * and create the following mapping: |
| * |
| * ALIGN_DOWN(_stext.run,256M) => ALIGN_DOWN(KERNELBASE,256M) |
| * |
| * When we process relocations, we cannot depend on the |
| * existing equation for the __va()/__pa() translations: |
| * |
| * __va(x) = (x) - PHYSICAL_START + KERNELBASE |
| * |
| * Where: |
| * PHYSICAL_START = kernstart_addr = Physical address of _stext |
| * KERNELBASE = Compiled virtual address of _stext. |
| * |
| * This formula holds true iff, kernel load address is TLB page aligned. |
| * |
| * In our case, we need to also account for the shift in the kernel Virtual |
| * address. |
| * |
| * E.g., |
| * |
| * Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as PAGE_OFFSET). |
| * In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M |
| * |
| * Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000 |
| * = 0xbc100000 , which is wrong. |
| * |
| * Rather, it should be : 0xc0000000 + 0x100000 = 0xc0100000 |
| * according to our mapping. |
| * |
| * Hence we use the following formula to get the translations right: |
| * |
| * __va(x) = (x) - [ PHYSICAL_START - Effective KERNELBASE ] |
| * |
| * Where : |
| * PHYSICAL_START = dynamic load address.(kernstart_addr variable) |
| * Effective KERNELBASE = virtual_base = |
| * = ALIGN_DOWN(KERNELBASE,256M) + |
| * MODULO(PHYSICAL_START,256M) |
| * |
| * To make the cost of __va() / __pa() more light weight, we introduce |
| * a new variable virt_phys_offset, which will hold : |
| * |
| * virt_phys_offset = Effective KERNELBASE - PHYSICAL_START |
| * = ALIGN_DOWN(KERNELBASE,256M) - |
| * ALIGN_DOWN(PHYSICALSTART,256M) |
| * |
| * Hence : |
| * |
| * __va(x) = x - PHYSICAL_START + Effective KERNELBASE |
| * = x + virt_phys_offset |
| * |
| * and |
| * __pa(x) = x + PHYSICAL_START - Effective KERNELBASE |
| * = x - virt_phys_offset |
| * |
| * On non-Book-E PPC64 PAGE_OFFSET and MEMORY_START are constants so use |
| * the other definitions for __va & __pa. |
| */ |
| #if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE) |
| #define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET)) |
| #define __pa(x) ((unsigned long)(x) - VIRT_PHYS_OFFSET) |
| #else |
| #ifdef CONFIG_PPC64 |
| /* |
| * gcc miscompiles (unsigned long)(&static_var) - PAGE_OFFSET |
| * with -mcmodel=medium, so we use & and | instead of - and + on 64-bit. |
| */ |
| #define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) | PAGE_OFFSET)) |
| #define __pa(x) ((unsigned long)(x) & 0x0fffffffffffffffUL) |
| |
| #else /* 32-bit, non book E */ |
| #define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START)) |
| #define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START) |
| #endif |
| #endif |
| |
| /* |
| * Unfortunately the PLT is in the BSS in the PPC32 ELF ABI, |
| * and needs to be executable. This means the whole heap ends |
| * up being executable. |
| */ |
| #define VM_DATA_DEFAULT_FLAGS32 (VM_READ | VM_WRITE | VM_EXEC | \ |
| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| |
| #define VM_DATA_DEFAULT_FLAGS64 (VM_READ | VM_WRITE | \ |
| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| |
| #ifdef __powerpc64__ |
| #include <asm/page_64.h> |
| #else |
| #include <asm/page_32.h> |
| #endif |
| |
| /* align addr on a size boundary - adjust address up/down if needed */ |
| #define _ALIGN_UP(addr, size) __ALIGN_KERNEL(addr, size) |
| #define _ALIGN_DOWN(addr, size) ((addr)&(~((typeof(addr))(size)-1))) |
| |
| /* align addr on a size boundary - adjust address up if needed */ |
| #define _ALIGN(addr,size) _ALIGN_UP(addr,size) |
| |
| /* |
| * Don't compare things with KERNELBASE or PAGE_OFFSET to test for |
| * "kernelness", use is_kernel_addr() - it should do what you want. |
| */ |
| #ifdef CONFIG_PPC_BOOK3E_64 |
| #define is_kernel_addr(x) ((x) >= 0x8000000000000000ul) |
| #else |
| #define is_kernel_addr(x) ((x) >= PAGE_OFFSET) |
| #endif |
| |
| #ifndef CONFIG_PPC_BOOK3S_64 |
| /* |
| * Use the top bit of the higher-level page table entries to indicate whether |
| * the entries we point to contain hugepages. This works because we know that |
| * the page tables live in kernel space. If we ever decide to support having |
| * page tables at arbitrary addresses, this breaks and will have to change. |
| */ |
| #ifdef CONFIG_PPC64 |
| #define PD_HUGE 0x8000000000000000 |
| #else |
| #define PD_HUGE 0x80000000 |
| #endif |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| |
| /* |
| * Some number of bits at the level of the page table that points to |
| * a hugepte are used to encode the size. This masks those bits. |
| */ |
| #define HUGEPD_SHIFT_MASK 0x3f |
| |
| #ifndef __ASSEMBLY__ |
| |
| #ifdef CONFIG_STRICT_MM_TYPECHECKS |
| /* These are used to make use of C type-checking. */ |
| |
| /* PTE level */ |
| typedef struct { pte_basic_t pte; } pte_t; |
| #define pte_val(x) ((x).pte) |
| #define __pte(x) ((pte_t) { (x) }) |
| |
| /* 64k pages additionally define a bigger "real PTE" type that gathers |
| * the "second half" part of the PTE for pseudo 64k pages |
| */ |
| #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC_STD_MMU_64) |
| typedef struct { pte_t pte; unsigned long hidx; } real_pte_t; |
| #else |
| typedef struct { pte_t pte; } real_pte_t; |
| #endif |
| |
| /* PMD level */ |
| #ifdef CONFIG_PPC64 |
| typedef struct { unsigned long pmd; } pmd_t; |
| #define pmd_val(x) ((x).pmd) |
| #define __pmd(x) ((pmd_t) { (x) }) |
| |
| /* PUD level exusts only on 4k pages */ |
| #ifndef CONFIG_PPC_64K_PAGES |
| typedef struct { unsigned long pud; } pud_t; |
| #define pud_val(x) ((x).pud) |
| #define __pud(x) ((pud_t) { (x) }) |
| #endif /* !CONFIG_PPC_64K_PAGES */ |
| #endif /* CONFIG_PPC64 */ |
| |
| /* PGD level */ |
| typedef struct { unsigned long pgd; } pgd_t; |
| #define pgd_val(x) ((x).pgd) |
| #define __pgd(x) ((pgd_t) { (x) }) |
| |
| /* Page protection bits */ |
| typedef struct { unsigned long pgprot; } pgprot_t; |
| #define pgprot_val(x) ((x).pgprot) |
| #define __pgprot(x) ((pgprot_t) { (x) }) |
| |
| #else |
| |
| /* |
| * .. while these make it easier on the compiler |
| */ |
| |
| typedef pte_basic_t pte_t; |
| #define pte_val(x) (x) |
| #define __pte(x) (x) |
| |
| #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC_STD_MMU_64) |
| typedef struct { pte_t pte; unsigned long hidx; } real_pte_t; |
| #else |
| typedef pte_t real_pte_t; |
| #endif |
| |
| |
| #ifdef CONFIG_PPC64 |
| typedef unsigned long pmd_t; |
| #define pmd_val(x) (x) |
| #define __pmd(x) (x) |
| |
| #ifndef CONFIG_PPC_64K_PAGES |
| typedef unsigned long pud_t; |
| #define pud_val(x) (x) |
| #define __pud(x) (x) |
| #endif /* !CONFIG_PPC_64K_PAGES */ |
| #endif /* CONFIG_PPC64 */ |
| |
| typedef unsigned long pgd_t; |
| #define pgd_val(x) (x) |
| #define pgprot_val(x) (x) |
| |
| typedef unsigned long pgprot_t; |
| #define __pgd(x) (x) |
| #define __pgprot(x) (x) |
| |
| #endif |
| |
| typedef struct { signed long pd; } hugepd_t; |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* |
| * With 64k page size, we have hugepage ptes in the pgd and pmd entries. We don't |
| * need to setup hugepage directory for them. Our pte and page directory format |
| * enable us to have this enabled. But to avoid errors when implementing new |
| * features disable hugepd for 64K. We enable a debug version here, So we catch |
| * wrong usage. |
| */ |
| #ifdef CONFIG_DEBUG_VM |
| extern int hugepd_ok(hugepd_t hpd); |
| #else |
| #define hugepd_ok(x) (0) |
| #endif |
| #else |
| static inline int hugepd_ok(hugepd_t hpd) |
| { |
| /* |
| * hugepd pointer, bottom two bits == 00 and next 4 bits |
| * indicate size of table |
| */ |
| return (((hpd.pd & 0x3) == 0x0) && ((hpd.pd & HUGEPD_SHIFT_MASK) != 0)); |
| } |
| #endif |
| #else |
| static inline int hugepd_ok(hugepd_t hpd) |
| { |
| return (hpd.pd > 0); |
| } |
| #endif |
| |
| #define is_hugepd(hpd) (hugepd_ok(hpd)) |
| #define pgd_huge pgd_huge |
| int pgd_huge(pgd_t pgd); |
| #else /* CONFIG_HUGETLB_PAGE */ |
| #define is_hugepd(pdep) 0 |
| #define pgd_huge(pgd) 0 |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| #define __hugepd(x) ((hugepd_t) { (x) }) |
| |
| struct page; |
| extern void clear_user_page(void *page, unsigned long vaddr, struct page *pg); |
| extern void copy_user_page(void *to, void *from, unsigned long vaddr, |
| struct page *p); |
| extern int page_is_ram(unsigned long pfn); |
| extern int devmem_is_allowed(unsigned long pfn); |
| |
| #ifdef CONFIG_PPC_SMLPAR |
| void arch_free_page(struct page *page, int order); |
| #define HAVE_ARCH_FREE_PAGE |
| #endif |
| |
| struct vm_area_struct; |
| |
| #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC64) |
| typedef pte_t *pgtable_t; |
| #else |
| typedef struct page *pgtable_t; |
| #endif |
| |
| #include <asm-generic/memory_model.h> |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_POWERPC_PAGE_H */ |