| /* |
| * linux/net/sunrpc/svcsock.c |
| * |
| * These are the RPC server socket internals. |
| * |
| * The server scheduling algorithm does not always distribute the load |
| * evenly when servicing a single client. May need to modify the |
| * svc_sock_enqueue procedure... |
| * |
| * TCP support is largely untested and may be a little slow. The problem |
| * is that we currently do two separate recvfrom's, one for the 4-byte |
| * record length, and the second for the actual record. This could possibly |
| * be improved by always reading a minimum size of around 100 bytes and |
| * tucking any superfluous bytes away in a temporary store. Still, that |
| * leaves write requests out in the rain. An alternative may be to peek at |
| * the first skb in the queue, and if it matches the next TCP sequence |
| * number, to extract the record marker. Yuck. |
| * |
| * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/fcntl.h> |
| #include <linux/net.h> |
| #include <linux/in.h> |
| #include <linux/inet.h> |
| #include <linux/udp.h> |
| #include <linux/tcp.h> |
| #include <linux/unistd.h> |
| #include <linux/slab.h> |
| #include <linux/netdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/file.h> |
| #include <linux/freezer.h> |
| #include <net/sock.h> |
| #include <net/checksum.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| #include <net/tcp_states.h> |
| #include <asm/uaccess.h> |
| #include <asm/ioctls.h> |
| |
| #include <linux/sunrpc/types.h> |
| #include <linux/sunrpc/clnt.h> |
| #include <linux/sunrpc/xdr.h> |
| #include <linux/sunrpc/svcsock.h> |
| #include <linux/sunrpc/stats.h> |
| |
| /* SMP locking strategy: |
| * |
| * svc_pool->sp_lock protects most of the fields of that pool. |
| * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. |
| * when both need to be taken (rare), svc_serv->sv_lock is first. |
| * BKL protects svc_serv->sv_nrthread. |
| * svc_sock->sk_lock protects the svc_sock->sk_deferred list |
| * and the ->sk_info_authunix cache. |
| * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply. |
| * |
| * Some flags can be set to certain values at any time |
| * providing that certain rules are followed: |
| * |
| * SK_CONN, SK_DATA, can be set or cleared at any time. |
| * after a set, svc_sock_enqueue must be called. |
| * after a clear, the socket must be read/accepted |
| * if this succeeds, it must be set again. |
| * SK_CLOSE can set at any time. It is never cleared. |
| * sk_inuse contains a bias of '1' until SK_DEAD is set. |
| * so when sk_inuse hits zero, we know the socket is dead |
| * and no-one is using it. |
| * SK_DEAD can only be set while SK_BUSY is held which ensures |
| * no other thread will be using the socket or will try to |
| * set SK_DEAD. |
| * |
| */ |
| |
| #define RPCDBG_FACILITY RPCDBG_SVCSOCK |
| |
| |
| static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, |
| int *errp, int flags); |
| static void svc_delete_socket(struct svc_sock *svsk); |
| static void svc_udp_data_ready(struct sock *, int); |
| static int svc_udp_recvfrom(struct svc_rqst *); |
| static int svc_udp_sendto(struct svc_rqst *); |
| static void svc_close_socket(struct svc_sock *svsk); |
| |
| static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk); |
| static int svc_deferred_recv(struct svc_rqst *rqstp); |
| static struct cache_deferred_req *svc_defer(struct cache_req *req); |
| |
| /* apparently the "standard" is that clients close |
| * idle connections after 5 minutes, servers after |
| * 6 minutes |
| * http://www.connectathon.org/talks96/nfstcp.pdf |
| */ |
| static int svc_conn_age_period = 6*60; |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static struct lock_class_key svc_key[2]; |
| static struct lock_class_key svc_slock_key[2]; |
| |
| static inline void svc_reclassify_socket(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| BUG_ON(sk->sk_lock.owner != NULL); |
| switch (sk->sk_family) { |
| case AF_INET: |
| sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", |
| &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]); |
| break; |
| |
| case AF_INET6: |
| sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", |
| &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]); |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| #else |
| static inline void svc_reclassify_socket(struct socket *sock) |
| { |
| } |
| #endif |
| |
| static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len) |
| { |
| switch (addr->sa_family) { |
| case AF_INET: |
| snprintf(buf, len, "%u.%u.%u.%u, port=%u", |
| NIPQUAD(((struct sockaddr_in *) addr)->sin_addr), |
| htons(((struct sockaddr_in *) addr)->sin_port)); |
| break; |
| |
| case AF_INET6: |
| snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u", |
| NIP6(((struct sockaddr_in6 *) addr)->sin6_addr), |
| htons(((struct sockaddr_in6 *) addr)->sin6_port)); |
| break; |
| |
| default: |
| snprintf(buf, len, "unknown address type: %d", addr->sa_family); |
| break; |
| } |
| return buf; |
| } |
| |
| /** |
| * svc_print_addr - Format rq_addr field for printing |
| * @rqstp: svc_rqst struct containing address to print |
| * @buf: target buffer for formatted address |
| * @len: length of target buffer |
| * |
| */ |
| char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) |
| { |
| return __svc_print_addr(svc_addr(rqstp), buf, len); |
| } |
| EXPORT_SYMBOL_GPL(svc_print_addr); |
| |
| /* |
| * Queue up an idle server thread. Must have pool->sp_lock held. |
| * Note: this is really a stack rather than a queue, so that we only |
| * use as many different threads as we need, and the rest don't pollute |
| * the cache. |
| */ |
| static inline void |
| svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) |
| { |
| list_add(&rqstp->rq_list, &pool->sp_threads); |
| } |
| |
| /* |
| * Dequeue an nfsd thread. Must have pool->sp_lock held. |
| */ |
| static inline void |
| svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) |
| { |
| list_del(&rqstp->rq_list); |
| } |
| |
| /* |
| * Release an skbuff after use |
| */ |
| static inline void |
| svc_release_skb(struct svc_rqst *rqstp) |
| { |
| struct sk_buff *skb = rqstp->rq_skbuff; |
| struct svc_deferred_req *dr = rqstp->rq_deferred; |
| |
| if (skb) { |
| rqstp->rq_skbuff = NULL; |
| |
| dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); |
| skb_free_datagram(rqstp->rq_sock->sk_sk, skb); |
| } |
| if (dr) { |
| rqstp->rq_deferred = NULL; |
| kfree(dr); |
| } |
| } |
| |
| /* |
| * Any space to write? |
| */ |
| static inline unsigned long |
| svc_sock_wspace(struct svc_sock *svsk) |
| { |
| int wspace; |
| |
| if (svsk->sk_sock->type == SOCK_STREAM) |
| wspace = sk_stream_wspace(svsk->sk_sk); |
| else |
| wspace = sock_wspace(svsk->sk_sk); |
| |
| return wspace; |
| } |
| |
| /* |
| * Queue up a socket with data pending. If there are idle nfsd |
| * processes, wake 'em up. |
| * |
| */ |
| static void |
| svc_sock_enqueue(struct svc_sock *svsk) |
| { |
| struct svc_serv *serv = svsk->sk_server; |
| struct svc_pool *pool; |
| struct svc_rqst *rqstp; |
| int cpu; |
| |
| if (!(svsk->sk_flags & |
| ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) )) |
| return; |
| if (test_bit(SK_DEAD, &svsk->sk_flags)) |
| return; |
| |
| cpu = get_cpu(); |
| pool = svc_pool_for_cpu(svsk->sk_server, cpu); |
| put_cpu(); |
| |
| spin_lock_bh(&pool->sp_lock); |
| |
| if (!list_empty(&pool->sp_threads) && |
| !list_empty(&pool->sp_sockets)) |
| printk(KERN_ERR |
| "svc_sock_enqueue: threads and sockets both waiting??\n"); |
| |
| if (test_bit(SK_DEAD, &svsk->sk_flags)) { |
| /* Don't enqueue dead sockets */ |
| dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk); |
| goto out_unlock; |
| } |
| |
| /* Mark socket as busy. It will remain in this state until the |
| * server has processed all pending data and put the socket back |
| * on the idle list. We update SK_BUSY atomically because |
| * it also guards against trying to enqueue the svc_sock twice. |
| */ |
| if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) { |
| /* Don't enqueue socket while already enqueued */ |
| dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk); |
| goto out_unlock; |
| } |
| BUG_ON(svsk->sk_pool != NULL); |
| svsk->sk_pool = pool; |
| |
| set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); |
| if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2 |
| > svc_sock_wspace(svsk)) |
| && !test_bit(SK_CLOSE, &svsk->sk_flags) |
| && !test_bit(SK_CONN, &svsk->sk_flags)) { |
| /* Don't enqueue while not enough space for reply */ |
| dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n", |
| svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg, |
| svc_sock_wspace(svsk)); |
| svsk->sk_pool = NULL; |
| clear_bit(SK_BUSY, &svsk->sk_flags); |
| goto out_unlock; |
| } |
| clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); |
| |
| |
| if (!list_empty(&pool->sp_threads)) { |
| rqstp = list_entry(pool->sp_threads.next, |
| struct svc_rqst, |
| rq_list); |
| dprintk("svc: socket %p served by daemon %p\n", |
| svsk->sk_sk, rqstp); |
| svc_thread_dequeue(pool, rqstp); |
| if (rqstp->rq_sock) |
| printk(KERN_ERR |
| "svc_sock_enqueue: server %p, rq_sock=%p!\n", |
| rqstp, rqstp->rq_sock); |
| rqstp->rq_sock = svsk; |
| atomic_inc(&svsk->sk_inuse); |
| rqstp->rq_reserved = serv->sv_max_mesg; |
| atomic_add(rqstp->rq_reserved, &svsk->sk_reserved); |
| BUG_ON(svsk->sk_pool != pool); |
| wake_up(&rqstp->rq_wait); |
| } else { |
| dprintk("svc: socket %p put into queue\n", svsk->sk_sk); |
| list_add_tail(&svsk->sk_ready, &pool->sp_sockets); |
| BUG_ON(svsk->sk_pool != pool); |
| } |
| |
| out_unlock: |
| spin_unlock_bh(&pool->sp_lock); |
| } |
| |
| /* |
| * Dequeue the first socket. Must be called with the pool->sp_lock held. |
| */ |
| static inline struct svc_sock * |
| svc_sock_dequeue(struct svc_pool *pool) |
| { |
| struct svc_sock *svsk; |
| |
| if (list_empty(&pool->sp_sockets)) |
| return NULL; |
| |
| svsk = list_entry(pool->sp_sockets.next, |
| struct svc_sock, sk_ready); |
| list_del_init(&svsk->sk_ready); |
| |
| dprintk("svc: socket %p dequeued, inuse=%d\n", |
| svsk->sk_sk, atomic_read(&svsk->sk_inuse)); |
| |
| return svsk; |
| } |
| |
| /* |
| * Having read something from a socket, check whether it |
| * needs to be re-enqueued. |
| * Note: SK_DATA only gets cleared when a read-attempt finds |
| * no (or insufficient) data. |
| */ |
| static inline void |
| svc_sock_received(struct svc_sock *svsk) |
| { |
| svsk->sk_pool = NULL; |
| clear_bit(SK_BUSY, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| } |
| |
| |
| /** |
| * svc_reserve - change the space reserved for the reply to a request. |
| * @rqstp: The request in question |
| * @space: new max space to reserve |
| * |
| * Each request reserves some space on the output queue of the socket |
| * to make sure the reply fits. This function reduces that reserved |
| * space to be the amount of space used already, plus @space. |
| * |
| */ |
| void svc_reserve(struct svc_rqst *rqstp, int space) |
| { |
| space += rqstp->rq_res.head[0].iov_len; |
| |
| if (space < rqstp->rq_reserved) { |
| struct svc_sock *svsk = rqstp->rq_sock; |
| atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved); |
| rqstp->rq_reserved = space; |
| |
| svc_sock_enqueue(svsk); |
| } |
| } |
| |
| /* |
| * Release a socket after use. |
| */ |
| static inline void |
| svc_sock_put(struct svc_sock *svsk) |
| { |
| if (atomic_dec_and_test(&svsk->sk_inuse)) { |
| BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags)); |
| |
| dprintk("svc: releasing dead socket\n"); |
| if (svsk->sk_sock->file) |
| sockfd_put(svsk->sk_sock); |
| else |
| sock_release(svsk->sk_sock); |
| if (svsk->sk_info_authunix != NULL) |
| svcauth_unix_info_release(svsk->sk_info_authunix); |
| kfree(svsk); |
| } |
| } |
| |
| static void |
| svc_sock_release(struct svc_rqst *rqstp) |
| { |
| struct svc_sock *svsk = rqstp->rq_sock; |
| |
| svc_release_skb(rqstp); |
| |
| svc_free_res_pages(rqstp); |
| rqstp->rq_res.page_len = 0; |
| rqstp->rq_res.page_base = 0; |
| |
| |
| /* Reset response buffer and release |
| * the reservation. |
| * But first, check that enough space was reserved |
| * for the reply, otherwise we have a bug! |
| */ |
| if ((rqstp->rq_res.len) > rqstp->rq_reserved) |
| printk(KERN_ERR "RPC request reserved %d but used %d\n", |
| rqstp->rq_reserved, |
| rqstp->rq_res.len); |
| |
| rqstp->rq_res.head[0].iov_len = 0; |
| svc_reserve(rqstp, 0); |
| rqstp->rq_sock = NULL; |
| |
| svc_sock_put(svsk); |
| } |
| |
| /* |
| * External function to wake up a server waiting for data |
| * This really only makes sense for services like lockd |
| * which have exactly one thread anyway. |
| */ |
| void |
| svc_wake_up(struct svc_serv *serv) |
| { |
| struct svc_rqst *rqstp; |
| unsigned int i; |
| struct svc_pool *pool; |
| |
| for (i = 0; i < serv->sv_nrpools; i++) { |
| pool = &serv->sv_pools[i]; |
| |
| spin_lock_bh(&pool->sp_lock); |
| if (!list_empty(&pool->sp_threads)) { |
| rqstp = list_entry(pool->sp_threads.next, |
| struct svc_rqst, |
| rq_list); |
| dprintk("svc: daemon %p woken up.\n", rqstp); |
| /* |
| svc_thread_dequeue(pool, rqstp); |
| rqstp->rq_sock = NULL; |
| */ |
| wake_up(&rqstp->rq_wait); |
| } |
| spin_unlock_bh(&pool->sp_lock); |
| } |
| } |
| |
| union svc_pktinfo_u { |
| struct in_pktinfo pkti; |
| struct in6_pktinfo pkti6; |
| }; |
| #define SVC_PKTINFO_SPACE \ |
| CMSG_SPACE(sizeof(union svc_pktinfo_u)) |
| |
| static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) |
| { |
| switch (rqstp->rq_sock->sk_sk->sk_family) { |
| case AF_INET: { |
| struct in_pktinfo *pki = CMSG_DATA(cmh); |
| |
| cmh->cmsg_level = SOL_IP; |
| cmh->cmsg_type = IP_PKTINFO; |
| pki->ipi_ifindex = 0; |
| pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; |
| cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); |
| } |
| break; |
| |
| case AF_INET6: { |
| struct in6_pktinfo *pki = CMSG_DATA(cmh); |
| |
| cmh->cmsg_level = SOL_IPV6; |
| cmh->cmsg_type = IPV6_PKTINFO; |
| pki->ipi6_ifindex = 0; |
| ipv6_addr_copy(&pki->ipi6_addr, |
| &rqstp->rq_daddr.addr6); |
| cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); |
| } |
| break; |
| } |
| return; |
| } |
| |
| /* |
| * Generic sendto routine |
| */ |
| static int |
| svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) |
| { |
| struct svc_sock *svsk = rqstp->rq_sock; |
| struct socket *sock = svsk->sk_sock; |
| int slen; |
| union { |
| struct cmsghdr hdr; |
| long all[SVC_PKTINFO_SPACE / sizeof(long)]; |
| } buffer; |
| struct cmsghdr *cmh = &buffer.hdr; |
| int len = 0; |
| int result; |
| int size; |
| struct page **ppage = xdr->pages; |
| size_t base = xdr->page_base; |
| unsigned int pglen = xdr->page_len; |
| unsigned int flags = MSG_MORE; |
| char buf[RPC_MAX_ADDRBUFLEN]; |
| |
| slen = xdr->len; |
| |
| if (rqstp->rq_prot == IPPROTO_UDP) { |
| struct msghdr msg = { |
| .msg_name = &rqstp->rq_addr, |
| .msg_namelen = rqstp->rq_addrlen, |
| .msg_control = cmh, |
| .msg_controllen = sizeof(buffer), |
| .msg_flags = MSG_MORE, |
| }; |
| |
| svc_set_cmsg_data(rqstp, cmh); |
| |
| if (sock_sendmsg(sock, &msg, 0) < 0) |
| goto out; |
| } |
| |
| /* send head */ |
| if (slen == xdr->head[0].iov_len) |
| flags = 0; |
| len = kernel_sendpage(sock, rqstp->rq_respages[0], 0, |
| xdr->head[0].iov_len, flags); |
| if (len != xdr->head[0].iov_len) |
| goto out; |
| slen -= xdr->head[0].iov_len; |
| if (slen == 0) |
| goto out; |
| |
| /* send page data */ |
| size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; |
| while (pglen > 0) { |
| if (slen == size) |
| flags = 0; |
| result = kernel_sendpage(sock, *ppage, base, size, flags); |
| if (result > 0) |
| len += result; |
| if (result != size) |
| goto out; |
| slen -= size; |
| pglen -= size; |
| size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; |
| base = 0; |
| ppage++; |
| } |
| /* send tail */ |
| if (xdr->tail[0].iov_len) { |
| result = kernel_sendpage(sock, rqstp->rq_respages[0], |
| ((unsigned long)xdr->tail[0].iov_base) |
| & (PAGE_SIZE-1), |
| xdr->tail[0].iov_len, 0); |
| |
| if (result > 0) |
| len += result; |
| } |
| out: |
| dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", |
| rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, |
| xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); |
| |
| return len; |
| } |
| |
| /* |
| * Report socket names for nfsdfs |
| */ |
| static int one_sock_name(char *buf, struct svc_sock *svsk) |
| { |
| int len; |
| |
| switch(svsk->sk_sk->sk_family) { |
| case AF_INET: |
| len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n", |
| svsk->sk_sk->sk_protocol==IPPROTO_UDP? |
| "udp" : "tcp", |
| NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr), |
| inet_sk(svsk->sk_sk)->num); |
| break; |
| default: |
| len = sprintf(buf, "*unknown-%d*\n", |
| svsk->sk_sk->sk_family); |
| } |
| return len; |
| } |
| |
| int |
| svc_sock_names(char *buf, struct svc_serv *serv, char *toclose) |
| { |
| struct svc_sock *svsk, *closesk = NULL; |
| int len = 0; |
| |
| if (!serv) |
| return 0; |
| spin_lock_bh(&serv->sv_lock); |
| list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) { |
| int onelen = one_sock_name(buf+len, svsk); |
| if (toclose && strcmp(toclose, buf+len) == 0) |
| closesk = svsk; |
| else |
| len += onelen; |
| } |
| spin_unlock_bh(&serv->sv_lock); |
| if (closesk) |
| /* Should unregister with portmap, but you cannot |
| * unregister just one protocol... |
| */ |
| svc_close_socket(closesk); |
| else if (toclose) |
| return -ENOENT; |
| return len; |
| } |
| EXPORT_SYMBOL(svc_sock_names); |
| |
| /* |
| * Check input queue length |
| */ |
| static int |
| svc_recv_available(struct svc_sock *svsk) |
| { |
| struct socket *sock = svsk->sk_sock; |
| int avail, err; |
| |
| err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); |
| |
| return (err >= 0)? avail : err; |
| } |
| |
| /* |
| * Generic recvfrom routine. |
| */ |
| static int |
| svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen) |
| { |
| struct svc_sock *svsk = rqstp->rq_sock; |
| struct msghdr msg = { |
| .msg_flags = MSG_DONTWAIT, |
| }; |
| struct sockaddr *sin; |
| int len; |
| |
| len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, |
| msg.msg_flags); |
| |
| /* sock_recvmsg doesn't fill in the name/namelen, so we must.. |
| */ |
| memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen); |
| rqstp->rq_addrlen = svsk->sk_remotelen; |
| |
| /* Destination address in request is needed for binding the |
| * source address in RPC callbacks later. |
| */ |
| sin = (struct sockaddr *)&svsk->sk_local; |
| switch (sin->sa_family) { |
| case AF_INET: |
| rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr; |
| break; |
| case AF_INET6: |
| rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr; |
| break; |
| } |
| |
| dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", |
| svsk, iov[0].iov_base, iov[0].iov_len, len); |
| |
| return len; |
| } |
| |
| /* |
| * Set socket snd and rcv buffer lengths |
| */ |
| static inline void |
| svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv) |
| { |
| #if 0 |
| mm_segment_t oldfs; |
| oldfs = get_fs(); set_fs(KERNEL_DS); |
| sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, |
| (char*)&snd, sizeof(snd)); |
| sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, |
| (char*)&rcv, sizeof(rcv)); |
| #else |
| /* sock_setsockopt limits use to sysctl_?mem_max, |
| * which isn't acceptable. Until that is made conditional |
| * on not having CAP_SYS_RESOURCE or similar, we go direct... |
| * DaveM said I could! |
| */ |
| lock_sock(sock->sk); |
| sock->sk->sk_sndbuf = snd * 2; |
| sock->sk->sk_rcvbuf = rcv * 2; |
| sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; |
| release_sock(sock->sk); |
| #endif |
| } |
| /* |
| * INET callback when data has been received on the socket. |
| */ |
| static void |
| svc_udp_data_ready(struct sock *sk, int count) |
| { |
| struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; |
| |
| if (svsk) { |
| dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", |
| svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags)); |
| set_bit(SK_DATA, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| } |
| if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) |
| wake_up_interruptible(sk->sk_sleep); |
| } |
| |
| /* |
| * INET callback when space is newly available on the socket. |
| */ |
| static void |
| svc_write_space(struct sock *sk) |
| { |
| struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); |
| |
| if (svsk) { |
| dprintk("svc: socket %p(inet %p), write_space busy=%d\n", |
| svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags)); |
| svc_sock_enqueue(svsk); |
| } |
| |
| if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { |
| dprintk("RPC svc_write_space: someone sleeping on %p\n", |
| svsk); |
| wake_up_interruptible(sk->sk_sleep); |
| } |
| } |
| |
| static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp, |
| struct cmsghdr *cmh) |
| { |
| switch (rqstp->rq_sock->sk_sk->sk_family) { |
| case AF_INET: { |
| struct in_pktinfo *pki = CMSG_DATA(cmh); |
| rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; |
| break; |
| } |
| case AF_INET6: { |
| struct in6_pktinfo *pki = CMSG_DATA(cmh); |
| ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Receive a datagram from a UDP socket. |
| */ |
| static int |
| svc_udp_recvfrom(struct svc_rqst *rqstp) |
| { |
| struct svc_sock *svsk = rqstp->rq_sock; |
| struct svc_serv *serv = svsk->sk_server; |
| struct sk_buff *skb; |
| union { |
| struct cmsghdr hdr; |
| long all[SVC_PKTINFO_SPACE / sizeof(long)]; |
| } buffer; |
| struct cmsghdr *cmh = &buffer.hdr; |
| int err, len; |
| struct msghdr msg = { |
| .msg_name = svc_addr(rqstp), |
| .msg_control = cmh, |
| .msg_controllen = sizeof(buffer), |
| .msg_flags = MSG_DONTWAIT, |
| }; |
| |
| if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) |
| /* udp sockets need large rcvbuf as all pending |
| * requests are still in that buffer. sndbuf must |
| * also be large enough that there is enough space |
| * for one reply per thread. We count all threads |
| * rather than threads in a particular pool, which |
| * provides an upper bound on the number of threads |
| * which will access the socket. |
| */ |
| svc_sock_setbufsize(svsk->sk_sock, |
| (serv->sv_nrthreads+3) * serv->sv_max_mesg, |
| (serv->sv_nrthreads+3) * serv->sv_max_mesg); |
| |
| if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { |
| svc_sock_received(svsk); |
| return svc_deferred_recv(rqstp); |
| } |
| |
| if (test_bit(SK_CLOSE, &svsk->sk_flags)) { |
| svc_delete_socket(svsk); |
| return 0; |
| } |
| |
| clear_bit(SK_DATA, &svsk->sk_flags); |
| skb = NULL; |
| err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, |
| 0, 0, MSG_PEEK | MSG_DONTWAIT); |
| if (err >= 0) |
| skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); |
| |
| if (skb == NULL) { |
| if (err != -EAGAIN) { |
| /* possibly an icmp error */ |
| dprintk("svc: recvfrom returned error %d\n", -err); |
| set_bit(SK_DATA, &svsk->sk_flags); |
| } |
| svc_sock_received(svsk); |
| return -EAGAIN; |
| } |
| rqstp->rq_addrlen = sizeof(rqstp->rq_addr); |
| if (skb->tstamp.tv64 == 0) { |
| skb->tstamp = ktime_get_real(); |
| /* Don't enable netstamp, sunrpc doesn't |
| need that much accuracy */ |
| } |
| svsk->sk_sk->sk_stamp = skb->tstamp; |
| set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */ |
| |
| /* |
| * Maybe more packets - kick another thread ASAP. |
| */ |
| svc_sock_received(svsk); |
| |
| len = skb->len - sizeof(struct udphdr); |
| rqstp->rq_arg.len = len; |
| |
| rqstp->rq_prot = IPPROTO_UDP; |
| |
| if (cmh->cmsg_level != IPPROTO_IP || |
| cmh->cmsg_type != IP_PKTINFO) { |
| if (net_ratelimit()) |
| printk("rpcsvc: received unknown control message:" |
| "%d/%d\n", |
| cmh->cmsg_level, cmh->cmsg_type); |
| skb_free_datagram(svsk->sk_sk, skb); |
| return 0; |
| } |
| svc_udp_get_dest_address(rqstp, cmh); |
| |
| if (skb_is_nonlinear(skb)) { |
| /* we have to copy */ |
| local_bh_disable(); |
| if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { |
| local_bh_enable(); |
| /* checksum error */ |
| skb_free_datagram(svsk->sk_sk, skb); |
| return 0; |
| } |
| local_bh_enable(); |
| skb_free_datagram(svsk->sk_sk, skb); |
| } else { |
| /* we can use it in-place */ |
| rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr); |
| rqstp->rq_arg.head[0].iov_len = len; |
| if (skb_checksum_complete(skb)) { |
| skb_free_datagram(svsk->sk_sk, skb); |
| return 0; |
| } |
| rqstp->rq_skbuff = skb; |
| } |
| |
| rqstp->rq_arg.page_base = 0; |
| if (len <= rqstp->rq_arg.head[0].iov_len) { |
| rqstp->rq_arg.head[0].iov_len = len; |
| rqstp->rq_arg.page_len = 0; |
| rqstp->rq_respages = rqstp->rq_pages+1; |
| } else { |
| rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; |
| rqstp->rq_respages = rqstp->rq_pages + 1 + |
| (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE; |
| } |
| |
| if (serv->sv_stats) |
| serv->sv_stats->netudpcnt++; |
| |
| return len; |
| } |
| |
| static int |
| svc_udp_sendto(struct svc_rqst *rqstp) |
| { |
| int error; |
| |
| error = svc_sendto(rqstp, &rqstp->rq_res); |
| if (error == -ECONNREFUSED) |
| /* ICMP error on earlier request. */ |
| error = svc_sendto(rqstp, &rqstp->rq_res); |
| |
| return error; |
| } |
| |
| static void |
| svc_udp_init(struct svc_sock *svsk) |
| { |
| int one = 1; |
| mm_segment_t oldfs; |
| |
| svsk->sk_sk->sk_data_ready = svc_udp_data_ready; |
| svsk->sk_sk->sk_write_space = svc_write_space; |
| svsk->sk_recvfrom = svc_udp_recvfrom; |
| svsk->sk_sendto = svc_udp_sendto; |
| |
| /* initialise setting must have enough space to |
| * receive and respond to one request. |
| * svc_udp_recvfrom will re-adjust if necessary |
| */ |
| svc_sock_setbufsize(svsk->sk_sock, |
| 3 * svsk->sk_server->sv_max_mesg, |
| 3 * svsk->sk_server->sv_max_mesg); |
| |
| set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */ |
| set_bit(SK_CHNGBUF, &svsk->sk_flags); |
| |
| oldfs = get_fs(); |
| set_fs(KERNEL_DS); |
| /* make sure we get destination address info */ |
| svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO, |
| (char __user *)&one, sizeof(one)); |
| set_fs(oldfs); |
| } |
| |
| /* |
| * A data_ready event on a listening socket means there's a connection |
| * pending. Do not use state_change as a substitute for it. |
| */ |
| static void |
| svc_tcp_listen_data_ready(struct sock *sk, int count_unused) |
| { |
| struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; |
| |
| dprintk("svc: socket %p TCP (listen) state change %d\n", |
| sk, sk->sk_state); |
| |
| /* |
| * This callback may called twice when a new connection |
| * is established as a child socket inherits everything |
| * from a parent LISTEN socket. |
| * 1) data_ready method of the parent socket will be called |
| * when one of child sockets become ESTABLISHED. |
| * 2) data_ready method of the child socket may be called |
| * when it receives data before the socket is accepted. |
| * In case of 2, we should ignore it silently. |
| */ |
| if (sk->sk_state == TCP_LISTEN) { |
| if (svsk) { |
| set_bit(SK_CONN, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| } else |
| printk("svc: socket %p: no user data\n", sk); |
| } |
| |
| if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) |
| wake_up_interruptible_all(sk->sk_sleep); |
| } |
| |
| /* |
| * A state change on a connected socket means it's dying or dead. |
| */ |
| static void |
| svc_tcp_state_change(struct sock *sk) |
| { |
| struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; |
| |
| dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", |
| sk, sk->sk_state, sk->sk_user_data); |
| |
| if (!svsk) |
| printk("svc: socket %p: no user data\n", sk); |
| else { |
| set_bit(SK_CLOSE, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| } |
| if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) |
| wake_up_interruptible_all(sk->sk_sleep); |
| } |
| |
| static void |
| svc_tcp_data_ready(struct sock *sk, int count) |
| { |
| struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; |
| |
| dprintk("svc: socket %p TCP data ready (svsk %p)\n", |
| sk, sk->sk_user_data); |
| if (svsk) { |
| set_bit(SK_DATA, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| } |
| if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) |
| wake_up_interruptible(sk->sk_sleep); |
| } |
| |
| static inline int svc_port_is_privileged(struct sockaddr *sin) |
| { |
| switch (sin->sa_family) { |
| case AF_INET: |
| return ntohs(((struct sockaddr_in *)sin)->sin_port) |
| < PROT_SOCK; |
| case AF_INET6: |
| return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) |
| < PROT_SOCK; |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| * Accept a TCP connection |
| */ |
| static void |
| svc_tcp_accept(struct svc_sock *svsk) |
| { |
| struct sockaddr_storage addr; |
| struct sockaddr *sin = (struct sockaddr *) &addr; |
| struct svc_serv *serv = svsk->sk_server; |
| struct socket *sock = svsk->sk_sock; |
| struct socket *newsock; |
| struct svc_sock *newsvsk; |
| int err, slen; |
| char buf[RPC_MAX_ADDRBUFLEN]; |
| |
| dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); |
| if (!sock) |
| return; |
| |
| clear_bit(SK_CONN, &svsk->sk_flags); |
| err = kernel_accept(sock, &newsock, O_NONBLOCK); |
| if (err < 0) { |
| if (err == -ENOMEM) |
| printk(KERN_WARNING "%s: no more sockets!\n", |
| serv->sv_name); |
| else if (err != -EAGAIN && net_ratelimit()) |
| printk(KERN_WARNING "%s: accept failed (err %d)!\n", |
| serv->sv_name, -err); |
| return; |
| } |
| |
| set_bit(SK_CONN, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| |
| err = kernel_getpeername(newsock, sin, &slen); |
| if (err < 0) { |
| if (net_ratelimit()) |
| printk(KERN_WARNING "%s: peername failed (err %d)!\n", |
| serv->sv_name, -err); |
| goto failed; /* aborted connection or whatever */ |
| } |
| |
| /* Ideally, we would want to reject connections from unauthorized |
| * hosts here, but when we get encryption, the IP of the host won't |
| * tell us anything. For now just warn about unpriv connections. |
| */ |
| if (!svc_port_is_privileged(sin)) { |
| dprintk(KERN_WARNING |
| "%s: connect from unprivileged port: %s\n", |
| serv->sv_name, |
| __svc_print_addr(sin, buf, sizeof(buf))); |
| } |
| dprintk("%s: connect from %s\n", serv->sv_name, |
| __svc_print_addr(sin, buf, sizeof(buf))); |
| |
| /* make sure that a write doesn't block forever when |
| * low on memory |
| */ |
| newsock->sk->sk_sndtimeo = HZ*30; |
| |
| if (!(newsvsk = svc_setup_socket(serv, newsock, &err, |
| (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) |
| goto failed; |
| memcpy(&newsvsk->sk_remote, sin, slen); |
| newsvsk->sk_remotelen = slen; |
| err = kernel_getsockname(newsock, sin, &slen); |
| if (unlikely(err < 0)) { |
| dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); |
| slen = offsetof(struct sockaddr, sa_data); |
| } |
| memcpy(&newsvsk->sk_local, sin, slen); |
| |
| svc_sock_received(newsvsk); |
| |
| /* make sure that we don't have too many active connections. |
| * If we have, something must be dropped. |
| * |
| * There's no point in trying to do random drop here for |
| * DoS prevention. The NFS clients does 1 reconnect in 15 |
| * seconds. An attacker can easily beat that. |
| * |
| * The only somewhat efficient mechanism would be if drop |
| * old connections from the same IP first. But right now |
| * we don't even record the client IP in svc_sock. |
| */ |
| if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { |
| struct svc_sock *svsk = NULL; |
| spin_lock_bh(&serv->sv_lock); |
| if (!list_empty(&serv->sv_tempsocks)) { |
| if (net_ratelimit()) { |
| /* Try to help the admin */ |
| printk(KERN_NOTICE "%s: too many open TCP " |
| "sockets, consider increasing the " |
| "number of nfsd threads\n", |
| serv->sv_name); |
| printk(KERN_NOTICE |
| "%s: last TCP connect from %s\n", |
| serv->sv_name, buf); |
| } |
| /* |
| * Always select the oldest socket. It's not fair, |
| * but so is life |
| */ |
| svsk = list_entry(serv->sv_tempsocks.prev, |
| struct svc_sock, |
| sk_list); |
| set_bit(SK_CLOSE, &svsk->sk_flags); |
| atomic_inc(&svsk->sk_inuse); |
| } |
| spin_unlock_bh(&serv->sv_lock); |
| |
| if (svsk) { |
| svc_sock_enqueue(svsk); |
| svc_sock_put(svsk); |
| } |
| |
| } |
| |
| if (serv->sv_stats) |
| serv->sv_stats->nettcpconn++; |
| |
| return; |
| |
| failed: |
| sock_release(newsock); |
| return; |
| } |
| |
| /* |
| * Receive data from a TCP socket. |
| */ |
| static int |
| svc_tcp_recvfrom(struct svc_rqst *rqstp) |
| { |
| struct svc_sock *svsk = rqstp->rq_sock; |
| struct svc_serv *serv = svsk->sk_server; |
| int len; |
| struct kvec *vec; |
| int pnum, vlen; |
| |
| dprintk("svc: tcp_recv %p data %d conn %d close %d\n", |
| svsk, test_bit(SK_DATA, &svsk->sk_flags), |
| test_bit(SK_CONN, &svsk->sk_flags), |
| test_bit(SK_CLOSE, &svsk->sk_flags)); |
| |
| if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { |
| svc_sock_received(svsk); |
| return svc_deferred_recv(rqstp); |
| } |
| |
| if (test_bit(SK_CLOSE, &svsk->sk_flags)) { |
| svc_delete_socket(svsk); |
| return 0; |
| } |
| |
| if (svsk->sk_sk->sk_state == TCP_LISTEN) { |
| svc_tcp_accept(svsk); |
| svc_sock_received(svsk); |
| return 0; |
| } |
| |
| if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) |
| /* sndbuf needs to have room for one request |
| * per thread, otherwise we can stall even when the |
| * network isn't a bottleneck. |
| * |
| * We count all threads rather than threads in a |
| * particular pool, which provides an upper bound |
| * on the number of threads which will access the socket. |
| * |
| * rcvbuf just needs to be able to hold a few requests. |
| * Normally they will be removed from the queue |
| * as soon a a complete request arrives. |
| */ |
| svc_sock_setbufsize(svsk->sk_sock, |
| (serv->sv_nrthreads+3) * serv->sv_max_mesg, |
| 3 * serv->sv_max_mesg); |
| |
| clear_bit(SK_DATA, &svsk->sk_flags); |
| |
| /* Receive data. If we haven't got the record length yet, get |
| * the next four bytes. Otherwise try to gobble up as much as |
| * possible up to the complete record length. |
| */ |
| if (svsk->sk_tcplen < 4) { |
| unsigned long want = 4 - svsk->sk_tcplen; |
| struct kvec iov; |
| |
| iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; |
| iov.iov_len = want; |
| if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) |
| goto error; |
| svsk->sk_tcplen += len; |
| |
| if (len < want) { |
| dprintk("svc: short recvfrom while reading record length (%d of %lu)\n", |
| len, want); |
| svc_sock_received(svsk); |
| return -EAGAIN; /* record header not complete */ |
| } |
| |
| svsk->sk_reclen = ntohl(svsk->sk_reclen); |
| if (!(svsk->sk_reclen & 0x80000000)) { |
| /* FIXME: technically, a record can be fragmented, |
| * and non-terminal fragments will not have the top |
| * bit set in the fragment length header. |
| * But apparently no known nfs clients send fragmented |
| * records. */ |
| if (net_ratelimit()) |
| printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx" |
| " (non-terminal)\n", |
| (unsigned long) svsk->sk_reclen); |
| goto err_delete; |
| } |
| svsk->sk_reclen &= 0x7fffffff; |
| dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); |
| if (svsk->sk_reclen > serv->sv_max_mesg) { |
| if (net_ratelimit()) |
| printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx" |
| " (large)\n", |
| (unsigned long) svsk->sk_reclen); |
| goto err_delete; |
| } |
| } |
| |
| /* Check whether enough data is available */ |
| len = svc_recv_available(svsk); |
| if (len < 0) |
| goto error; |
| |
| if (len < svsk->sk_reclen) { |
| dprintk("svc: incomplete TCP record (%d of %d)\n", |
| len, svsk->sk_reclen); |
| svc_sock_received(svsk); |
| return -EAGAIN; /* record not complete */ |
| } |
| len = svsk->sk_reclen; |
| set_bit(SK_DATA, &svsk->sk_flags); |
| |
| vec = rqstp->rq_vec; |
| vec[0] = rqstp->rq_arg.head[0]; |
| vlen = PAGE_SIZE; |
| pnum = 1; |
| while (vlen < len) { |
| vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]); |
| vec[pnum].iov_len = PAGE_SIZE; |
| pnum++; |
| vlen += PAGE_SIZE; |
| } |
| rqstp->rq_respages = &rqstp->rq_pages[pnum]; |
| |
| /* Now receive data */ |
| len = svc_recvfrom(rqstp, vec, pnum, len); |
| if (len < 0) |
| goto error; |
| |
| dprintk("svc: TCP complete record (%d bytes)\n", len); |
| rqstp->rq_arg.len = len; |
| rqstp->rq_arg.page_base = 0; |
| if (len <= rqstp->rq_arg.head[0].iov_len) { |
| rqstp->rq_arg.head[0].iov_len = len; |
| rqstp->rq_arg.page_len = 0; |
| } else { |
| rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; |
| } |
| |
| rqstp->rq_skbuff = NULL; |
| rqstp->rq_prot = IPPROTO_TCP; |
| |
| /* Reset TCP read info */ |
| svsk->sk_reclen = 0; |
| svsk->sk_tcplen = 0; |
| |
| svc_sock_received(svsk); |
| if (serv->sv_stats) |
| serv->sv_stats->nettcpcnt++; |
| |
| return len; |
| |
| err_delete: |
| svc_delete_socket(svsk); |
| return -EAGAIN; |
| |
| error: |
| if (len == -EAGAIN) { |
| dprintk("RPC: TCP recvfrom got EAGAIN\n"); |
| svc_sock_received(svsk); |
| } else { |
| printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", |
| svsk->sk_server->sv_name, -len); |
| goto err_delete; |
| } |
| |
| return len; |
| } |
| |
| /* |
| * Send out data on TCP socket. |
| */ |
| static int |
| svc_tcp_sendto(struct svc_rqst *rqstp) |
| { |
| struct xdr_buf *xbufp = &rqstp->rq_res; |
| int sent; |
| __be32 reclen; |
| |
| /* Set up the first element of the reply kvec. |
| * Any other kvecs that may be in use have been taken |
| * care of by the server implementation itself. |
| */ |
| reclen = htonl(0x80000000|((xbufp->len ) - 4)); |
| memcpy(xbufp->head[0].iov_base, &reclen, 4); |
| |
| if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags)) |
| return -ENOTCONN; |
| |
| sent = svc_sendto(rqstp, &rqstp->rq_res); |
| if (sent != xbufp->len) { |
| printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", |
| rqstp->rq_sock->sk_server->sv_name, |
| (sent<0)?"got error":"sent only", |
| sent, xbufp->len); |
| set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags); |
| svc_sock_enqueue(rqstp->rq_sock); |
| sent = -EAGAIN; |
| } |
| return sent; |
| } |
| |
| static void |
| svc_tcp_init(struct svc_sock *svsk) |
| { |
| struct sock *sk = svsk->sk_sk; |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| svsk->sk_recvfrom = svc_tcp_recvfrom; |
| svsk->sk_sendto = svc_tcp_sendto; |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| dprintk("setting up TCP socket for listening\n"); |
| sk->sk_data_ready = svc_tcp_listen_data_ready; |
| set_bit(SK_CONN, &svsk->sk_flags); |
| } else { |
| dprintk("setting up TCP socket for reading\n"); |
| sk->sk_state_change = svc_tcp_state_change; |
| sk->sk_data_ready = svc_tcp_data_ready; |
| sk->sk_write_space = svc_write_space; |
| |
| svsk->sk_reclen = 0; |
| svsk->sk_tcplen = 0; |
| |
| tp->nonagle = 1; /* disable Nagle's algorithm */ |
| |
| /* initialise setting must have enough space to |
| * receive and respond to one request. |
| * svc_tcp_recvfrom will re-adjust if necessary |
| */ |
| svc_sock_setbufsize(svsk->sk_sock, |
| 3 * svsk->sk_server->sv_max_mesg, |
| 3 * svsk->sk_server->sv_max_mesg); |
| |
| set_bit(SK_CHNGBUF, &svsk->sk_flags); |
| set_bit(SK_DATA, &svsk->sk_flags); |
| if (sk->sk_state != TCP_ESTABLISHED) |
| set_bit(SK_CLOSE, &svsk->sk_flags); |
| } |
| } |
| |
| void |
| svc_sock_update_bufs(struct svc_serv *serv) |
| { |
| /* |
| * The number of server threads has changed. Update |
| * rcvbuf and sndbuf accordingly on all sockets |
| */ |
| struct list_head *le; |
| |
| spin_lock_bh(&serv->sv_lock); |
| list_for_each(le, &serv->sv_permsocks) { |
| struct svc_sock *svsk = |
| list_entry(le, struct svc_sock, sk_list); |
| set_bit(SK_CHNGBUF, &svsk->sk_flags); |
| } |
| list_for_each(le, &serv->sv_tempsocks) { |
| struct svc_sock *svsk = |
| list_entry(le, struct svc_sock, sk_list); |
| set_bit(SK_CHNGBUF, &svsk->sk_flags); |
| } |
| spin_unlock_bh(&serv->sv_lock); |
| } |
| |
| /* |
| * Receive the next request on any socket. This code is carefully |
| * organised not to touch any cachelines in the shared svc_serv |
| * structure, only cachelines in the local svc_pool. |
| */ |
| int |
| svc_recv(struct svc_rqst *rqstp, long timeout) |
| { |
| struct svc_sock *svsk = NULL; |
| struct svc_serv *serv = rqstp->rq_server; |
| struct svc_pool *pool = rqstp->rq_pool; |
| int len, i; |
| int pages; |
| struct xdr_buf *arg; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| dprintk("svc: server %p waiting for data (to = %ld)\n", |
| rqstp, timeout); |
| |
| if (rqstp->rq_sock) |
| printk(KERN_ERR |
| "svc_recv: service %p, socket not NULL!\n", |
| rqstp); |
| if (waitqueue_active(&rqstp->rq_wait)) |
| printk(KERN_ERR |
| "svc_recv: service %p, wait queue active!\n", |
| rqstp); |
| |
| |
| /* now allocate needed pages. If we get a failure, sleep briefly */ |
| pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; |
| for (i=0; i < pages ; i++) |
| while (rqstp->rq_pages[i] == NULL) { |
| struct page *p = alloc_page(GFP_KERNEL); |
| if (!p) |
| schedule_timeout_uninterruptible(msecs_to_jiffies(500)); |
| rqstp->rq_pages[i] = p; |
| } |
| rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ |
| BUG_ON(pages >= RPCSVC_MAXPAGES); |
| |
| /* Make arg->head point to first page and arg->pages point to rest */ |
| arg = &rqstp->rq_arg; |
| arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); |
| arg->head[0].iov_len = PAGE_SIZE; |
| arg->pages = rqstp->rq_pages + 1; |
| arg->page_base = 0; |
| /* save at least one page for response */ |
| arg->page_len = (pages-2)*PAGE_SIZE; |
| arg->len = (pages-1)*PAGE_SIZE; |
| arg->tail[0].iov_len = 0; |
| |
| try_to_freeze(); |
| cond_resched(); |
| if (signalled()) |
| return -EINTR; |
| |
| spin_lock_bh(&pool->sp_lock); |
| if ((svsk = svc_sock_dequeue(pool)) != NULL) { |
| rqstp->rq_sock = svsk; |
| atomic_inc(&svsk->sk_inuse); |
| rqstp->rq_reserved = serv->sv_max_mesg; |
| atomic_add(rqstp->rq_reserved, &svsk->sk_reserved); |
| } else { |
| /* No data pending. Go to sleep */ |
| svc_thread_enqueue(pool, rqstp); |
| |
| /* |
| * We have to be able to interrupt this wait |
| * to bring down the daemons ... |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| add_wait_queue(&rqstp->rq_wait, &wait); |
| spin_unlock_bh(&pool->sp_lock); |
| |
| schedule_timeout(timeout); |
| |
| try_to_freeze(); |
| |
| spin_lock_bh(&pool->sp_lock); |
| remove_wait_queue(&rqstp->rq_wait, &wait); |
| |
| if (!(svsk = rqstp->rq_sock)) { |
| svc_thread_dequeue(pool, rqstp); |
| spin_unlock_bh(&pool->sp_lock); |
| dprintk("svc: server %p, no data yet\n", rqstp); |
| return signalled()? -EINTR : -EAGAIN; |
| } |
| } |
| spin_unlock_bh(&pool->sp_lock); |
| |
| dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n", |
| rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse)); |
| len = svsk->sk_recvfrom(rqstp); |
| dprintk("svc: got len=%d\n", len); |
| |
| /* No data, incomplete (TCP) read, or accept() */ |
| if (len == 0 || len == -EAGAIN) { |
| rqstp->rq_res.len = 0; |
| svc_sock_release(rqstp); |
| return -EAGAIN; |
| } |
| svsk->sk_lastrecv = get_seconds(); |
| clear_bit(SK_OLD, &svsk->sk_flags); |
| |
| rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); |
| rqstp->rq_chandle.defer = svc_defer; |
| |
| if (serv->sv_stats) |
| serv->sv_stats->netcnt++; |
| return len; |
| } |
| |
| /* |
| * Drop request |
| */ |
| void |
| svc_drop(struct svc_rqst *rqstp) |
| { |
| dprintk("svc: socket %p dropped request\n", rqstp->rq_sock); |
| svc_sock_release(rqstp); |
| } |
| |
| /* |
| * Return reply to client. |
| */ |
| int |
| svc_send(struct svc_rqst *rqstp) |
| { |
| struct svc_sock *svsk; |
| int len; |
| struct xdr_buf *xb; |
| |
| if ((svsk = rqstp->rq_sock) == NULL) { |
| printk(KERN_WARNING "NULL socket pointer in %s:%d\n", |
| __FILE__, __LINE__); |
| return -EFAULT; |
| } |
| |
| /* release the receive skb before sending the reply */ |
| svc_release_skb(rqstp); |
| |
| /* calculate over-all length */ |
| xb = & rqstp->rq_res; |
| xb->len = xb->head[0].iov_len + |
| xb->page_len + |
| xb->tail[0].iov_len; |
| |
| /* Grab svsk->sk_mutex to serialize outgoing data. */ |
| mutex_lock(&svsk->sk_mutex); |
| if (test_bit(SK_DEAD, &svsk->sk_flags)) |
| len = -ENOTCONN; |
| else |
| len = svsk->sk_sendto(rqstp); |
| mutex_unlock(&svsk->sk_mutex); |
| svc_sock_release(rqstp); |
| |
| if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) |
| return 0; |
| return len; |
| } |
| |
| /* |
| * Timer function to close old temporary sockets, using |
| * a mark-and-sweep algorithm. |
| */ |
| static void |
| svc_age_temp_sockets(unsigned long closure) |
| { |
| struct svc_serv *serv = (struct svc_serv *)closure; |
| struct svc_sock *svsk; |
| struct list_head *le, *next; |
| LIST_HEAD(to_be_aged); |
| |
| dprintk("svc_age_temp_sockets\n"); |
| |
| if (!spin_trylock_bh(&serv->sv_lock)) { |
| /* busy, try again 1 sec later */ |
| dprintk("svc_age_temp_sockets: busy\n"); |
| mod_timer(&serv->sv_temptimer, jiffies + HZ); |
| return; |
| } |
| |
| list_for_each_safe(le, next, &serv->sv_tempsocks) { |
| svsk = list_entry(le, struct svc_sock, sk_list); |
| |
| if (!test_and_set_bit(SK_OLD, &svsk->sk_flags)) |
| continue; |
| if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags)) |
| continue; |
| atomic_inc(&svsk->sk_inuse); |
| list_move(le, &to_be_aged); |
| set_bit(SK_CLOSE, &svsk->sk_flags); |
| set_bit(SK_DETACHED, &svsk->sk_flags); |
| } |
| spin_unlock_bh(&serv->sv_lock); |
| |
| while (!list_empty(&to_be_aged)) { |
| le = to_be_aged.next; |
| /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */ |
| list_del_init(le); |
| svsk = list_entry(le, struct svc_sock, sk_list); |
| |
| dprintk("queuing svsk %p for closing, %lu seconds old\n", |
| svsk, get_seconds() - svsk->sk_lastrecv); |
| |
| /* a thread will dequeue and close it soon */ |
| svc_sock_enqueue(svsk); |
| svc_sock_put(svsk); |
| } |
| |
| mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); |
| } |
| |
| /* |
| * Initialize socket for RPC use and create svc_sock struct |
| * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. |
| */ |
| static struct svc_sock *svc_setup_socket(struct svc_serv *serv, |
| struct socket *sock, |
| int *errp, int flags) |
| { |
| struct svc_sock *svsk; |
| struct sock *inet; |
| int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); |
| int is_temporary = flags & SVC_SOCK_TEMPORARY; |
| |
| dprintk("svc: svc_setup_socket %p\n", sock); |
| if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { |
| *errp = -ENOMEM; |
| return NULL; |
| } |
| |
| inet = sock->sk; |
| |
| /* Register socket with portmapper */ |
| if (*errp >= 0 && pmap_register) |
| *errp = svc_register(serv, inet->sk_protocol, |
| ntohs(inet_sk(inet)->sport)); |
| |
| if (*errp < 0) { |
| kfree(svsk); |
| return NULL; |
| } |
| |
| set_bit(SK_BUSY, &svsk->sk_flags); |
| inet->sk_user_data = svsk; |
| svsk->sk_sock = sock; |
| svsk->sk_sk = inet; |
| svsk->sk_ostate = inet->sk_state_change; |
| svsk->sk_odata = inet->sk_data_ready; |
| svsk->sk_owspace = inet->sk_write_space; |
| svsk->sk_server = serv; |
| atomic_set(&svsk->sk_inuse, 1); |
| svsk->sk_lastrecv = get_seconds(); |
| spin_lock_init(&svsk->sk_lock); |
| INIT_LIST_HEAD(&svsk->sk_deferred); |
| INIT_LIST_HEAD(&svsk->sk_ready); |
| mutex_init(&svsk->sk_mutex); |
| |
| /* Initialize the socket */ |
| if (sock->type == SOCK_DGRAM) |
| svc_udp_init(svsk); |
| else |
| svc_tcp_init(svsk); |
| |
| spin_lock_bh(&serv->sv_lock); |
| if (is_temporary) { |
| set_bit(SK_TEMP, &svsk->sk_flags); |
| list_add(&svsk->sk_list, &serv->sv_tempsocks); |
| serv->sv_tmpcnt++; |
| if (serv->sv_temptimer.function == NULL) { |
| /* setup timer to age temp sockets */ |
| setup_timer(&serv->sv_temptimer, svc_age_temp_sockets, |
| (unsigned long)serv); |
| mod_timer(&serv->sv_temptimer, |
| jiffies + svc_conn_age_period * HZ); |
| } |
| } else { |
| clear_bit(SK_TEMP, &svsk->sk_flags); |
| list_add(&svsk->sk_list, &serv->sv_permsocks); |
| } |
| spin_unlock_bh(&serv->sv_lock); |
| |
| dprintk("svc: svc_setup_socket created %p (inet %p)\n", |
| svsk, svsk->sk_sk); |
| |
| return svsk; |
| } |
| |
| int svc_addsock(struct svc_serv *serv, |
| int fd, |
| char *name_return, |
| int *proto) |
| { |
| int err = 0; |
| struct socket *so = sockfd_lookup(fd, &err); |
| struct svc_sock *svsk = NULL; |
| |
| if (!so) |
| return err; |
| if (so->sk->sk_family != AF_INET) |
| err = -EAFNOSUPPORT; |
| else if (so->sk->sk_protocol != IPPROTO_TCP && |
| so->sk->sk_protocol != IPPROTO_UDP) |
| err = -EPROTONOSUPPORT; |
| else if (so->state > SS_UNCONNECTED) |
| err = -EISCONN; |
| else { |
| svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS); |
| if (svsk) { |
| svc_sock_received(svsk); |
| err = 0; |
| } |
| } |
| if (err) { |
| sockfd_put(so); |
| return err; |
| } |
| if (proto) *proto = so->sk->sk_protocol; |
| return one_sock_name(name_return, svsk); |
| } |
| EXPORT_SYMBOL_GPL(svc_addsock); |
| |
| /* |
| * Create socket for RPC service. |
| */ |
| static int svc_create_socket(struct svc_serv *serv, int protocol, |
| struct sockaddr *sin, int len, int flags) |
| { |
| struct svc_sock *svsk; |
| struct socket *sock; |
| int error; |
| int type; |
| char buf[RPC_MAX_ADDRBUFLEN]; |
| |
| dprintk("svc: svc_create_socket(%s, %d, %s)\n", |
| serv->sv_program->pg_name, protocol, |
| __svc_print_addr(sin, buf, sizeof(buf))); |
| |
| if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { |
| printk(KERN_WARNING "svc: only UDP and TCP " |
| "sockets supported\n"); |
| return -EINVAL; |
| } |
| type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; |
| |
| error = sock_create_kern(sin->sa_family, type, protocol, &sock); |
| if (error < 0) |
| return error; |
| |
| svc_reclassify_socket(sock); |
| |
| if (type == SOCK_STREAM) |
| sock->sk->sk_reuse = 1; /* allow address reuse */ |
| error = kernel_bind(sock, sin, len); |
| if (error < 0) |
| goto bummer; |
| |
| if (protocol == IPPROTO_TCP) { |
| if ((error = kernel_listen(sock, 64)) < 0) |
| goto bummer; |
| } |
| |
| if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { |
| svc_sock_received(svsk); |
| return ntohs(inet_sk(svsk->sk_sk)->sport); |
| } |
| |
| bummer: |
| dprintk("svc: svc_create_socket error = %d\n", -error); |
| sock_release(sock); |
| return error; |
| } |
| |
| /* |
| * Remove a dead socket |
| */ |
| static void |
| svc_delete_socket(struct svc_sock *svsk) |
| { |
| struct svc_serv *serv; |
| struct sock *sk; |
| |
| dprintk("svc: svc_delete_socket(%p)\n", svsk); |
| |
| serv = svsk->sk_server; |
| sk = svsk->sk_sk; |
| |
| sk->sk_state_change = svsk->sk_ostate; |
| sk->sk_data_ready = svsk->sk_odata; |
| sk->sk_write_space = svsk->sk_owspace; |
| |
| spin_lock_bh(&serv->sv_lock); |
| |
| if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags)) |
| list_del_init(&svsk->sk_list); |
| /* |
| * We used to delete the svc_sock from whichever list |
| * it's sk_ready node was on, but we don't actually |
| * need to. This is because the only time we're called |
| * while still attached to a queue, the queue itself |
| * is about to be destroyed (in svc_destroy). |
| */ |
| if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) { |
| BUG_ON(atomic_read(&svsk->sk_inuse)<2); |
| atomic_dec(&svsk->sk_inuse); |
| if (test_bit(SK_TEMP, &svsk->sk_flags)) |
| serv->sv_tmpcnt--; |
| } |
| |
| spin_unlock_bh(&serv->sv_lock); |
| } |
| |
| static void svc_close_socket(struct svc_sock *svsk) |
| { |
| set_bit(SK_CLOSE, &svsk->sk_flags); |
| if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) |
| /* someone else will have to effect the close */ |
| return; |
| |
| atomic_inc(&svsk->sk_inuse); |
| svc_delete_socket(svsk); |
| clear_bit(SK_BUSY, &svsk->sk_flags); |
| svc_sock_put(svsk); |
| } |
| |
| void svc_force_close_socket(struct svc_sock *svsk) |
| { |
| set_bit(SK_CLOSE, &svsk->sk_flags); |
| if (test_bit(SK_BUSY, &svsk->sk_flags)) { |
| /* Waiting to be processed, but no threads left, |
| * So just remove it from the waiting list |
| */ |
| list_del_init(&svsk->sk_ready); |
| clear_bit(SK_BUSY, &svsk->sk_flags); |
| } |
| svc_close_socket(svsk); |
| } |
| |
| /** |
| * svc_makesock - Make a socket for nfsd and lockd |
| * @serv: RPC server structure |
| * @protocol: transport protocol to use |
| * @port: port to use |
| * @flags: requested socket characteristics |
| * |
| */ |
| int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port, |
| int flags) |
| { |
| struct sockaddr_in sin = { |
| .sin_family = AF_INET, |
| .sin_addr.s_addr = INADDR_ANY, |
| .sin_port = htons(port), |
| }; |
| |
| dprintk("svc: creating socket proto = %d\n", protocol); |
| return svc_create_socket(serv, protocol, (struct sockaddr *) &sin, |
| sizeof(sin), flags); |
| } |
| |
| /* |
| * Handle defer and revisit of requests |
| */ |
| |
| static void svc_revisit(struct cache_deferred_req *dreq, int too_many) |
| { |
| struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle); |
| struct svc_sock *svsk; |
| |
| if (too_many) { |
| svc_sock_put(dr->svsk); |
| kfree(dr); |
| return; |
| } |
| dprintk("revisit queued\n"); |
| svsk = dr->svsk; |
| dr->svsk = NULL; |
| spin_lock(&svsk->sk_lock); |
| list_add(&dr->handle.recent, &svsk->sk_deferred); |
| spin_unlock(&svsk->sk_lock); |
| set_bit(SK_DEFERRED, &svsk->sk_flags); |
| svc_sock_enqueue(svsk); |
| svc_sock_put(svsk); |
| } |
| |
| static struct cache_deferred_req * |
| svc_defer(struct cache_req *req) |
| { |
| struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); |
| int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len); |
| struct svc_deferred_req *dr; |
| |
| if (rqstp->rq_arg.page_len) |
| return NULL; /* if more than a page, give up FIXME */ |
| if (rqstp->rq_deferred) { |
| dr = rqstp->rq_deferred; |
| rqstp->rq_deferred = NULL; |
| } else { |
| int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; |
| /* FIXME maybe discard if size too large */ |
| dr = kmalloc(size, GFP_KERNEL); |
| if (dr == NULL) |
| return NULL; |
| |
| dr->handle.owner = rqstp->rq_server; |
| dr->prot = rqstp->rq_prot; |
| memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); |
| dr->addrlen = rqstp->rq_addrlen; |
| dr->daddr = rqstp->rq_daddr; |
| dr->argslen = rqstp->rq_arg.len >> 2; |
| memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2); |
| } |
| atomic_inc(&rqstp->rq_sock->sk_inuse); |
| dr->svsk = rqstp->rq_sock; |
| |
| dr->handle.revisit = svc_revisit; |
| return &dr->handle; |
| } |
| |
| /* |
| * recv data from a deferred request into an active one |
| */ |
| static int svc_deferred_recv(struct svc_rqst *rqstp) |
| { |
| struct svc_deferred_req *dr = rqstp->rq_deferred; |
| |
| rqstp->rq_arg.head[0].iov_base = dr->args; |
| rqstp->rq_arg.head[0].iov_len = dr->argslen<<2; |
| rqstp->rq_arg.page_len = 0; |
| rqstp->rq_arg.len = dr->argslen<<2; |
| rqstp->rq_prot = dr->prot; |
| memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); |
| rqstp->rq_addrlen = dr->addrlen; |
| rqstp->rq_daddr = dr->daddr; |
| rqstp->rq_respages = rqstp->rq_pages; |
| return dr->argslen<<2; |
| } |
| |
| |
| static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk) |
| { |
| struct svc_deferred_req *dr = NULL; |
| |
| if (!test_bit(SK_DEFERRED, &svsk->sk_flags)) |
| return NULL; |
| spin_lock(&svsk->sk_lock); |
| clear_bit(SK_DEFERRED, &svsk->sk_flags); |
| if (!list_empty(&svsk->sk_deferred)) { |
| dr = list_entry(svsk->sk_deferred.next, |
| struct svc_deferred_req, |
| handle.recent); |
| list_del_init(&dr->handle.recent); |
| set_bit(SK_DEFERRED, &svsk->sk_flags); |
| } |
| spin_unlock(&svsk->sk_lock); |
| return dr; |
| } |