| /* |
| * CXL Flash Device Driver |
| * |
| * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation |
| * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation |
| * |
| * Copyright (C) 2015 IBM Corporation |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include <misc/cxl.h> |
| |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_host.h> |
| #include <uapi/scsi/cxlflash_ioctl.h> |
| |
| #include "main.h" |
| #include "sislite.h" |
| #include "common.h" |
| |
| MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); |
| MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); |
| MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); |
| MODULE_LICENSE("GPL"); |
| |
| /** |
| * cmd_checkout() - checks out an AFU command |
| * @afu: AFU to checkout from. |
| * |
| * Commands are checked out in a round-robin fashion. Note that since |
| * the command pool is larger than the hardware queue, the majority of |
| * times we will only loop once or twice before getting a command. The |
| * buffer and CDB within the command are initialized (zeroed) prior to |
| * returning. |
| * |
| * Return: The checked out command or NULL when command pool is empty. |
| */ |
| static struct afu_cmd *cmd_checkout(struct afu *afu) |
| { |
| int k, dec = CXLFLASH_NUM_CMDS; |
| struct afu_cmd *cmd; |
| |
| while (dec--) { |
| k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1)); |
| |
| cmd = &afu->cmd[k]; |
| |
| if (!atomic_dec_if_positive(&cmd->free)) { |
| pr_devel("%s: returning found index=%d cmd=%p\n", |
| __func__, cmd->slot, cmd); |
| memset(cmd->buf, 0, CMD_BUFSIZE); |
| memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); |
| return cmd; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * cmd_checkin() - checks in an AFU command |
| * @cmd: AFU command to checkin. |
| * |
| * Safe to pass commands that have already been checked in. Several |
| * internal tracking fields are reset as part of the checkin. Note |
| * that these are intentionally reset prior to toggling the free bit |
| * to avoid clobbering values in the event that the command is checked |
| * out right away. |
| */ |
| static void cmd_checkin(struct afu_cmd *cmd) |
| { |
| cmd->rcb.scp = NULL; |
| cmd->rcb.timeout = 0; |
| cmd->sa.ioasc = 0; |
| cmd->cmd_tmf = false; |
| cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */ |
| |
| if (unlikely(atomic_inc_return(&cmd->free) != 1)) { |
| pr_err("%s: Freeing cmd (%d) that is not in use!\n", |
| __func__, cmd->slot); |
| return; |
| } |
| |
| pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot); |
| } |
| |
| /** |
| * process_cmd_err() - command error handler |
| * @cmd: AFU command that experienced the error. |
| * @scp: SCSI command associated with the AFU command in error. |
| * |
| * Translates error bits from AFU command to SCSI command results. |
| */ |
| static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) |
| { |
| struct sisl_ioarcb *ioarcb; |
| struct sisl_ioasa *ioasa; |
| u32 resid; |
| |
| if (unlikely(!cmd)) |
| return; |
| |
| ioarcb = &(cmd->rcb); |
| ioasa = &(cmd->sa); |
| |
| if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { |
| resid = ioasa->resid; |
| scsi_set_resid(scp, resid); |
| pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n", |
| __func__, cmd, scp, resid); |
| } |
| |
| if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { |
| pr_debug("%s: cmd underrun cmd = %p scp = %p\n", |
| __func__, cmd, scp); |
| scp->result = (DID_ERROR << 16); |
| } |
| |
| pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d " |
| "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n", |
| __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc, |
| ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra, |
| ioasa->fc_extra); |
| |
| if (ioasa->rc.scsi_rc) { |
| /* We have a SCSI status */ |
| if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { |
| memcpy(scp->sense_buffer, ioasa->sense_data, |
| SISL_SENSE_DATA_LEN); |
| scp->result = ioasa->rc.scsi_rc; |
| } else |
| scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); |
| } |
| |
| /* |
| * We encountered an error. Set scp->result based on nature |
| * of error. |
| */ |
| if (ioasa->rc.fc_rc) { |
| /* We have an FC status */ |
| switch (ioasa->rc.fc_rc) { |
| case SISL_FC_RC_LINKDOWN: |
| scp->result = (DID_REQUEUE << 16); |
| break; |
| case SISL_FC_RC_RESID: |
| /* This indicates an FCP resid underrun */ |
| if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { |
| /* If the SISL_RC_FLAGS_OVERRUN flag was set, |
| * then we will handle this error else where. |
| * If not then we must handle it here. |
| * This is probably an AFU bug. |
| */ |
| scp->result = (DID_ERROR << 16); |
| } |
| break; |
| case SISL_FC_RC_RESIDERR: |
| /* Resid mismatch between adapter and device */ |
| case SISL_FC_RC_TGTABORT: |
| case SISL_FC_RC_ABORTOK: |
| case SISL_FC_RC_ABORTFAIL: |
| case SISL_FC_RC_NOLOGI: |
| case SISL_FC_RC_ABORTPEND: |
| case SISL_FC_RC_WRABORTPEND: |
| case SISL_FC_RC_NOEXP: |
| case SISL_FC_RC_INUSE: |
| scp->result = (DID_ERROR << 16); |
| break; |
| } |
| } |
| |
| if (ioasa->rc.afu_rc) { |
| /* We have an AFU error */ |
| switch (ioasa->rc.afu_rc) { |
| case SISL_AFU_RC_NO_CHANNELS: |
| scp->result = (DID_NO_CONNECT << 16); |
| break; |
| case SISL_AFU_RC_DATA_DMA_ERR: |
| switch (ioasa->afu_extra) { |
| case SISL_AFU_DMA_ERR_PAGE_IN: |
| /* Retry */ |
| scp->result = (DID_IMM_RETRY << 16); |
| break; |
| case SISL_AFU_DMA_ERR_INVALID_EA: |
| default: |
| scp->result = (DID_ERROR << 16); |
| } |
| break; |
| case SISL_AFU_RC_OUT_OF_DATA_BUFS: |
| /* Retry */ |
| scp->result = (DID_ALLOC_FAILURE << 16); |
| break; |
| default: |
| scp->result = (DID_ERROR << 16); |
| } |
| } |
| } |
| |
| /** |
| * cmd_complete() - command completion handler |
| * @cmd: AFU command that has completed. |
| * |
| * Prepares and submits command that has either completed or timed out to |
| * the SCSI stack. Checks AFU command back into command pool for non-internal |
| * (rcb.scp populated) commands. |
| */ |
| static void cmd_complete(struct afu_cmd *cmd) |
| { |
| struct scsi_cmnd *scp; |
| ulong lock_flags; |
| struct afu *afu = cmd->parent; |
| struct cxlflash_cfg *cfg = afu->parent; |
| bool cmd_is_tmf; |
| |
| spin_lock_irqsave(&cmd->slock, lock_flags); |
| cmd->sa.host_use_b[0] |= B_DONE; |
| spin_unlock_irqrestore(&cmd->slock, lock_flags); |
| |
| if (cmd->rcb.scp) { |
| scp = cmd->rcb.scp; |
| if (unlikely(cmd->sa.ioasc)) |
| process_cmd_err(cmd, scp); |
| else |
| scp->result = (DID_OK << 16); |
| |
| cmd_is_tmf = cmd->cmd_tmf; |
| cmd_checkin(cmd); /* Don't use cmd after here */ |
| |
| pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X " |
| "ioasc=%d\n", __func__, scp, scp->result, |
| cmd->sa.ioasc); |
| |
| scsi_dma_unmap(scp); |
| scp->scsi_done(scp); |
| |
| if (cmd_is_tmf) { |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| cfg->tmf_active = false; |
| wake_up_all_locked(&cfg->tmf_waitq); |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| } |
| } else |
| complete(&cmd->cevent); |
| } |
| |
| /** |
| * context_reset() - timeout handler for AFU commands |
| * @cmd: AFU command that timed out. |
| * |
| * Sends a reset to the AFU. |
| */ |
| static void context_reset(struct afu_cmd *cmd) |
| { |
| int nretry = 0; |
| u64 rrin = 0x1; |
| u64 room = 0; |
| struct afu *afu = cmd->parent; |
| ulong lock_flags; |
| |
| pr_debug("%s: cmd=%p\n", __func__, cmd); |
| |
| spin_lock_irqsave(&cmd->slock, lock_flags); |
| |
| /* Already completed? */ |
| if (cmd->sa.host_use_b[0] & B_DONE) { |
| spin_unlock_irqrestore(&cmd->slock, lock_flags); |
| return; |
| } |
| |
| cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT); |
| spin_unlock_irqrestore(&cmd->slock, lock_flags); |
| |
| /* |
| * We really want to send this reset at all costs, so spread |
| * out wait time on successive retries for available room. |
| */ |
| do { |
| room = readq_be(&afu->host_map->cmd_room); |
| atomic64_set(&afu->room, room); |
| if (room) |
| goto write_rrin; |
| udelay(1 << nretry); |
| } while (nretry++ < MC_ROOM_RETRY_CNT); |
| |
| pr_err("%s: no cmd_room to send reset\n", __func__); |
| return; |
| |
| write_rrin: |
| nretry = 0; |
| writeq_be(rrin, &afu->host_map->ioarrin); |
| do { |
| rrin = readq_be(&afu->host_map->ioarrin); |
| if (rrin != 0x1) |
| break; |
| /* Double delay each time */ |
| udelay(1 << nretry); |
| } while (nretry++ < MC_ROOM_RETRY_CNT); |
| } |
| |
| /** |
| * send_cmd() - sends an AFU command |
| * @afu: AFU associated with the host. |
| * @cmd: AFU command to send. |
| * |
| * Return: |
| * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure |
| */ |
| static int send_cmd(struct afu *afu, struct afu_cmd *cmd) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| int nretry = 0; |
| int rc = 0; |
| u64 room; |
| long newval; |
| |
| /* |
| * This routine is used by critical users such an AFU sync and to |
| * send a task management function (TMF). Thus we want to retry a |
| * bit before returning an error. To avoid the performance penalty |
| * of MMIO, we spread the update of 'room' over multiple commands. |
| */ |
| retry: |
| newval = atomic64_dec_if_positive(&afu->room); |
| if (!newval) { |
| do { |
| room = readq_be(&afu->host_map->cmd_room); |
| atomic64_set(&afu->room, room); |
| if (room) |
| goto write_ioarrin; |
| udelay(1 << nretry); |
| } while (nretry++ < MC_ROOM_RETRY_CNT); |
| |
| dev_err(dev, "%s: no cmd_room to send 0x%X\n", |
| __func__, cmd->rcb.cdb[0]); |
| |
| goto no_room; |
| } else if (unlikely(newval < 0)) { |
| /* This should be rare. i.e. Only if two threads race and |
| * decrement before the MMIO read is done. In this case |
| * just benefit from the other thread having updated |
| * afu->room. |
| */ |
| if (nretry++ < MC_ROOM_RETRY_CNT) { |
| udelay(1 << nretry); |
| goto retry; |
| } |
| |
| goto no_room; |
| } |
| |
| write_ioarrin: |
| writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin); |
| out: |
| pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd, |
| cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc); |
| return rc; |
| |
| no_room: |
| afu->read_room = true; |
| kref_get(&cfg->afu->mapcount); |
| schedule_work(&cfg->work_q); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| |
| /** |
| * wait_resp() - polls for a response or timeout to a sent AFU command |
| * @afu: AFU associated with the host. |
| * @cmd: AFU command that was sent. |
| */ |
| static void wait_resp(struct afu *afu, struct afu_cmd *cmd) |
| { |
| ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); |
| |
| timeout = wait_for_completion_timeout(&cmd->cevent, timeout); |
| if (!timeout) |
| context_reset(cmd); |
| |
| if (unlikely(cmd->sa.ioasc != 0)) |
| pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, " |
| "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0], |
| cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc, |
| cmd->sa.rc.fc_rc); |
| } |
| |
| /** |
| * send_tmf() - sends a Task Management Function (TMF) |
| * @afu: AFU to checkout from. |
| * @scp: SCSI command from stack. |
| * @tmfcmd: TMF command to send. |
| * |
| * Return: |
| * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure |
| */ |
| static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd) |
| { |
| struct afu_cmd *cmd; |
| |
| u32 port_sel = scp->device->channel + 1; |
| short lflag = 0; |
| struct Scsi_Host *host = scp->device->host; |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; |
| struct device *dev = &cfg->dev->dev; |
| ulong lock_flags; |
| int rc = 0; |
| ulong to; |
| |
| cmd = cmd_checkout(afu); |
| if (unlikely(!cmd)) { |
| dev_err(dev, "%s: could not get a free command\n", __func__); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| |
| /* When Task Management Function is active do not send another */ |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| if (cfg->tmf_active) |
| wait_event_interruptible_lock_irq(cfg->tmf_waitq, |
| !cfg->tmf_active, |
| cfg->tmf_slock); |
| cfg->tmf_active = true; |
| cmd->cmd_tmf = true; |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| cmd->rcb.ctx_id = afu->ctx_hndl; |
| cmd->rcb.port_sel = port_sel; |
| cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); |
| |
| lflag = SISL_REQ_FLAGS_TMF_CMD; |
| |
| cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | |
| SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); |
| |
| /* Stash the scp in the reserved field, for reuse during interrupt */ |
| cmd->rcb.scp = scp; |
| |
| /* Copy the CDB from the cmd passed in */ |
| memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); |
| |
| /* Send the command */ |
| rc = send_cmd(afu, cmd); |
| if (unlikely(rc)) { |
| cmd_checkin(cmd); |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| cfg->tmf_active = false; |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| goto out; |
| } |
| |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| to = msecs_to_jiffies(5000); |
| to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, |
| !cfg->tmf_active, |
| cfg->tmf_slock, |
| to); |
| if (!to) { |
| cfg->tmf_active = false; |
| dev_err(dev, "%s: TMF timed out!\n", __func__); |
| rc = -1; |
| } |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| out: |
| return rc; |
| } |
| |
| static void afu_unmap(struct kref *ref) |
| { |
| struct afu *afu = container_of(ref, struct afu, mapcount); |
| |
| if (likely(afu->afu_map)) { |
| cxl_psa_unmap((void __iomem *)afu->afu_map); |
| afu->afu_map = NULL; |
| } |
| } |
| |
| /** |
| * cxlflash_driver_info() - information handler for this host driver |
| * @host: SCSI host associated with device. |
| * |
| * Return: A string describing the device. |
| */ |
| static const char *cxlflash_driver_info(struct Scsi_Host *host) |
| { |
| return CXLFLASH_ADAPTER_NAME; |
| } |
| |
| /** |
| * cxlflash_queuecommand() - sends a mid-layer request |
| * @host: SCSI host associated with device. |
| * @scp: SCSI command to send. |
| * |
| * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure |
| */ |
| static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) |
| { |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| struct afu_cmd *cmd; |
| u32 port_sel = scp->device->channel + 1; |
| int nseg, i, ncount; |
| struct scatterlist *sg; |
| ulong lock_flags; |
| short lflag = 0; |
| int rc = 0; |
| int kref_got = 0; |
| |
| dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " |
| "cdb=(%08X-%08X-%08X-%08X)\n", |
| __func__, scp, host->host_no, scp->device->channel, |
| scp->device->id, scp->device->lun, |
| get_unaligned_be32(&((u32 *)scp->cmnd)[0]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[1]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[2]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[3])); |
| |
| /* |
| * If a Task Management Function is active, wait for it to complete |
| * before continuing with regular commands. |
| */ |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| if (cfg->tmf_active) { |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| switch (cfg->state) { |
| case STATE_RESET: |
| dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| case STATE_FAILTERM: |
| dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__); |
| scp->result = (DID_NO_CONNECT << 16); |
| scp->scsi_done(scp); |
| rc = 0; |
| goto out; |
| default: |
| break; |
| } |
| |
| cmd = cmd_checkout(afu); |
| if (unlikely(!cmd)) { |
| dev_err(dev, "%s: could not get a free command\n", __func__); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| |
| kref_get(&cfg->afu->mapcount); |
| kref_got = 1; |
| |
| cmd->rcb.ctx_id = afu->ctx_hndl; |
| cmd->rcb.port_sel = port_sel; |
| cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); |
| |
| if (scp->sc_data_direction == DMA_TO_DEVICE) |
| lflag = SISL_REQ_FLAGS_HOST_WRITE; |
| else |
| lflag = SISL_REQ_FLAGS_HOST_READ; |
| |
| cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | |
| SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); |
| |
| /* Stash the scp in the reserved field, for reuse during interrupt */ |
| cmd->rcb.scp = scp; |
| |
| nseg = scsi_dma_map(scp); |
| if (unlikely(nseg < 0)) { |
| dev_err(dev, "%s: Fail DMA map! nseg=%d\n", |
| __func__, nseg); |
| rc = SCSI_MLQUEUE_HOST_BUSY; |
| goto out; |
| } |
| |
| ncount = scsi_sg_count(scp); |
| scsi_for_each_sg(scp, sg, ncount, i) { |
| cmd->rcb.data_len = sg_dma_len(sg); |
| cmd->rcb.data_ea = sg_dma_address(sg); |
| } |
| |
| /* Copy the CDB from the scsi_cmnd passed in */ |
| memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); |
| |
| /* Send the command */ |
| rc = send_cmd(afu, cmd); |
| if (unlikely(rc)) { |
| cmd_checkin(cmd); |
| scsi_dma_unmap(scp); |
| } |
| |
| out: |
| if (kref_got) |
| kref_put(&afu->mapcount, afu_unmap); |
| pr_devel("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) |
| { |
| struct pci_dev *pdev = cfg->dev; |
| |
| if (pci_channel_offline(pdev)) |
| wait_event_timeout(cfg->reset_waitq, |
| !pci_channel_offline(pdev), |
| CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); |
| } |
| |
| /** |
| * free_mem() - free memory associated with the AFU |
| * @cfg: Internal structure associated with the host. |
| */ |
| static void free_mem(struct cxlflash_cfg *cfg) |
| { |
| int i; |
| char *buf = NULL; |
| struct afu *afu = cfg->afu; |
| |
| if (cfg->afu) { |
| for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { |
| buf = afu->cmd[i].buf; |
| if (!((u64)buf & (PAGE_SIZE - 1))) |
| free_page((ulong)buf); |
| } |
| |
| free_pages((ulong)afu, get_order(sizeof(struct afu))); |
| cfg->afu = NULL; |
| } |
| } |
| |
| /** |
| * stop_afu() - stops the AFU command timers and unmaps the MMIO space |
| * @cfg: Internal structure associated with the host. |
| * |
| * Safe to call with AFU in a partially allocated/initialized state. |
| * |
| * Cleans up all state associated with the command queue, and unmaps |
| * the MMIO space. |
| * |
| * - complete() will take care of commands we initiated (they'll be checked |
| * in as part of the cleanup that occurs after the completion) |
| * |
| * - cmd_checkin() will take care of entries that we did not initiate and that |
| * have not (and will not) complete because they are sitting on a [now stale] |
| * hardware queue |
| */ |
| static void stop_afu(struct cxlflash_cfg *cfg) |
| { |
| int i; |
| struct afu *afu = cfg->afu; |
| struct afu_cmd *cmd; |
| |
| if (likely(afu)) { |
| for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { |
| cmd = &afu->cmd[i]; |
| complete(&cmd->cevent); |
| if (!atomic_read(&cmd->free)) |
| cmd_checkin(cmd); |
| } |
| |
| if (likely(afu->afu_map)) { |
| cxl_psa_unmap((void __iomem *)afu->afu_map); |
| afu->afu_map = NULL; |
| } |
| kref_put(&afu->mapcount, afu_unmap); |
| } |
| } |
| |
| /** |
| * term_mc() - terminates the master context |
| * @cfg: Internal structure associated with the host. |
| * @level: Depth of allocation, where to begin waterfall tear down. |
| * |
| * Safe to call with AFU/MC in partially allocated/initialized state. |
| */ |
| static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level) |
| { |
| int rc = 0; |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| |
| if (!afu || !cfg->mcctx) { |
| dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n", |
| __func__); |
| return; |
| } |
| |
| switch (level) { |
| case UNDO_START: |
| rc = cxl_stop_context(cfg->mcctx); |
| BUG_ON(rc); |
| case UNMAP_THREE: |
| cxl_unmap_afu_irq(cfg->mcctx, 3, afu); |
| case UNMAP_TWO: |
| cxl_unmap_afu_irq(cfg->mcctx, 2, afu); |
| case UNMAP_ONE: |
| cxl_unmap_afu_irq(cfg->mcctx, 1, afu); |
| case FREE_IRQ: |
| cxl_free_afu_irqs(cfg->mcctx); |
| case RELEASE_CONTEXT: |
| cfg->mcctx = NULL; |
| } |
| } |
| |
| /** |
| * term_afu() - terminates the AFU |
| * @cfg: Internal structure associated with the host. |
| * |
| * Safe to call with AFU/MC in partially allocated/initialized state. |
| */ |
| static void term_afu(struct cxlflash_cfg *cfg) |
| { |
| term_mc(cfg, UNDO_START); |
| |
| if (cfg->afu) |
| stop_afu(cfg); |
| |
| pr_debug("%s: returning\n", __func__); |
| } |
| |
| /** |
| * cxlflash_remove() - PCI entry point to tear down host |
| * @pdev: PCI device associated with the host. |
| * |
| * Safe to use as a cleanup in partially allocated/initialized state. |
| */ |
| static void cxlflash_remove(struct pci_dev *pdev) |
| { |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| ulong lock_flags; |
| |
| /* If a Task Management Function is active, wait for it to complete |
| * before continuing with remove. |
| */ |
| spin_lock_irqsave(&cfg->tmf_slock, lock_flags); |
| if (cfg->tmf_active) |
| wait_event_interruptible_lock_irq(cfg->tmf_waitq, |
| !cfg->tmf_active, |
| cfg->tmf_slock); |
| spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); |
| |
| cfg->state = STATE_FAILTERM; |
| cxlflash_stop_term_user_contexts(cfg); |
| |
| switch (cfg->init_state) { |
| case INIT_STATE_SCSI: |
| cxlflash_term_local_luns(cfg); |
| scsi_remove_host(cfg->host); |
| /* fall through */ |
| case INIT_STATE_AFU: |
| cancel_work_sync(&cfg->work_q); |
| term_afu(cfg); |
| case INIT_STATE_PCI: |
| pci_release_regions(cfg->dev); |
| pci_disable_device(pdev); |
| case INIT_STATE_NONE: |
| free_mem(cfg); |
| scsi_host_put(cfg->host); |
| break; |
| } |
| |
| pr_debug("%s: returning\n", __func__); |
| } |
| |
| /** |
| * alloc_mem() - allocates the AFU and its command pool |
| * @cfg: Internal structure associated with the host. |
| * |
| * A partially allocated state remains on failure. |
| * |
| * Return: |
| * 0 on success |
| * -ENOMEM on failure to allocate memory |
| */ |
| static int alloc_mem(struct cxlflash_cfg *cfg) |
| { |
| int rc = 0; |
| int i; |
| char *buf = NULL; |
| struct device *dev = &cfg->dev->dev; |
| |
| /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */ |
| cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(sizeof(struct afu))); |
| if (unlikely(!cfg->afu)) { |
| dev_err(dev, "%s: cannot get %d free pages\n", |
| __func__, get_order(sizeof(struct afu))); |
| rc = -ENOMEM; |
| goto out; |
| } |
| cfg->afu->parent = cfg; |
| cfg->afu->afu_map = NULL; |
| |
| for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) { |
| if (!((u64)buf & (PAGE_SIZE - 1))) { |
| buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
| if (unlikely(!buf)) { |
| dev_err(dev, |
| "%s: Allocate command buffers fail!\n", |
| __func__); |
| rc = -ENOMEM; |
| free_mem(cfg); |
| goto out; |
| } |
| } |
| |
| cfg->afu->cmd[i].buf = buf; |
| atomic_set(&cfg->afu->cmd[i].free, 1); |
| cfg->afu->cmd[i].slot = i; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| /** |
| * init_pci() - initializes the host as a PCI device |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_pci(struct cxlflash_cfg *cfg) |
| { |
| struct pci_dev *pdev = cfg->dev; |
| int rc = 0; |
| |
| cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0); |
| rc = pci_request_regions(pdev, CXLFLASH_NAME); |
| if (rc < 0) { |
| dev_err(&pdev->dev, |
| "%s: Couldn't register memory range of registers\n", |
| __func__); |
| goto out; |
| } |
| |
| rc = pci_enable_device(pdev); |
| if (rc || pci_channel_offline(pdev)) { |
| if (pci_channel_offline(pdev)) { |
| cxlflash_wait_for_pci_err_recovery(cfg); |
| rc = pci_enable_device(pdev); |
| } |
| |
| if (rc) { |
| dev_err(&pdev->dev, "%s: Cannot enable adapter\n", |
| __func__); |
| cxlflash_wait_for_pci_err_recovery(cfg); |
| goto out_release_regions; |
| } |
| } |
| |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
| if (rc < 0) { |
| dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n", |
| __func__); |
| rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| } |
| |
| if (rc < 0) { |
| dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n", |
| __func__); |
| goto out_disable; |
| } |
| |
| pci_set_master(pdev); |
| |
| if (pci_channel_offline(pdev)) { |
| cxlflash_wait_for_pci_err_recovery(cfg); |
| if (pci_channel_offline(pdev)) { |
| rc = -EIO; |
| goto out_msi_disable; |
| } |
| } |
| |
| rc = pci_save_state(pdev); |
| |
| if (rc != PCIBIOS_SUCCESSFUL) { |
| dev_err(&pdev->dev, "%s: Failed to save PCI config space\n", |
| __func__); |
| rc = -EIO; |
| goto cleanup_nolog; |
| } |
| |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| |
| cleanup_nolog: |
| out_msi_disable: |
| cxlflash_wait_for_pci_err_recovery(cfg); |
| out_disable: |
| pci_disable_device(pdev); |
| out_release_regions: |
| pci_release_regions(pdev); |
| goto out; |
| |
| } |
| |
| /** |
| * init_scsi() - adds the host to the SCSI stack and kicks off host scan |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_scsi(struct cxlflash_cfg *cfg) |
| { |
| struct pci_dev *pdev = cfg->dev; |
| int rc = 0; |
| |
| rc = scsi_add_host(cfg->host, &pdev->dev); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n", |
| __func__, rc); |
| goto out; |
| } |
| |
| scsi_scan_host(cfg->host); |
| |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * set_port_online() - transitions the specified host FC port to online state |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * |
| * The provided MMIO region must be mapped prior to call. Online state means |
| * that the FC link layer has synced, completed the handshaking process, and |
| * is ready for login to start. |
| */ |
| static void set_port_online(__be64 __iomem *fc_regs) |
| { |
| u64 cmdcfg; |
| |
| cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ |
| cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ |
| writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| } |
| |
| /** |
| * set_port_offline() - transitions the specified host FC port to offline state |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * |
| * The provided MMIO region must be mapped prior to call. |
| */ |
| static void set_port_offline(__be64 __iomem *fc_regs) |
| { |
| u64 cmdcfg; |
| |
| cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ |
| cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ |
| writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); |
| } |
| |
| /** |
| * wait_port_online() - waits for the specified host FC port come online |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * @delay_us: Number of microseconds to delay between reading port status. |
| * @nretry: Number of cycles to retry reading port status. |
| * |
| * The provided MMIO region must be mapped prior to call. This will timeout |
| * when the cable is not plugged in. |
| * |
| * Return: |
| * TRUE (1) when the specified port is online |
| * FALSE (0) when the specified port fails to come online after timeout |
| * -EINVAL when @delay_us is less than 1000 |
| */ |
| static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) |
| { |
| u64 status; |
| |
| if (delay_us < 1000) { |
| pr_err("%s: invalid delay specified %d\n", __func__, delay_us); |
| return -EINVAL; |
| } |
| |
| do { |
| msleep(delay_us / 1000); |
| status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); |
| } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && |
| nretry--); |
| |
| return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); |
| } |
| |
| /** |
| * wait_port_offline() - waits for the specified host FC port go offline |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * @delay_us: Number of microseconds to delay between reading port status. |
| * @nretry: Number of cycles to retry reading port status. |
| * |
| * The provided MMIO region must be mapped prior to call. |
| * |
| * Return: |
| * TRUE (1) when the specified port is offline |
| * FALSE (0) when the specified port fails to go offline after timeout |
| * -EINVAL when @delay_us is less than 1000 |
| */ |
| static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) |
| { |
| u64 status; |
| |
| if (delay_us < 1000) { |
| pr_err("%s: invalid delay specified %d\n", __func__, delay_us); |
| return -EINVAL; |
| } |
| |
| do { |
| msleep(delay_us / 1000); |
| status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); |
| } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && |
| nretry--); |
| |
| return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); |
| } |
| |
| /** |
| * afu_set_wwpn() - configures the WWPN for the specified host FC port |
| * @afu: AFU associated with the host that owns the specified FC port. |
| * @port: Port number being configured. |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * @wwpn: The world-wide-port-number previously discovered for port. |
| * |
| * The provided MMIO region must be mapped prior to call. As part of the |
| * sequence to configure the WWPN, the port is toggled offline and then back |
| * online. This toggling action can cause this routine to delay up to a few |
| * seconds. When configured to use the internal LUN feature of the AFU, a |
| * failure to come online is overridden. |
| * |
| * Return: |
| * 0 when the WWPN is successfully written and the port comes back online |
| * -1 when the port fails to go offline or come back up online |
| */ |
| static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, |
| u64 wwpn) |
| { |
| int rc = 0; |
| |
| set_port_offline(fc_regs); |
| |
| if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) { |
| pr_debug("%s: wait on port %d to go offline timed out\n", |
| __func__, port); |
| rc = -1; /* but continue on to leave the port back online */ |
| } |
| |
| if (rc == 0) |
| writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); |
| |
| /* Always return success after programming WWPN */ |
| rc = 0; |
| |
| set_port_online(fc_regs); |
| |
| if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) { |
| pr_err("%s: wait on port %d to go online timed out\n", |
| __func__, port); |
| } |
| |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| |
| return rc; |
| } |
| |
| /** |
| * afu_link_reset() - resets the specified host FC port |
| * @afu: AFU associated with the host that owns the specified FC port. |
| * @port: Port number being configured. |
| * @fc_regs: Top of MMIO region defined for specified port. |
| * |
| * The provided MMIO region must be mapped prior to call. The sequence to |
| * reset the port involves toggling it offline and then back online. This |
| * action can cause this routine to delay up to a few seconds. An effort |
| * is made to maintain link with the device by switching to host to use |
| * the alternate port exclusively while the reset takes place. |
| * failure to come online is overridden. |
| */ |
| static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) |
| { |
| u64 port_sel; |
| |
| /* first switch the AFU to the other links, if any */ |
| port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); |
| port_sel &= ~(1ULL << port); |
| writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); |
| cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); |
| |
| set_port_offline(fc_regs); |
| if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) |
| pr_err("%s: wait on port %d to go offline timed out\n", |
| __func__, port); |
| |
| set_port_online(fc_regs); |
| if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, |
| FC_PORT_STATUS_RETRY_CNT)) |
| pr_err("%s: wait on port %d to go online timed out\n", |
| __func__, port); |
| |
| /* switch back to include this port */ |
| port_sel |= (1ULL << port); |
| writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); |
| cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); |
| |
| pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel); |
| } |
| |
| /* |
| * Asynchronous interrupt information table |
| */ |
| static const struct asyc_intr_info ainfo[] = { |
| {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET}, |
| {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0}, |
| {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET}, |
| {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET}, |
| {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR}, |
| {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST}, |
| {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0}, |
| {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST}, |
| {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET}, |
| {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0}, |
| {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET}, |
| {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET}, |
| {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR}, |
| {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST}, |
| {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0}, |
| {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST}, |
| {0x0, "", 0, 0} /* terminator */ |
| }; |
| |
| /** |
| * find_ainfo() - locates and returns asynchronous interrupt information |
| * @status: Status code set by AFU on error. |
| * |
| * Return: The located information or NULL when the status code is invalid. |
| */ |
| static const struct asyc_intr_info *find_ainfo(u64 status) |
| { |
| const struct asyc_intr_info *info; |
| |
| for (info = &ainfo[0]; info->status; info++) |
| if (info->status == status) |
| return info; |
| |
| return NULL; |
| } |
| |
| /** |
| * afu_err_intr_init() - clears and initializes the AFU for error interrupts |
| * @afu: AFU associated with the host. |
| */ |
| static void afu_err_intr_init(struct afu *afu) |
| { |
| int i; |
| u64 reg; |
| |
| /* global async interrupts: AFU clears afu_ctrl on context exit |
| * if async interrupts were sent to that context. This prevents |
| * the AFU form sending further async interrupts when |
| * there is |
| * nobody to receive them. |
| */ |
| |
| /* mask all */ |
| writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); |
| /* set LISN# to send and point to master context */ |
| reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); |
| |
| if (afu->internal_lun) |
| reg |= 1; /* Bit 63 indicates local lun */ |
| writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); |
| /* clear all */ |
| writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); |
| /* unmask bits that are of interest */ |
| /* note: afu can send an interrupt after this step */ |
| writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); |
| /* clear again in case a bit came on after previous clear but before */ |
| /* unmask */ |
| writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); |
| |
| /* Clear/Set internal lun bits */ |
| reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); |
| reg &= SISL_FC_INTERNAL_MASK; |
| if (afu->internal_lun) |
| reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); |
| writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); |
| |
| /* now clear FC errors */ |
| for (i = 0; i < NUM_FC_PORTS; i++) { |
| writeq_be(0xFFFFFFFFU, |
| &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]); |
| writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]); |
| } |
| |
| /* sync interrupts for master's IOARRIN write */ |
| /* note that unlike asyncs, there can be no pending sync interrupts */ |
| /* at this time (this is a fresh context and master has not written */ |
| /* IOARRIN yet), so there is nothing to clear. */ |
| |
| /* set LISN#, it is always sent to the context that wrote IOARRIN */ |
| writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl); |
| writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask); |
| } |
| |
| /** |
| * cxlflash_sync_err_irq() - interrupt handler for synchronous errors |
| * @irq: Interrupt number. |
| * @data: Private data provided at interrupt registration, the AFU. |
| * |
| * Return: Always return IRQ_HANDLED. |
| */ |
| static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) |
| { |
| struct afu *afu = (struct afu *)data; |
| u64 reg; |
| u64 reg_unmasked; |
| |
| reg = readq_be(&afu->host_map->intr_status); |
| reg_unmasked = (reg & SISL_ISTATUS_UNMASK); |
| |
| if (reg_unmasked == 0UL) { |
| pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n", |
| __func__, (u64)afu, reg); |
| goto cxlflash_sync_err_irq_exit; |
| } |
| |
| pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n", |
| __func__, (u64)afu, reg); |
| |
| writeq_be(reg_unmasked, &afu->host_map->intr_clear); |
| |
| cxlflash_sync_err_irq_exit: |
| pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) |
| * @irq: Interrupt number. |
| * @data: Private data provided at interrupt registration, the AFU. |
| * |
| * Return: Always return IRQ_HANDLED. |
| */ |
| static irqreturn_t cxlflash_rrq_irq(int irq, void *data) |
| { |
| struct afu *afu = (struct afu *)data; |
| struct afu_cmd *cmd; |
| bool toggle = afu->toggle; |
| u64 entry, |
| *hrrq_start = afu->hrrq_start, |
| *hrrq_end = afu->hrrq_end, |
| *hrrq_curr = afu->hrrq_curr; |
| |
| /* Process however many RRQ entries that are ready */ |
| while (true) { |
| entry = *hrrq_curr; |
| |
| if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) |
| break; |
| |
| cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT); |
| cmd_complete(cmd); |
| |
| /* Advance to next entry or wrap and flip the toggle bit */ |
| if (hrrq_curr < hrrq_end) |
| hrrq_curr++; |
| else { |
| hrrq_curr = hrrq_start; |
| toggle ^= SISL_RESP_HANDLE_T_BIT; |
| } |
| } |
| |
| afu->hrrq_curr = hrrq_curr; |
| afu->toggle = toggle; |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * cxlflash_async_err_irq() - interrupt handler for asynchronous errors |
| * @irq: Interrupt number. |
| * @data: Private data provided at interrupt registration, the AFU. |
| * |
| * Return: Always return IRQ_HANDLED. |
| */ |
| static irqreturn_t cxlflash_async_err_irq(int irq, void *data) |
| { |
| struct afu *afu = (struct afu *)data; |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| u64 reg_unmasked; |
| const struct asyc_intr_info *info; |
| struct sisl_global_map __iomem *global = &afu->afu_map->global; |
| u64 reg; |
| u8 port; |
| int i; |
| |
| reg = readq_be(&global->regs.aintr_status); |
| reg_unmasked = (reg & SISL_ASTATUS_UNMASK); |
| |
| if (reg_unmasked == 0) { |
| dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n", |
| __func__, reg); |
| goto out; |
| } |
| |
| /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ |
| writeq_be(reg_unmasked, &global->regs.aintr_clear); |
| |
| /* Check each bit that is on */ |
| for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) { |
| info = find_ainfo(1ULL << i); |
| if (((reg_unmasked & 0x1) == 0) || !info) |
| continue; |
| |
| port = info->port; |
| |
| dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n", |
| __func__, port, info->desc, |
| readq_be(&global->fc_regs[port][FC_STATUS / 8])); |
| |
| /* |
| * Do link reset first, some OTHER errors will set FC_ERROR |
| * again if cleared before or w/o a reset |
| */ |
| if (info->action & LINK_RESET) { |
| dev_err(dev, "%s: FC Port %d: resetting link\n", |
| __func__, port); |
| cfg->lr_state = LINK_RESET_REQUIRED; |
| cfg->lr_port = port; |
| kref_get(&cfg->afu->mapcount); |
| schedule_work(&cfg->work_q); |
| } |
| |
| if (info->action & CLR_FC_ERROR) { |
| reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]); |
| |
| /* |
| * Since all errors are unmasked, FC_ERROR and FC_ERRCAP |
| * should be the same and tracing one is sufficient. |
| */ |
| |
| dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n", |
| __func__, port, reg); |
| |
| writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]); |
| writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]); |
| } |
| |
| if (info->action & SCAN_HOST) { |
| atomic_inc(&cfg->scan_host_needed); |
| kref_get(&cfg->afu->mapcount); |
| schedule_work(&cfg->work_q); |
| } |
| } |
| |
| out: |
| dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * start_context() - starts the master context |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: A success or failure value from CXL services. |
| */ |
| static int start_context(struct cxlflash_cfg *cfg) |
| { |
| int rc = 0; |
| |
| rc = cxl_start_context(cfg->mcctx, |
| cfg->afu->work.work_element_descriptor, |
| NULL); |
| |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * read_vpd() - obtains the WWPNs from VPD |
| * @cfg: Internal structure associated with the host. |
| * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) |
| { |
| struct pci_dev *dev = cfg->parent_dev; |
| int rc = 0; |
| int ro_start, ro_size, i, j, k; |
| ssize_t vpd_size; |
| char vpd_data[CXLFLASH_VPD_LEN]; |
| char tmp_buf[WWPN_BUF_LEN] = { 0 }; |
| char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" }; |
| |
| /* Get the VPD data from the device */ |
| vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); |
| if (unlikely(vpd_size <= 0)) { |
| dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n", |
| __func__, vpd_size); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| /* Get the read only section offset */ |
| ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, |
| PCI_VPD_LRDT_RO_DATA); |
| if (unlikely(ro_start < 0)) { |
| dev_err(&dev->dev, "%s: VPD Read-only data not found\n", |
| __func__); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| /* Get the read only section size, cap when extends beyond read VPD */ |
| ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); |
| j = ro_size; |
| i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| if (unlikely((i + j) > vpd_size)) { |
| pr_debug("%s: Might need to read more VPD (%d > %ld)\n", |
| __func__, (i + j), vpd_size); |
| ro_size = vpd_size - i; |
| } |
| |
| /* |
| * Find the offset of the WWPN tag within the read only |
| * VPD data and validate the found field (partials are |
| * no good to us). Convert the ASCII data to an integer |
| * value. Note that we must copy to a temporary buffer |
| * because the conversion service requires that the ASCII |
| * string be terminated. |
| */ |
| for (k = 0; k < NUM_FC_PORTS; k++) { |
| j = ro_size; |
| i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| |
| i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); |
| if (unlikely(i < 0)) { |
| dev_err(&dev->dev, "%s: Port %d WWPN not found " |
| "in VPD\n", __func__, k); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| j = pci_vpd_info_field_size(&vpd_data[i]); |
| i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { |
| dev_err(&dev->dev, "%s: Port %d WWPN incomplete or " |
| "VPD corrupt\n", |
| __func__, k); |
| rc = -ENODEV; |
| goto out; |
| } |
| |
| memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); |
| rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); |
| if (unlikely(rc)) { |
| dev_err(&dev->dev, "%s: Fail to convert port %d WWPN " |
| "to integer\n", __func__, k); |
| rc = -ENODEV; |
| goto out; |
| } |
| } |
| |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * init_pcr() - initialize the provisioning and control registers |
| * @cfg: Internal structure associated with the host. |
| * |
| * Also sets up fast access to the mapped registers and initializes AFU |
| * command fields that never change. |
| */ |
| static void init_pcr(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct sisl_ctrl_map __iomem *ctrl_map; |
| int i; |
| |
| for (i = 0; i < MAX_CONTEXT; i++) { |
| ctrl_map = &afu->afu_map->ctrls[i].ctrl; |
| /* Disrupt any clients that could be running */ |
| /* e.g. clients that survived a master restart */ |
| writeq_be(0, &ctrl_map->rht_start); |
| writeq_be(0, &ctrl_map->rht_cnt_id); |
| writeq_be(0, &ctrl_map->ctx_cap); |
| } |
| |
| /* Copy frequently used fields into afu */ |
| afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx); |
| afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host; |
| afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl; |
| |
| /* Program the Endian Control for the master context */ |
| writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl); |
| |
| /* Initialize cmd fields that never change */ |
| for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { |
| afu->cmd[i].rcb.ctx_id = afu->ctx_hndl; |
| afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED; |
| afu->cmd[i].rcb.rrq = 0x0; |
| } |
| } |
| |
| /** |
| * init_global() - initialize AFU global registers |
| * @cfg: Internal structure associated with the host. |
| */ |
| static int init_global(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */ |
| int i = 0, num_ports = 0; |
| int rc = 0; |
| u64 reg; |
| |
| rc = read_vpd(cfg, &wwpn[0]); |
| if (rc) { |
| dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); |
| goto out; |
| } |
| |
| pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]); |
| |
| /* Set up RRQ in AFU for master issued cmds */ |
| writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start); |
| writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end); |
| |
| /* AFU configuration */ |
| reg = readq_be(&afu->afu_map->global.regs.afu_config); |
| reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; |
| /* enable all auto retry options and control endianness */ |
| /* leave others at default: */ |
| /* CTX_CAP write protected, mbox_r does not clear on read and */ |
| /* checker on if dual afu */ |
| writeq_be(reg, &afu->afu_map->global.regs.afu_config); |
| |
| /* Global port select: select either port */ |
| if (afu->internal_lun) { |
| /* Only use port 0 */ |
| writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); |
| num_ports = NUM_FC_PORTS - 1; |
| } else { |
| writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel); |
| num_ports = NUM_FC_PORTS; |
| } |
| |
| for (i = 0; i < num_ports; i++) { |
| /* Unmask all errors (but they are still masked at AFU) */ |
| writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]); |
| /* Clear CRC error cnt & set a threshold */ |
| (void)readq_be(&afu->afu_map->global. |
| fc_regs[i][FC_CNT_CRCERR / 8]); |
| writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i] |
| [FC_CRC_THRESH / 8]); |
| |
| /* Set WWPNs. If already programmed, wwpn[i] is 0 */ |
| if (wwpn[i] != 0 && |
| afu_set_wwpn(afu, i, |
| &afu->afu_map->global.fc_regs[i][0], |
| wwpn[i])) { |
| dev_err(dev, "%s: failed to set WWPN on port %d\n", |
| __func__, i); |
| rc = -EIO; |
| goto out; |
| } |
| /* Programming WWPN back to back causes additional |
| * offline/online transitions and a PLOGI |
| */ |
| msleep(100); |
| } |
| |
| /* Set up master's own CTX_CAP to allow real mode, host translation */ |
| /* tables, afu cmds and read/write GSCSI cmds. */ |
| /* First, unlock ctx_cap write by reading mbox */ |
| (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */ |
| writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | |
| SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | |
| SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), |
| &afu->ctrl_map->ctx_cap); |
| /* Initialize heartbeat */ |
| afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); |
| |
| out: |
| return rc; |
| } |
| |
| /** |
| * start_afu() - initializes and starts the AFU |
| * @cfg: Internal structure associated with the host. |
| */ |
| static int start_afu(struct cxlflash_cfg *cfg) |
| { |
| struct afu *afu = cfg->afu; |
| struct afu_cmd *cmd; |
| |
| int i = 0; |
| int rc = 0; |
| |
| for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { |
| cmd = &afu->cmd[i]; |
| |
| init_completion(&cmd->cevent); |
| spin_lock_init(&cmd->slock); |
| cmd->parent = afu; |
| } |
| |
| init_pcr(cfg); |
| |
| /* After an AFU reset, RRQ entries are stale, clear them */ |
| memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry)); |
| |
| /* Initialize RRQ pointers */ |
| afu->hrrq_start = &afu->rrq_entry[0]; |
| afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1]; |
| afu->hrrq_curr = afu->hrrq_start; |
| afu->toggle = 1; |
| |
| rc = init_global(cfg); |
| |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * init_mc() - create and register as the master context |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_mc(struct cxlflash_cfg *cfg) |
| { |
| struct cxl_context *ctx; |
| struct device *dev = &cfg->dev->dev; |
| struct afu *afu = cfg->afu; |
| int rc = 0; |
| enum undo_level level; |
| |
| ctx = cxl_get_context(cfg->dev); |
| if (unlikely(!ctx)) |
| return -ENOMEM; |
| cfg->mcctx = ctx; |
| |
| /* Set it up as a master with the CXL */ |
| cxl_set_master(ctx); |
| |
| /* During initialization reset the AFU to start from a clean slate */ |
| rc = cxl_afu_reset(cfg->mcctx); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: initial AFU reset failed rc=%d\n", |
| __func__, rc); |
| level = RELEASE_CONTEXT; |
| goto out; |
| } |
| |
| rc = cxl_allocate_afu_irqs(ctx, 3); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n", |
| __func__, rc); |
| level = RELEASE_CONTEXT; |
| goto out; |
| } |
| |
| rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu, |
| "SISL_MSI_SYNC_ERROR"); |
| if (unlikely(rc <= 0)) { |
| dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n", |
| __func__); |
| level = FREE_IRQ; |
| goto out; |
| } |
| |
| rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu, |
| "SISL_MSI_RRQ_UPDATED"); |
| if (unlikely(rc <= 0)) { |
| dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n", |
| __func__); |
| level = UNMAP_ONE; |
| goto out; |
| } |
| |
| rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu, |
| "SISL_MSI_ASYNC_ERROR"); |
| if (unlikely(rc <= 0)) { |
| dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n", |
| __func__); |
| level = UNMAP_TWO; |
| goto out; |
| } |
| |
| rc = 0; |
| |
| /* This performs the equivalent of the CXL_IOCTL_START_WORK. |
| * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process |
| * element (pe) that is embedded in the context (ctx) |
| */ |
| rc = start_context(cfg); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); |
| level = UNMAP_THREE; |
| goto out; |
| } |
| ret: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| out: |
| term_mc(cfg, level); |
| goto ret; |
| } |
| |
| /** |
| * init_afu() - setup as master context and start AFU |
| * @cfg: Internal structure associated with the host. |
| * |
| * This routine is a higher level of control for configuring the |
| * AFU on probe and reset paths. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int init_afu(struct cxlflash_cfg *cfg) |
| { |
| u64 reg; |
| int rc = 0; |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| |
| cxl_perst_reloads_same_image(cfg->cxl_afu, true); |
| |
| rc = init_mc(cfg); |
| if (rc) { |
| dev_err(dev, "%s: call to init_mc failed, rc=%d!\n", |
| __func__, rc); |
| goto out; |
| } |
| |
| /* Map the entire MMIO space of the AFU */ |
| afu->afu_map = cxl_psa_map(cfg->mcctx); |
| if (!afu->afu_map) { |
| dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__); |
| rc = -ENOMEM; |
| goto err1; |
| } |
| kref_init(&afu->mapcount); |
| |
| /* No byte reverse on reading afu_version or string will be backwards */ |
| reg = readq(&afu->afu_map->global.regs.afu_version); |
| memcpy(afu->version, ®, sizeof(reg)); |
| afu->interface_version = |
| readq_be(&afu->afu_map->global.regs.interface_version); |
| if ((afu->interface_version + 1) == 0) { |
| pr_err("Back level AFU, please upgrade. AFU version %s " |
| "interface version 0x%llx\n", afu->version, |
| afu->interface_version); |
| rc = -EINVAL; |
| goto err2; |
| } |
| |
| pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__, |
| afu->version, afu->interface_version); |
| |
| rc = start_afu(cfg); |
| if (rc) { |
| dev_err(dev, "%s: call to start_afu failed, rc=%d!\n", |
| __func__, rc); |
| goto err2; |
| } |
| |
| afu_err_intr_init(cfg->afu); |
| atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); |
| |
| /* Restore the LUN mappings */ |
| cxlflash_restore_luntable(cfg); |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| |
| err2: |
| kref_put(&afu->mapcount, afu_unmap); |
| err1: |
| term_mc(cfg, UNDO_START); |
| goto out; |
| } |
| |
| /** |
| * cxlflash_afu_sync() - builds and sends an AFU sync command |
| * @afu: AFU associated with the host. |
| * @ctx_hndl_u: Identifies context requesting sync. |
| * @res_hndl_u: Identifies resource requesting sync. |
| * @mode: Type of sync to issue (lightweight, heavyweight, global). |
| * |
| * The AFU can only take 1 sync command at a time. This routine enforces this |
| * limitation by using a mutex to provide exclusive access to the AFU during |
| * the sync. This design point requires calling threads to not be on interrupt |
| * context due to the possibility of sleeping during concurrent sync operations. |
| * |
| * AFU sync operations are only necessary and allowed when the device is |
| * operating normally. When not operating normally, sync requests can occur as |
| * part of cleaning up resources associated with an adapter prior to removal. |
| * In this scenario, these requests are simply ignored (safe due to the AFU |
| * going away). |
| * |
| * Return: |
| * 0 on success |
| * -1 on failure |
| */ |
| int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u, |
| res_hndl_t res_hndl_u, u8 mode) |
| { |
| struct cxlflash_cfg *cfg = afu->parent; |
| struct device *dev = &cfg->dev->dev; |
| struct afu_cmd *cmd = NULL; |
| int rc = 0; |
| int retry_cnt = 0; |
| static DEFINE_MUTEX(sync_active); |
| |
| if (cfg->state != STATE_NORMAL) { |
| pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state); |
| return 0; |
| } |
| |
| mutex_lock(&sync_active); |
| retry: |
| cmd = cmd_checkout(afu); |
| if (unlikely(!cmd)) { |
| retry_cnt++; |
| udelay(1000 * retry_cnt); |
| if (retry_cnt < MC_RETRY_CNT) |
| goto retry; |
| dev_err(dev, "%s: could not get a free command\n", __func__); |
| rc = -1; |
| goto out; |
| } |
| |
| pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u); |
| |
| memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); |
| |
| cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; |
| cmd->rcb.port_sel = 0x0; /* NA */ |
| cmd->rcb.lun_id = 0x0; /* NA */ |
| cmd->rcb.data_len = 0x0; |
| cmd->rcb.data_ea = 0x0; |
| cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT; |
| |
| cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */ |
| cmd->rcb.cdb[1] = mode; |
| |
| /* The cdb is aligned, no unaligned accessors required */ |
| *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u); |
| *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u); |
| |
| rc = send_cmd(afu, cmd); |
| if (unlikely(rc)) |
| goto out; |
| |
| wait_resp(afu, cmd); |
| |
| /* Set on timeout */ |
| if (unlikely((cmd->sa.ioasc != 0) || |
| (cmd->sa.host_use_b[0] & B_ERROR))) |
| rc = -1; |
| out: |
| mutex_unlock(&sync_active); |
| if (cmd) |
| cmd_checkin(cmd); |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * afu_reset() - resets the AFU |
| * @cfg: Internal structure associated with the host. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int afu_reset(struct cxlflash_cfg *cfg) |
| { |
| int rc = 0; |
| /* Stop the context before the reset. Since the context is |
| * no longer available restart it after the reset is complete |
| */ |
| |
| term_afu(cfg); |
| |
| rc = init_afu(cfg); |
| |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_eh_device_reset_handler() - reset a single LUN |
| * @scp: SCSI command to send. |
| * |
| * Return: |
| * SUCCESS as defined in scsi/scsi.h |
| * FAILED as defined in scsi/scsi.h |
| */ |
| static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) |
| { |
| int rc = SUCCESS; |
| struct Scsi_Host *host = scp->device->host; |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; |
| struct afu *afu = cfg->afu; |
| int rcr = 0; |
| |
| pr_debug("%s: (scp=%p) %d/%d/%d/%llu " |
| "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, |
| host->host_no, scp->device->channel, |
| scp->device->id, scp->device->lun, |
| get_unaligned_be32(&((u32 *)scp->cmnd)[0]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[1]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[2]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[3])); |
| |
| retry: |
| switch (cfg->state) { |
| case STATE_NORMAL: |
| rcr = send_tmf(afu, scp, TMF_LUN_RESET); |
| if (unlikely(rcr)) |
| rc = FAILED; |
| break; |
| case STATE_RESET: |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); |
| goto retry; |
| default: |
| rc = FAILED; |
| break; |
| } |
| |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_eh_host_reset_handler() - reset the host adapter |
| * @scp: SCSI command from stack identifying host. |
| * |
| * Return: |
| * SUCCESS as defined in scsi/scsi.h |
| * FAILED as defined in scsi/scsi.h |
| */ |
| static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) |
| { |
| int rc = SUCCESS; |
| int rcr = 0; |
| struct Scsi_Host *host = scp->device->host; |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; |
| |
| pr_debug("%s: (scp=%p) %d/%d/%d/%llu " |
| "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, |
| host->host_no, scp->device->channel, |
| scp->device->id, scp->device->lun, |
| get_unaligned_be32(&((u32 *)scp->cmnd)[0]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[1]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[2]), |
| get_unaligned_be32(&((u32 *)scp->cmnd)[3])); |
| |
| switch (cfg->state) { |
| case STATE_NORMAL: |
| cfg->state = STATE_RESET; |
| cxlflash_mark_contexts_error(cfg); |
| rcr = afu_reset(cfg); |
| if (rcr) { |
| rc = FAILED; |
| cfg->state = STATE_FAILTERM; |
| } else |
| cfg->state = STATE_NORMAL; |
| wake_up_all(&cfg->reset_waitq); |
| break; |
| case STATE_RESET: |
| wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); |
| if (cfg->state == STATE_NORMAL) |
| break; |
| /* fall through */ |
| default: |
| rc = FAILED; |
| break; |
| } |
| |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /** |
| * cxlflash_change_queue_depth() - change the queue depth for the device |
| * @sdev: SCSI device destined for queue depth change. |
| * @qdepth: Requested queue depth value to set. |
| * |
| * The requested queue depth is capped to the maximum supported value. |
| * |
| * Return: The actual queue depth set. |
| */ |
| static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) |
| { |
| |
| if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) |
| qdepth = CXLFLASH_MAX_CMDS_PER_LUN; |
| |
| scsi_change_queue_depth(sdev, qdepth); |
| return sdev->queue_depth; |
| } |
| |
| /** |
| * cxlflash_show_port_status() - queries and presents the current port status |
| * @port: Desired port for status reporting. |
| * @afu: AFU owning the specified port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf) |
| { |
| char *disp_status; |
| u64 status; |
| __be64 __iomem *fc_regs; |
| |
| if (port >= NUM_FC_PORTS) |
| return 0; |
| |
| fc_regs = &afu->afu_map->global.fc_regs[port][0]; |
| status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); |
| status &= FC_MTIP_STATUS_MASK; |
| |
| if (status == FC_MTIP_STATUS_ONLINE) |
| disp_status = "online"; |
| else if (status == FC_MTIP_STATUS_OFFLINE) |
| disp_status = "offline"; |
| else |
| disp_status = "unknown"; |
| |
| return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); |
| } |
| |
| /** |
| * port0_show() - queries and presents the current status of port 0 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port0_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; |
| struct afu *afu = cfg->afu; |
| |
| return cxlflash_show_port_status(0, afu, buf); |
| } |
| |
| /** |
| * port1_show() - queries and presents the current status of port 1 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port1_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; |
| struct afu *afu = cfg->afu; |
| |
| return cxlflash_show_port_status(1, afu, buf); |
| } |
| |
| /** |
| * lun_mode_show() - presents the current LUN mode of the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the LUN mode. |
| * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t lun_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; |
| struct afu *afu = cfg->afu; |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); |
| } |
| |
| /** |
| * lun_mode_store() - sets the LUN mode of the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the LUN mode. |
| * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. |
| * @count: Length of data resizing in @buf. |
| * |
| * The CXL Flash AFU supports a dummy LUN mode where the external |
| * links and storage are not required. Space on the FPGA is used |
| * to create 1 or 2 small LUNs which are presented to the system |
| * as if they were a normal storage device. This feature is useful |
| * during development and also provides manufacturing with a way |
| * to test the AFU without an actual device. |
| * |
| * 0 = external LUN[s] (default) |
| * 1 = internal LUN (1 x 64K, 512B blocks, id 0) |
| * 2 = internal LUN (1 x 64K, 4K blocks, id 0) |
| * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) |
| * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t lun_mode_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; |
| struct afu *afu = cfg->afu; |
| int rc; |
| u32 lun_mode; |
| |
| rc = kstrtouint(buf, 10, &lun_mode); |
| if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { |
| afu->internal_lun = lun_mode; |
| |
| /* |
| * When configured for internal LUN, there is only one channel, |
| * channel number 0, else there will be 2 (default). |
| */ |
| if (afu->internal_lun) |
| shost->max_channel = 0; |
| else |
| shost->max_channel = NUM_FC_PORTS - 1; |
| |
| afu_reset(cfg); |
| scsi_scan_host(cfg->host); |
| } |
| |
| return count; |
| } |
| |
| /** |
| * ioctl_version_show() - presents the current ioctl version of the host |
| * @dev: Generic device associated with the host. |
| * @attr: Device attribute representing the ioctl version. |
| * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t ioctl_version_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0); |
| } |
| |
| /** |
| * cxlflash_show_port_lun_table() - queries and presents the port LUN table |
| * @port: Desired port for status reporting. |
| * @afu: AFU owning the specified port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t cxlflash_show_port_lun_table(u32 port, |
| struct afu *afu, |
| char *buf) |
| { |
| int i; |
| ssize_t bytes = 0; |
| __be64 __iomem *fc_port; |
| |
| if (port >= NUM_FC_PORTS) |
| return 0; |
| |
| fc_port = &afu->afu_map->global.fc_port[port][0]; |
| |
| for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) |
| bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, |
| "%03d: %016llX\n", i, readq_be(&fc_port[i])); |
| return bytes; |
| } |
| |
| /** |
| * port0_lun_table_show() - presents the current LUN table of port 0 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port0_lun_table_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; |
| struct afu *afu = cfg->afu; |
| |
| return cxlflash_show_port_lun_table(0, afu, buf); |
| } |
| |
| /** |
| * port1_lun_table_show() - presents the current LUN table of port 1 |
| * @dev: Generic device associated with the host owning the port. |
| * @attr: Device attribute representing the port. |
| * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t port1_lun_table_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct Scsi_Host *shost = class_to_shost(dev); |
| struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; |
| struct afu *afu = cfg->afu; |
| |
| return cxlflash_show_port_lun_table(1, afu, buf); |
| } |
| |
| /** |
| * mode_show() - presents the current mode of the device |
| * @dev: Generic device associated with the device. |
| * @attr: Device attribute representing the device mode. |
| * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. |
| * |
| * Return: The size of the ASCII string returned in @buf. |
| */ |
| static ssize_t mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct scsi_device *sdev = to_scsi_device(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%s\n", |
| sdev->hostdata ? "superpipe" : "legacy"); |
| } |
| |
| /* |
| * Host attributes |
| */ |
| static DEVICE_ATTR_RO(port0); |
| static DEVICE_ATTR_RO(port1); |
| static DEVICE_ATTR_RW(lun_mode); |
| static DEVICE_ATTR_RO(ioctl_version); |
| static DEVICE_ATTR_RO(port0_lun_table); |
| static DEVICE_ATTR_RO(port1_lun_table); |
| |
| static struct device_attribute *cxlflash_host_attrs[] = { |
| &dev_attr_port0, |
| &dev_attr_port1, |
| &dev_attr_lun_mode, |
| &dev_attr_ioctl_version, |
| &dev_attr_port0_lun_table, |
| &dev_attr_port1_lun_table, |
| NULL |
| }; |
| |
| /* |
| * Device attributes |
| */ |
| static DEVICE_ATTR_RO(mode); |
| |
| static struct device_attribute *cxlflash_dev_attrs[] = { |
| &dev_attr_mode, |
| NULL |
| }; |
| |
| /* |
| * Host template |
| */ |
| static struct scsi_host_template driver_template = { |
| .module = THIS_MODULE, |
| .name = CXLFLASH_ADAPTER_NAME, |
| .info = cxlflash_driver_info, |
| .ioctl = cxlflash_ioctl, |
| .proc_name = CXLFLASH_NAME, |
| .queuecommand = cxlflash_queuecommand, |
| .eh_device_reset_handler = cxlflash_eh_device_reset_handler, |
| .eh_host_reset_handler = cxlflash_eh_host_reset_handler, |
| .change_queue_depth = cxlflash_change_queue_depth, |
| .cmd_per_lun = 16, |
| .can_queue = CXLFLASH_MAX_CMDS, |
| .this_id = -1, |
| .sg_tablesize = SG_NONE, /* No scatter gather support */ |
| .max_sectors = CXLFLASH_MAX_SECTORS, |
| .use_clustering = ENABLE_CLUSTERING, |
| .shost_attrs = cxlflash_host_attrs, |
| .sdev_attrs = cxlflash_dev_attrs, |
| }; |
| |
| /* |
| * Device dependent values |
| */ |
| static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS }; |
| static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS }; |
| |
| /* |
| * PCI device binding table |
| */ |
| static struct pci_device_id cxlflash_pci_table[] = { |
| {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, |
| {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); |
| |
| /** |
| * cxlflash_worker_thread() - work thread handler for the AFU |
| * @work: Work structure contained within cxlflash associated with host. |
| * |
| * Handles the following events: |
| * - Link reset which cannot be performed on interrupt context due to |
| * blocking up to a few seconds |
| * - Read AFU command room |
| * - Rescan the host |
| */ |
| static void cxlflash_worker_thread(struct work_struct *work) |
| { |
| struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, |
| work_q); |
| struct afu *afu = cfg->afu; |
| struct device *dev = &cfg->dev->dev; |
| int port; |
| ulong lock_flags; |
| |
| /* Avoid MMIO if the device has failed */ |
| |
| if (cfg->state != STATE_NORMAL) |
| return; |
| |
| spin_lock_irqsave(cfg->host->host_lock, lock_flags); |
| |
| if (cfg->lr_state == LINK_RESET_REQUIRED) { |
| port = cfg->lr_port; |
| if (port < 0) |
| dev_err(dev, "%s: invalid port index %d\n", |
| __func__, port); |
| else { |
| spin_unlock_irqrestore(cfg->host->host_lock, |
| lock_flags); |
| |
| /* The reset can block... */ |
| afu_link_reset(afu, port, |
| &afu->afu_map->global.fc_regs[port][0]); |
| spin_lock_irqsave(cfg->host->host_lock, lock_flags); |
| } |
| |
| cfg->lr_state = LINK_RESET_COMPLETE; |
| } |
| |
| if (afu->read_room) { |
| atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); |
| afu->read_room = false; |
| } |
| |
| spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); |
| |
| if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) |
| scsi_scan_host(cfg->host); |
| kref_put(&afu->mapcount, afu_unmap); |
| } |
| |
| /** |
| * cxlflash_probe() - PCI entry point to add host |
| * @pdev: PCI device associated with the host. |
| * @dev_id: PCI device id associated with device. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int cxlflash_probe(struct pci_dev *pdev, |
| const struct pci_device_id *dev_id) |
| { |
| struct Scsi_Host *host; |
| struct cxlflash_cfg *cfg = NULL; |
| struct device *phys_dev; |
| struct dev_dependent_vals *ddv; |
| int rc = 0; |
| |
| dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", |
| __func__, pdev->irq); |
| |
| ddv = (struct dev_dependent_vals *)dev_id->driver_data; |
| driver_template.max_sectors = ddv->max_sectors; |
| |
| host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); |
| if (!host) { |
| dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n", |
| __func__); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; |
| host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; |
| host->max_channel = NUM_FC_PORTS - 1; |
| host->unique_id = host->host_no; |
| host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; |
| |
| cfg = (struct cxlflash_cfg *)host->hostdata; |
| cfg->host = host; |
| rc = alloc_mem(cfg); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n", |
| __func__); |
| rc = -ENOMEM; |
| scsi_host_put(cfg->host); |
| goto out; |
| } |
| |
| cfg->init_state = INIT_STATE_NONE; |
| cfg->dev = pdev; |
| cfg->cxl_fops = cxlflash_cxl_fops; |
| |
| /* |
| * The promoted LUNs move to the top of the LUN table. The rest stay |
| * on the bottom half. The bottom half grows from the end |
| * (index = 255), whereas the top half grows from the beginning |
| * (index = 0). |
| */ |
| cfg->promote_lun_index = 0; |
| cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1; |
| cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1; |
| |
| cfg->dev_id = (struct pci_device_id *)dev_id; |
| |
| init_waitqueue_head(&cfg->tmf_waitq); |
| init_waitqueue_head(&cfg->reset_waitq); |
| |
| INIT_WORK(&cfg->work_q, cxlflash_worker_thread); |
| cfg->lr_state = LINK_RESET_INVALID; |
| cfg->lr_port = -1; |
| spin_lock_init(&cfg->tmf_slock); |
| mutex_init(&cfg->ctx_tbl_list_mutex); |
| mutex_init(&cfg->ctx_recovery_mutex); |
| init_rwsem(&cfg->ioctl_rwsem); |
| INIT_LIST_HEAD(&cfg->ctx_err_recovery); |
| INIT_LIST_HEAD(&cfg->lluns); |
| |
| pci_set_drvdata(pdev, cfg); |
| |
| /* |
| * Use the special service provided to look up the physical |
| * PCI device, since we are called on the probe of the virtual |
| * PCI host bus (vphb) |
| */ |
| phys_dev = cxl_get_phys_dev(pdev); |
| if (!dev_is_pci(phys_dev)) { |
| dev_err(&pdev->dev, "%s: not a pci dev\n", __func__); |
| rc = -ENODEV; |
| goto out_remove; |
| } |
| cfg->parent_dev = to_pci_dev(phys_dev); |
| |
| cfg->cxl_afu = cxl_pci_to_afu(pdev); |
| |
| rc = init_pci(cfg); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: call to init_pci " |
| "failed rc=%d!\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_PCI; |
| |
| rc = init_afu(cfg); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: call to init_afu " |
| "failed rc=%d!\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_AFU; |
| |
| rc = init_scsi(cfg); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: call to init_scsi " |
| "failed rc=%d!\n", __func__, rc); |
| goto out_remove; |
| } |
| cfg->init_state = INIT_STATE_SCSI; |
| |
| out: |
| pr_debug("%s: returning rc=%d\n", __func__, rc); |
| return rc; |
| |
| out_remove: |
| cxlflash_remove(pdev); |
| goto out; |
| } |
| |
| /** |
| * drain_ioctls() - wait until all currently executing ioctls have completed |
| * @cfg: Internal structure associated with the host. |
| * |
| * Obtain write access to read/write semaphore that wraps ioctl |
| * handling to 'drain' ioctls currently executing. |
| */ |
| static void drain_ioctls(struct cxlflash_cfg *cfg) |
| { |
| down_write(&cfg->ioctl_rwsem); |
| up_write(&cfg->ioctl_rwsem); |
| } |
| |
| /** |
| * cxlflash_pci_error_detected() - called when a PCI error is detected |
| * @pdev: PCI device struct. |
| * @state: PCI channel state. |
| * |
| * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT |
| */ |
| static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| int rc = 0; |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); |
| |
| switch (state) { |
| case pci_channel_io_frozen: |
| cfg->state = STATE_RESET; |
| scsi_block_requests(cfg->host); |
| drain_ioctls(cfg); |
| rc = cxlflash_mark_contexts_error(cfg); |
| if (unlikely(rc)) |
| dev_err(dev, "%s: Failed to mark user contexts!(%d)\n", |
| __func__, rc); |
| term_mc(cfg, UNDO_START); |
| stop_afu(cfg); |
| return PCI_ERS_RESULT_NEED_RESET; |
| case pci_channel_io_perm_failure: |
| cfg->state = STATE_FAILTERM; |
| wake_up_all(&cfg->reset_waitq); |
| scsi_unblock_requests(cfg->host); |
| return PCI_ERS_RESULT_DISCONNECT; |
| default: |
| break; |
| } |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * cxlflash_pci_slot_reset() - called when PCI slot has been reset |
| * @pdev: PCI device struct. |
| * |
| * This routine is called by the pci error recovery code after the PCI |
| * slot has been reset, just before we should resume normal operations. |
| * |
| * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT |
| */ |
| static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) |
| { |
| int rc = 0; |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); |
| |
| rc = init_afu(cfg); |
| if (unlikely(rc)) { |
| dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * cxlflash_pci_resume() - called when normal operation can resume |
| * @pdev: PCI device struct |
| */ |
| static void cxlflash_pci_resume(struct pci_dev *pdev) |
| { |
| struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); |
| struct device *dev = &cfg->dev->dev; |
| |
| dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); |
| |
| cfg->state = STATE_NORMAL; |
| wake_up_all(&cfg->reset_waitq); |
| scsi_unblock_requests(cfg->host); |
| } |
| |
| static const struct pci_error_handlers cxlflash_err_handler = { |
| .error_detected = cxlflash_pci_error_detected, |
| .slot_reset = cxlflash_pci_slot_reset, |
| .resume = cxlflash_pci_resume, |
| }; |
| |
| /* |
| * PCI device structure |
| */ |
| static struct pci_driver cxlflash_driver = { |
| .name = CXLFLASH_NAME, |
| .id_table = cxlflash_pci_table, |
| .probe = cxlflash_probe, |
| .remove = cxlflash_remove, |
| .err_handler = &cxlflash_err_handler, |
| }; |
| |
| /** |
| * init_cxlflash() - module entry point |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int __init init_cxlflash(void) |
| { |
| pr_info("%s: IBM Power CXL Flash Adapter: %s\n", |
| __func__, CXLFLASH_DRIVER_DATE); |
| |
| cxlflash_list_init(); |
| |
| return pci_register_driver(&cxlflash_driver); |
| } |
| |
| /** |
| * exit_cxlflash() - module exit point |
| */ |
| static void __exit exit_cxlflash(void) |
| { |
| cxlflash_term_global_luns(); |
| cxlflash_free_errpage(); |
| |
| pci_unregister_driver(&cxlflash_driver); |
| } |
| |
| module_init(init_cxlflash); |
| module_exit(exit_cxlflash); |