blob: c9ff08dbe10cefcf8731c1360370edd037307d43 [file] [log] [blame]
/*
* lm90.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
*
* Based on the lm83 driver. The LM90 is a sensor chip made by National
* Semiconductor. It reports up to two temperatures (its own plus up to
* one external one) with a 0.125 deg resolution (1 deg for local
* temperature) and a 3-4 deg accuracy.
*
* This driver also supports the LM89 and LM99, two other sensor chips
* made by National Semiconductor. Both have an increased remote
* temperature measurement accuracy (1 degree), and the LM99
* additionally shifts remote temperatures (measured and limits) by 16
* degrees, which allows for higher temperatures measurement.
* Note that there is no way to differentiate between both chips.
* When device is auto-detected, the driver will assume an LM99.
*
* This driver also supports the LM86, another sensor chip made by
* National Semiconductor. It is exactly similar to the LM90 except it
* has a higher accuracy.
*
* This driver also supports the ADM1032, a sensor chip made by Analog
* Devices. That chip is similar to the LM90, with a few differences
* that are not handled by this driver. Among others, it has a higher
* accuracy than the LM90, much like the LM86 does.
*
* This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
* chips made by Maxim. These chips are similar to the LM86.
* Note that there is no easy way to differentiate between the three
* variants. We use the device address to detect MAX6659, which will result
* in a detection as max6657 if it is on address 0x4c. The extra address
* and features of the MAX6659 are only supported if the chip is configured
* explicitly as max6659, or if its address is not 0x4c.
* These chips lack the remote temperature offset feature.
*
* This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
* MAX6692 chips made by Maxim. These are again similar to the LM86,
* but they use unsigned temperature values and can report temperatures
* from 0 to 145 degrees.
*
* This driver also supports the MAX6680 and MAX6681, two other sensor
* chips made by Maxim. These are quite similar to the other Maxim
* chips. The MAX6680 and MAX6681 only differ in the pinout so they can
* be treated identically.
*
* This driver also supports the MAX6695 and MAX6696, two other sensor
* chips made by Maxim. These are also quite similar to other Maxim
* chips, but support three temperature sensors instead of two. MAX6695
* and MAX6696 only differ in the pinout so they can be treated identically.
*
* This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
* NCT1008 from ON Semiconductor. The chips are supported in both compatibility
* and extended mode. They are mostly compatible with LM90 except for a data
* format difference for the temperature value registers.
*
* This driver also supports the SA56004 from Philips. This device is
* pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
*
* This driver also supports the G781 from GMT. This device is compatible
* with the ADM1032.
*
* This driver also supports TMP451 from Texas Instruments. This device is
* supported in both compatibility and extended mode. It's mostly compatible
* with ADT7461 except for local temperature low byte register and max
* conversion rate.
*
* Since the LM90 was the first chipset supported by this driver, most
* comments will refer to this chipset, but are actually general and
* concern all supported chipsets, unless mentioned otherwise.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/interrupt.h>
#include <linux/regulator/consumer.h>
/*
* Addresses to scan
* Address is fully defined internally and cannot be changed except for
* MAX6659, MAX6680 and MAX6681.
* LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
* MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
* ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
* have address 0x4d.
* MAX6647 has address 0x4e.
* MAX6659 can have address 0x4c, 0x4d or 0x4e.
* MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
* 0x4c, 0x4d or 0x4e.
* SA56004 can have address 0x48 through 0x4F.
*/
static const unsigned short normal_i2c[] = {
0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
max6646, w83l771, max6696, sa56004, g781, tmp451 };
/*
* The LM90 registers
*/
#define LM90_REG_R_MAN_ID 0xFE
#define LM90_REG_R_CHIP_ID 0xFF
#define LM90_REG_R_CONFIG1 0x03
#define LM90_REG_W_CONFIG1 0x09
#define LM90_REG_R_CONFIG2 0xBF
#define LM90_REG_W_CONFIG2 0xBF
#define LM90_REG_R_CONVRATE 0x04
#define LM90_REG_W_CONVRATE 0x0A
#define LM90_REG_R_STATUS 0x02
#define LM90_REG_R_LOCAL_TEMP 0x00
#define LM90_REG_R_LOCAL_HIGH 0x05
#define LM90_REG_W_LOCAL_HIGH 0x0B
#define LM90_REG_R_LOCAL_LOW 0x06
#define LM90_REG_W_LOCAL_LOW 0x0C
#define LM90_REG_R_LOCAL_CRIT 0x20
#define LM90_REG_W_LOCAL_CRIT 0x20
#define LM90_REG_R_REMOTE_TEMPH 0x01
#define LM90_REG_R_REMOTE_TEMPL 0x10
#define LM90_REG_R_REMOTE_OFFSH 0x11
#define LM90_REG_W_REMOTE_OFFSH 0x11
#define LM90_REG_R_REMOTE_OFFSL 0x12
#define LM90_REG_W_REMOTE_OFFSL 0x12
#define LM90_REG_R_REMOTE_HIGHH 0x07
#define LM90_REG_W_REMOTE_HIGHH 0x0D
#define LM90_REG_R_REMOTE_HIGHL 0x13
#define LM90_REG_W_REMOTE_HIGHL 0x13
#define LM90_REG_R_REMOTE_LOWH 0x08
#define LM90_REG_W_REMOTE_LOWH 0x0E
#define LM90_REG_R_REMOTE_LOWL 0x14
#define LM90_REG_W_REMOTE_LOWL 0x14
#define LM90_REG_R_REMOTE_CRIT 0x19
#define LM90_REG_W_REMOTE_CRIT 0x19
#define LM90_REG_R_TCRIT_HYST 0x21
#define LM90_REG_W_TCRIT_HYST 0x21
/* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
#define MAX6657_REG_R_LOCAL_TEMPL 0x11
#define MAX6696_REG_R_STATUS2 0x12
#define MAX6659_REG_R_REMOTE_EMERG 0x16
#define MAX6659_REG_W_REMOTE_EMERG 0x16
#define MAX6659_REG_R_LOCAL_EMERG 0x17
#define MAX6659_REG_W_LOCAL_EMERG 0x17
/* SA56004 registers */
#define SA56004_REG_R_LOCAL_TEMPL 0x22
#define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */
#define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
/* TMP451 registers */
#define TMP451_REG_R_LOCAL_TEMPL 0x15
/*
* Device flags
*/
#define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
/* Device features */
#define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
#define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
#define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
#define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
#define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
#define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
/* LM90 status */
#define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */
#define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */
#define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */
#define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */
#define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */
#define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */
#define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */
#define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */
#define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */
#define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */
#define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */
#define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */
#define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */
#define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id lm90_id[] = {
{ "adm1032", adm1032 },
{ "adt7461", adt7461 },
{ "adt7461a", adt7461 },
{ "g781", g781 },
{ "lm90", lm90 },
{ "lm86", lm86 },
{ "lm89", lm86 },
{ "lm99", lm99 },
{ "max6646", max6646 },
{ "max6647", max6646 },
{ "max6649", max6646 },
{ "max6657", max6657 },
{ "max6658", max6657 },
{ "max6659", max6659 },
{ "max6680", max6680 },
{ "max6681", max6680 },
{ "max6695", max6696 },
{ "max6696", max6696 },
{ "nct1008", adt7461 },
{ "w83l771", w83l771 },
{ "sa56004", sa56004 },
{ "tmp451", tmp451 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm90_id);
/*
* chip type specific parameters
*/
struct lm90_params {
u32 flags; /* Capabilities */
u16 alert_alarms; /* Which alarm bits trigger ALERT# */
/* Upper 8 bits for max6695/96 */
u8 max_convrate; /* Maximum conversion rate register value */
u8 reg_local_ext; /* Extended local temp register (optional) */
};
static const struct lm90_params lm90_params[] = {
[adm1032] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT,
.alert_alarms = 0x7c,
.max_convrate = 10,
},
[adt7461] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT,
.alert_alarms = 0x7c,
.max_convrate = 10,
},
[g781] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT,
.alert_alarms = 0x7c,
.max_convrate = 8,
},
[lm86] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
.alert_alarms = 0x7b,
.max_convrate = 9,
},
[lm90] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
.alert_alarms = 0x7b,
.max_convrate = 9,
},
[lm99] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
.alert_alarms = 0x7b,
.max_convrate = 9,
},
[max6646] = {
.alert_alarms = 0x7c,
.max_convrate = 6,
.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
},
[max6657] = {
.alert_alarms = 0x7c,
.max_convrate = 8,
.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
},
[max6659] = {
.flags = LM90_HAVE_EMERGENCY,
.alert_alarms = 0x7c,
.max_convrate = 8,
.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
},
[max6680] = {
.flags = LM90_HAVE_OFFSET,
.alert_alarms = 0x7c,
.max_convrate = 7,
},
[max6696] = {
.flags = LM90_HAVE_EMERGENCY
| LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
.alert_alarms = 0x1c7c,
.max_convrate = 6,
.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
},
[w83l771] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
.alert_alarms = 0x7c,
.max_convrate = 8,
},
[sa56004] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
.alert_alarms = 0x7b,
.max_convrate = 9,
.reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
},
[tmp451] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT,
.alert_alarms = 0x7c,
.max_convrate = 9,
.reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
}
};
/*
* TEMP8 register index
*/
enum lm90_temp8_reg_index {
LOCAL_LOW = 0,
LOCAL_HIGH,
LOCAL_CRIT,
REMOTE_CRIT,
LOCAL_EMERG, /* max6659 and max6695/96 */
REMOTE_EMERG, /* max6659 and max6695/96 */
REMOTE2_CRIT, /* max6695/96 only */
REMOTE2_EMERG, /* max6695/96 only */
TEMP8_REG_NUM
};
/*
* TEMP11 register index
*/
enum lm90_temp11_reg_index {
REMOTE_TEMP = 0,
REMOTE_LOW,
REMOTE_HIGH,
REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
LOCAL_TEMP,
REMOTE2_TEMP, /* max6695/96 only */
REMOTE2_LOW, /* max6695/96 only */
REMOTE2_HIGH, /* max6695/96 only */
TEMP11_REG_NUM
};
/*
* Client data (each client gets its own)
*/
struct lm90_data {
struct i2c_client *client;
struct device *hwmon_dev;
const struct attribute_group *groups[6];
struct mutex update_lock;
struct regulator *regulator;
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
int kind;
u32 flags;
int update_interval; /* in milliseconds */
u8 config_orig; /* Original configuration register value */
u8 convrate_orig; /* Original conversion rate register value */
u16 alert_alarms; /* Which alarm bits trigger ALERT# */
/* Upper 8 bits for max6695/96 */
u8 max_convrate; /* Maximum conversion rate */
u8 reg_local_ext; /* local extension register offset */
/* registers values */
s8 temp8[TEMP8_REG_NUM];
s16 temp11[TEMP11_REG_NUM];
u8 temp_hyst;
u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
};
/*
* Support functions
*/
/*
* The ADM1032 supports PEC but not on write byte transactions, so we need
* to explicitly ask for a transaction without PEC.
*/
static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
{
return i2c_smbus_xfer(client->adapter, client->addr,
client->flags & ~I2C_CLIENT_PEC,
I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
}
/*
* It is assumed that client->update_lock is held (unless we are in
* detection or initialization steps). This matters when PEC is enabled,
* because we don't want the address pointer to change between the write
* byte and the read byte transactions.
*/
static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
{
int err;
if (client->flags & I2C_CLIENT_PEC) {
err = adm1032_write_byte(client, reg);
if (err >= 0)
err = i2c_smbus_read_byte(client);
} else
err = i2c_smbus_read_byte_data(client, reg);
if (err < 0) {
dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
reg, err);
return err;
}
*value = err;
return 0;
}
static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
{
int err;
u8 oldh, newh, l;
/*
* There is a trick here. We have to read two registers to have the
* sensor temperature, but we have to beware a conversion could occur
* between the readings. The datasheet says we should either use
* the one-shot conversion register, which we don't want to do
* (disables hardware monitoring) or monitor the busy bit, which is
* impossible (we can't read the values and monitor that bit at the
* exact same time). So the solution used here is to read the high
* byte once, then the low byte, then the high byte again. If the new
* high byte matches the old one, then we have a valid reading. Else
* we have to read the low byte again, and now we believe we have a
* correct reading.
*/
if ((err = lm90_read_reg(client, regh, &oldh))
|| (err = lm90_read_reg(client, regl, &l))
|| (err = lm90_read_reg(client, regh, &newh)))
return err;
if (oldh != newh) {
err = lm90_read_reg(client, regl, &l);
if (err)
return err;
}
*value = (newh << 8) | l;
return 0;
}
/*
* client->update_lock must be held when calling this function (unless we are
* in detection or initialization steps), and while a remote channel other
* than channel 0 is selected. Also, calling code must make sure to re-select
* external channel 0 before releasing the lock. This is necessary because
* various registers have different meanings as a result of selecting a
* non-default remote channel.
*/
static inline void lm90_select_remote_channel(struct i2c_client *client,
struct lm90_data *data,
int channel)
{
u8 config;
if (data->kind == max6696) {
lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
config &= ~0x08;
if (channel)
config |= 0x08;
i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
config);
}
}
/*
* Set conversion rate.
* client->update_lock must be held when calling this function (unless we are
* in detection or initialization steps).
*/
static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
unsigned int interval)
{
int i;
unsigned int update_interval;
/* Shift calculations to avoid rounding errors */
interval <<= 6;
/* find the nearest update rate */
for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
i < data->max_convrate; i++, update_interval >>= 1)
if (interval >= update_interval * 3 / 4)
break;
i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
}
static struct lm90_data *lm90_update_device(struct device *dev)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long next_update;
mutex_lock(&data->update_lock);
next_update = data->last_updated +
msecs_to_jiffies(data->update_interval);
if (time_after(jiffies, next_update) || !data->valid) {
u8 h, l;
u8 alarms;
dev_dbg(&client->dev, "Updating lm90 data.\n");
lm90_read_reg(client, LM90_REG_R_LOCAL_LOW,
&data->temp8[LOCAL_LOW]);
lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH,
&data->temp8[LOCAL_HIGH]);
lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT,
&data->temp8[LOCAL_CRIT]);
lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
&data->temp8[REMOTE_CRIT]);
lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
if (data->reg_local_ext) {
lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
data->reg_local_ext,
&data->temp11[LOCAL_TEMP]);
} else {
if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
&h) == 0)
data->temp11[LOCAL_TEMP] = h << 8;
}
lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
LM90_REG_R_REMOTE_TEMPL,
&data->temp11[REMOTE_TEMP]);
if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
data->temp11[REMOTE_LOW] = h << 8;
if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
&& lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
&l) == 0)
data->temp11[REMOTE_LOW] |= l;
}
if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
data->temp11[REMOTE_HIGH] = h << 8;
if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
&& lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
&l) == 0)
data->temp11[REMOTE_HIGH] |= l;
}
if (data->flags & LM90_HAVE_OFFSET) {
if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
&h) == 0
&& lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
&l) == 0)
data->temp11[REMOTE_OFFSET] = (h << 8) | l;
}
if (data->flags & LM90_HAVE_EMERGENCY) {
lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
&data->temp8[LOCAL_EMERG]);
lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
&data->temp8[REMOTE_EMERG]);
}
lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
data->alarms = alarms; /* save as 16 bit value */
if (data->kind == max6696) {
lm90_select_remote_channel(client, data, 1);
lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
&data->temp8[REMOTE2_CRIT]);
lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
&data->temp8[REMOTE2_EMERG]);
lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
LM90_REG_R_REMOTE_TEMPL,
&data->temp11[REMOTE2_TEMP]);
if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
data->temp11[REMOTE2_LOW] = h << 8;
if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
data->temp11[REMOTE2_HIGH] = h << 8;
lm90_select_remote_channel(client, data, 0);
if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
&alarms))
data->alarms |= alarms << 8;
}
/*
* Re-enable ALERT# output if it was originally enabled and
* relevant alarms are all clear
*/
if ((data->config_orig & 0x80) == 0
&& (data->alarms & data->alert_alarms) == 0) {
u8 config;
lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
if (config & 0x80) {
dev_dbg(&client->dev, "Re-enabling ALERT#\n");
i2c_smbus_write_byte_data(client,
LM90_REG_W_CONFIG1,
config & ~0x80);
}
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
/*
* Conversions
* For local temperatures and limits, critical limits and the hysteresis
* value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
* For remote temperatures and limits, it uses signed 11-bit values with
* LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
* Maxim chips use unsigned values.
*/
static inline int temp_from_s8(s8 val)
{
return val * 1000;
}
static inline int temp_from_u8(u8 val)
{
return val * 1000;
}
static inline int temp_from_s16(s16 val)
{
return val / 32 * 125;
}
static inline int temp_from_u16(u16 val)
{
return val / 32 * 125;
}
static s8 temp_to_s8(long val)
{
if (val <= -128000)
return -128;
if (val >= 127000)
return 127;
if (val < 0)
return (val - 500) / 1000;
return (val + 500) / 1000;
}
static u8 temp_to_u8(long val)
{
if (val <= 0)
return 0;
if (val >= 255000)
return 255;
return (val + 500) / 1000;
}
static s16 temp_to_s16(long val)
{
if (val <= -128000)
return 0x8000;
if (val >= 127875)
return 0x7FE0;
if (val < 0)
return (val - 62) / 125 * 32;
return (val + 62) / 125 * 32;
}
static u8 hyst_to_reg(long val)
{
if (val <= 0)
return 0;
if (val >= 30500)
return 31;
return (val + 500) / 1000;
}
/*
* ADT7461 in compatibility mode is almost identical to LM90 except that
* attempts to write values that are outside the range 0 < temp < 127 are
* treated as the boundary value.
*
* ADT7461 in "extended mode" operation uses unsigned integers offset by
* 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
*/
static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
{
if (data->flags & LM90_FLAG_ADT7461_EXT)
return (val - 64) * 1000;
else
return temp_from_s8(val);
}
static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
{
if (data->flags & LM90_FLAG_ADT7461_EXT)
return (val - 0x4000) / 64 * 250;
else
return temp_from_s16(val);
}
static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
{
if (data->flags & LM90_FLAG_ADT7461_EXT) {
if (val <= -64000)
return 0;
if (val >= 191000)
return 0xFF;
return (val + 500 + 64000) / 1000;
} else {
if (val <= 0)
return 0;
if (val >= 127000)
return 127;
return (val + 500) / 1000;
}
}
static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
{
if (data->flags & LM90_FLAG_ADT7461_EXT) {
if (val <= -64000)
return 0;
if (val >= 191750)
return 0xFFC0;
return (val + 64000 + 125) / 250 * 64;
} else {
if (val <= 0)
return 0;
if (val >= 127750)
return 0x7FC0;
return (val + 125) / 250 * 64;
}
}
/*
* Sysfs stuff
*/
static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm90_data *data = lm90_update_device(dev);
int temp;
if (data->kind == adt7461 || data->kind == tmp451)
temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
else if (data->kind == max6646)
temp = temp_from_u8(data->temp8[attr->index]);
else
temp = temp_from_s8(data->temp8[attr->index]);
/* +16 degrees offset for temp2 for the LM99 */
if (data->kind == lm99 && attr->index == 3)
temp += 16000;
return sprintf(buf, "%d\n", temp);
}
static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
static const u8 reg[TEMP8_REG_NUM] = {
LM90_REG_W_LOCAL_LOW,
LM90_REG_W_LOCAL_HIGH,
LM90_REG_W_LOCAL_CRIT,
LM90_REG_W_REMOTE_CRIT,
MAX6659_REG_W_LOCAL_EMERG,
MAX6659_REG_W_REMOTE_EMERG,
LM90_REG_W_REMOTE_CRIT,
MAX6659_REG_W_REMOTE_EMERG,
};
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
/* +16 degrees offset for temp2 for the LM99 */
if (data->kind == lm99 && attr->index == 3)
val -= 16000;
mutex_lock(&data->update_lock);
if (data->kind == adt7461 || data->kind == tmp451)
data->temp8[nr] = temp_to_u8_adt7461(data, val);
else if (data->kind == max6646)
data->temp8[nr] = temp_to_u8(val);
else
data->temp8[nr] = temp_to_s8(val);
lm90_select_remote_channel(client, data, nr >= 6);
i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
lm90_select_remote_channel(client, data, 0);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct lm90_data *data = lm90_update_device(dev);
int temp;
if (data->kind == adt7461 || data->kind == tmp451)
temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
else if (data->kind == max6646)
temp = temp_from_u16(data->temp11[attr->index]);
else
temp = temp_from_s16(data->temp11[attr->index]);
/* +16 degrees offset for temp2 for the LM99 */
if (data->kind == lm99 && attr->index <= 2)
temp += 16000;
return sprintf(buf, "%d\n", temp);
}
static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct {
u8 high;
u8 low;
int channel;
} reg[5] = {
{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
{ LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
};
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = attr->nr;
int index = attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
/* +16 degrees offset for temp2 for the LM99 */
if (data->kind == lm99 && index <= 2)
val -= 16000;
mutex_lock(&data->update_lock);
if (data->kind == adt7461 || data->kind == tmp451)
data->temp11[index] = temp_to_u16_adt7461(data, val);
else if (data->kind == max6646)
data->temp11[index] = temp_to_u8(val) << 8;
else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
data->temp11[index] = temp_to_s16(val);
else
data->temp11[index] = temp_to_s8(val) << 8;
lm90_select_remote_channel(client, data, reg[nr].channel);
i2c_smbus_write_byte_data(client, reg[nr].high,
data->temp11[index] >> 8);
if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
i2c_smbus_write_byte_data(client, reg[nr].low,
data->temp11[index] & 0xff);
lm90_select_remote_channel(client, data, 0);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temphyst(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm90_data *data = lm90_update_device(dev);
int temp;
if (data->kind == adt7461 || data->kind == tmp451)
temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
else if (data->kind == max6646)
temp = temp_from_u8(data->temp8[attr->index]);
else
temp = temp_from_s8(data->temp8[attr->index]);
/* +16 degrees offset for temp2 for the LM99 */
if (data->kind == lm99 && attr->index == 3)
temp += 16000;
return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
}
static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
const char *buf, size_t count)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
int temp;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
mutex_lock(&data->update_lock);
if (data->kind == adt7461 || data->kind == tmp451)
temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
else if (data->kind == max6646)
temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
else
temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
data->temp_hyst = hyst_to_reg(temp - val);
i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
data->temp_hyst);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
char *buf)
{
struct lm90_data *data = lm90_update_device(dev);
return sprintf(buf, "%d\n", data->alarms);
}
static ssize_t show_alarm(struct device *dev, struct device_attribute
*devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm90_data *data = lm90_update_device(dev);
int bitnr = attr->index;
return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
}
static ssize_t show_update_interval(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm90_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->update_interval);
}
static ssize_t set_update_interval(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
lm90_set_convrate(client, data, clamp_val(val, 0, 100000));
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL,
0, LOCAL_TEMP);
static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL,
0, REMOTE_TEMP);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, LOCAL_LOW);
static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 0, REMOTE_LOW);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, LOCAL_HIGH);
static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 1, REMOTE_HIGH);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, LOCAL_CRIT);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, REMOTE_CRIT);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
set_temphyst, LOCAL_CRIT);
static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL,
REMOTE_CRIT);
static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 2, REMOTE_OFFSET);
/* Individual alarm files */
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
/* Raw alarm file for compatibility */
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
set_update_interval);
static struct attribute *lm90_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_update_interval.attr,
NULL
};
static const struct attribute_group lm90_group = {
.attrs = lm90_attributes,
};
static struct attribute *lm90_temp2_offset_attributes[] = {
&sensor_dev_attr_temp2_offset.dev_attr.attr,
NULL
};
static const struct attribute_group lm90_temp2_offset_group = {
.attrs = lm90_temp2_offset_attributes,
};
/*
* Additional attributes for devices with emergency sensors
*/
static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, LOCAL_EMERG);
static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, REMOTE_EMERG);
static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
NULL, LOCAL_EMERG);
static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
NULL, REMOTE_EMERG);
static struct attribute *lm90_emergency_attributes[] = {
&sensor_dev_attr_temp1_emergency.dev_attr.attr,
&sensor_dev_attr_temp2_emergency.dev_attr.attr,
&sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
NULL
};
static const struct attribute_group lm90_emergency_group = {
.attrs = lm90_emergency_attributes,
};
static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
static struct attribute *lm90_emergency_alarm_attributes[] = {
&sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm90_emergency_alarm_group = {
.attrs = lm90_emergency_alarm_attributes,
};
/*
* Additional attributes for devices with 3 temperature sensors
*/
static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL,
0, REMOTE2_TEMP);
static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 3, REMOTE2_LOW);
static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 4, REMOTE2_HIGH);
static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, REMOTE2_CRIT);
static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL,
REMOTE2_CRIT);
static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
set_temp8, REMOTE2_EMERG);
static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
NULL, REMOTE2_EMERG);
static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
static struct attribute *lm90_temp3_attributes[] = {
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_emergency.dev_attr.attr,
&sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm90_temp3_group = {
.attrs = lm90_temp3_attributes,
};
/* pec used for ADM1032 only */
static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
}
static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
switch (val) {
case 0:
client->flags &= ~I2C_CLIENT_PEC;
break;
case 1:
client->flags |= I2C_CLIENT_PEC;
break;
default:
return -EINVAL;
}
return count;
}
static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
/*
* Real code
*/
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm90_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int address = client->addr;
const char *name = NULL;
int man_id, chip_id, config1, config2, convrate;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* detection and identification */
man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
return -ENODEV;
if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
if (config2 < 0)
return -ENODEV;
} else
config2 = 0; /* Make compiler happy */
if ((address == 0x4C || address == 0x4D)
&& man_id == 0x01) { /* National Semiconductor */
if ((config1 & 0x2A) == 0x00
&& (config2 & 0xF8) == 0x00
&& convrate <= 0x09) {
if (address == 0x4C
&& (chip_id & 0xF0) == 0x20) { /* LM90 */
name = "lm90";
} else
if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
name = "lm99";
dev_info(&adapter->dev,
"Assuming LM99 chip at 0x%02x\n",
address);
dev_info(&adapter->dev,
"If it is an LM89, instantiate it "
"with the new_device sysfs "
"interface\n");
} else
if (address == 0x4C
&& (chip_id & 0xF0) == 0x10) { /* LM86 */
name = "lm86";
}
}
} else
if ((address == 0x4C || address == 0x4D)
&& man_id == 0x41) { /* Analog Devices */
if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
&& (config1 & 0x3F) == 0x00
&& convrate <= 0x0A) {
name = "adm1032";
/*
* The ADM1032 supports PEC, but only if combined
* transactions are not used.
*/
if (i2c_check_functionality(adapter,
I2C_FUNC_SMBUS_BYTE))
info->flags |= I2C_CLIENT_PEC;
} else
if (chip_id == 0x51 /* ADT7461 */
&& (config1 & 0x1B) == 0x00
&& convrate <= 0x0A) {
name = "adt7461";
} else
if (chip_id == 0x57 /* ADT7461A, NCT1008 */
&& (config1 & 0x1B) == 0x00
&& convrate <= 0x0A) {
name = "adt7461a";
}
} else
if (man_id == 0x4D) { /* Maxim */
int emerg, emerg2, status2;
/*
* We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
* LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
* exists, both readings will reflect the same value. Otherwise,
* the readings will be different.
*/
emerg = i2c_smbus_read_byte_data(client,
MAX6659_REG_R_REMOTE_EMERG);
man_id = i2c_smbus_read_byte_data(client,
LM90_REG_R_MAN_ID);
emerg2 = i2c_smbus_read_byte_data(client,
MAX6659_REG_R_REMOTE_EMERG);
status2 = i2c_smbus_read_byte_data(client,
MAX6696_REG_R_STATUS2);
if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
return -ENODEV;
/*
* The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
* register. Reading from that address will return the last
* read value, which in our case is those of the man_id
* register. Likewise, the config1 register seems to lack a
* low nibble, so the value will be those of the previous
* read, so in our case those of the man_id register.
* MAX6659 has a third set of upper temperature limit registers.
* Those registers also return values on MAX6657 and MAX6658,
* thus the only way to detect MAX6659 is by its address.
* For this reason it will be mis-detected as MAX6657 if its
* address is 0x4C.
*/
if (chip_id == man_id
&& (address == 0x4C || address == 0x4D || address == 0x4E)
&& (config1 & 0x1F) == (man_id & 0x0F)
&& convrate <= 0x09) {
if (address == 0x4C)
name = "max6657";
else
name = "max6659";
} else
/*
* Even though MAX6695 and MAX6696 do not have a chip ID
* register, reading it returns 0x01. Bit 4 of the config1
* register is unused and should return zero when read. Bit 0 of
* the status2 register is unused and should return zero when
* read.
*
* MAX6695 and MAX6696 have an additional set of temperature
* limit registers. We can detect those chips by checking if
* one of those registers exists.
*/
if (chip_id == 0x01
&& (config1 & 0x10) == 0x00
&& (status2 & 0x01) == 0x00
&& emerg == emerg2
&& convrate <= 0x07) {
name = "max6696";
} else
/*
* The chip_id register of the MAX6680 and MAX6681 holds the
* revision of the chip. The lowest bit of the config1 register
* is unused and should return zero when read, so should the
* second to last bit of config1 (software reset).
*/
if (chip_id == 0x01
&& (config1 & 0x03) == 0x00
&& convrate <= 0x07) {
name = "max6680";
} else
/*
* The chip_id register of the MAX6646/6647/6649 holds the
* revision of the chip. The lowest 6 bits of the config1
* register are unused and should return zero when read.
*/
if (chip_id == 0x59
&& (config1 & 0x3f) == 0x00
&& convrate <= 0x07) {
name = "max6646";
}
} else
if (address == 0x4C
&& man_id == 0x5C) { /* Winbond/Nuvoton */
if ((config1 & 0x2A) == 0x00
&& (config2 & 0xF8) == 0x00) {
if (chip_id == 0x01 /* W83L771W/G */
&& convrate <= 0x09) {
name = "w83l771";
} else
if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
&& convrate <= 0x08) {
name = "w83l771";
}
}
} else
if (address >= 0x48 && address <= 0x4F
&& man_id == 0xA1) { /* NXP Semiconductor/Philips */
if (chip_id == 0x00
&& (config1 & 0x2A) == 0x00
&& (config2 & 0xFE) == 0x00
&& convrate <= 0x09) {
name = "sa56004";
}
} else
if ((address == 0x4C || address == 0x4D)
&& man_id == 0x47) { /* GMT */
if (chip_id == 0x01 /* G781 */
&& (config1 & 0x3F) == 0x00
&& convrate <= 0x08)
name = "g781";
} else
if (address == 0x4C
&& man_id == 0x55) { /* Texas Instruments */
int local_ext;
local_ext = i2c_smbus_read_byte_data(client,
TMP451_REG_R_LOCAL_TEMPL);
if (chip_id == 0x00 /* TMP451 */
&& (config1 & 0x1B) == 0x00
&& convrate <= 0x09
&& (local_ext & 0x0F) == 0x00)
name = "tmp451";
}
if (!name) { /* identification failed */
dev_dbg(&adapter->dev,
"Unsupported chip at 0x%02x (man_id=0x%02X, "
"chip_id=0x%02X)\n", address, man_id, chip_id);
return -ENODEV;
}
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
{
/* Restore initial configuration */
i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
data->convrate_orig);
i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
data->config_orig);
}
static void lm90_init_client(struct i2c_client *client, struct lm90_data *data)
{
u8 config, convrate;
if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
dev_warn(&client->dev, "Failed to read convrate register!\n");
convrate = LM90_DEF_CONVRATE_RVAL;
}
data->convrate_orig = convrate;
/*
* Start the conversions.
*/
lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
dev_warn(&client->dev, "Initialization failed!\n");
return;
}
data->config_orig = config;
/* Check Temperature Range Select */
if (data->kind == adt7461 || data->kind == tmp451) {
if (config & 0x04)
data->flags |= LM90_FLAG_ADT7461_EXT;
}
/*
* Put MAX6680/MAX8881 into extended resolution (bit 0x10,
* 0.125 degree resolution) and range (0x08, extend range
* to -64 degree) mode for the remote temperature sensor.
*/
if (data->kind == max6680)
config |= 0x18;
/*
* Select external channel 0 for max6695/96
*/
if (data->kind == max6696)
config &= ~0x08;
config &= 0xBF; /* run */
if (config != data->config_orig) /* Only write if changed */
i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
}
static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
{
struct lm90_data *data = i2c_get_clientdata(client);
u8 st, st2 = 0;
lm90_read_reg(client, LM90_REG_R_STATUS, &st);
if (data->kind == max6696)
lm90_read_reg(client, MAX6696_REG_R_STATUS2, &st2);
*status = st | (st2 << 8);
if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
return false;
if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
(st2 & MAX6696_STATUS2_LOT2))
dev_warn(&client->dev,
"temp%d out of range, please check!\n", 1);
if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
(st2 & MAX6696_STATUS2_ROT2))
dev_warn(&client->dev,
"temp%d out of range, please check!\n", 2);
if (st & LM90_STATUS_ROPEN)
dev_warn(&client->dev,
"temp%d diode open, please check!\n", 2);
if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
dev_warn(&client->dev,
"temp%d out of range, please check!\n", 3);
if (st2 & MAX6696_STATUS2_R2OPEN)
dev_warn(&client->dev,
"temp%d diode open, please check!\n", 3);
return true;
}
static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
u16 status;
if (lm90_is_tripped(client, &status))
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static int lm90_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
struct lm90_data *data;
struct regulator *regulator;
int groups = 0;
int err;
regulator = devm_regulator_get(dev, "vcc");
if (IS_ERR(regulator))
return PTR_ERR(regulator);
err = regulator_enable(regulator);
if (err < 0) {
dev_err(dev, "Failed to enable regulator: %d\n", err);
return err;
}
data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
data->regulator = regulator;
/* Set the device type */
data->kind = id->driver_data;
if (data->kind == adm1032) {
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
client->flags &= ~I2C_CLIENT_PEC;
}
/*
* Different devices have different alarm bits triggering the
* ALERT# output
*/
data->alert_alarms = lm90_params[data->kind].alert_alarms;
/* Set chip capabilities */
data->flags = lm90_params[data->kind].flags;
data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
/* Set maximum conversion rate */
data->max_convrate = lm90_params[data->kind].max_convrate;
/* Initialize the LM90 chip */
lm90_init_client(client, data);
/* Register sysfs hooks */
data->groups[groups++] = &lm90_group;
if (data->flags & LM90_HAVE_OFFSET)
data->groups[groups++] = &lm90_temp2_offset_group;
if (data->flags & LM90_HAVE_EMERGENCY)
data->groups[groups++] = &lm90_emergency_group;
if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
data->groups[groups++] = &lm90_emergency_alarm_group;
if (data->flags & LM90_HAVE_TEMP3)
data->groups[groups++] = &lm90_temp3_group;
if (client->flags & I2C_CLIENT_PEC) {
err = device_create_file(dev, &dev_attr_pec);
if (err)
goto exit_restore;
}
data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_pec;
}
if (client->irq) {
dev_dbg(dev, "IRQ: %d\n", client->irq);
err = devm_request_threaded_irq(dev, client->irq,
NULL, lm90_irq_thread,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"lm90", client);
if (err < 0) {
dev_err(dev, "cannot request IRQ %d\n", client->irq);
goto exit_unregister;
}
}
return 0;
exit_unregister:
hwmon_device_unregister(data->hwmon_dev);
exit_remove_pec:
device_remove_file(dev, &dev_attr_pec);
exit_restore:
lm90_restore_conf(client, data);
regulator_disable(data->regulator);
return err;
}
static int lm90_remove(struct i2c_client *client)
{
struct lm90_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
device_remove_file(&client->dev, &dev_attr_pec);
lm90_restore_conf(client, data);
regulator_disable(data->regulator);
return 0;
}
static void lm90_alert(struct i2c_client *client, unsigned int flag)
{
u16 alarms;
if (lm90_is_tripped(client, &alarms)) {
/*
* Disable ALERT# output, because these chips don't implement
* SMBus alert correctly; they should only hold the alert line
* low briefly.
*/
struct lm90_data *data = i2c_get_clientdata(client);
if ((data->flags & LM90_HAVE_BROKEN_ALERT)
&& (alarms & data->alert_alarms)) {
u8 config;
dev_dbg(&client->dev, "Disabling ALERT#\n");
lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
config | 0x80);
}
} else {
dev_info(&client->dev, "Everything OK\n");
}
}
static struct i2c_driver lm90_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm90",
},
.probe = lm90_probe,
.remove = lm90_remove,
.alert = lm90_alert,
.id_table = lm90_id,
.detect = lm90_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm90_driver);
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("LM90/ADM1032 driver");
MODULE_LICENSE("GPL");