| #ifndef _ASM_POWERPC_PGTABLE_H |
| #define _ASM_POWERPC_PGTABLE_H |
| #ifdef __KERNEL__ |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/mmdebug.h> |
| #include <linux/mmzone.h> |
| #include <asm/processor.h> /* For TASK_SIZE */ |
| #include <asm/mmu.h> |
| #include <asm/page.h> |
| |
| struct mm_struct; |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #if defined(CONFIG_PPC64) |
| # include <asm/pgtable-ppc64.h> |
| #else |
| # include <asm/pgtable-ppc32.h> |
| #endif |
| |
| /* |
| * We save the slot number & secondary bit in the second half of the |
| * PTE page. We use the 8 bytes per each pte entry. |
| */ |
| #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8) |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <asm/tlbflush.h> |
| |
| /* Generic accessors to PTE bits */ |
| static inline int pte_write(pte_t pte) |
| { return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } |
| static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } |
| static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* |
| * These work without NUMA balancing but the kernel does not care. See the |
| * comment in include/asm-generic/pgtable.h . On powerpc, this will only |
| * work for user pages and always return true for kernel pages. |
| */ |
| static inline int pte_protnone(pte_t pte) |
| { |
| return (pte_val(pte) & |
| (_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT; |
| } |
| |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| return pte_protnone(pmd_pte(pmd)); |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| static inline int pte_present(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_PRESENT; |
| } |
| |
| /* Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| * |
| * Even if PTEs can be unsigned long long, a PFN is always an unsigned |
| * long for now. |
| */ |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { |
| return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | |
| pgprot_val(pgprot)); } |
| static inline unsigned long pte_pfn(pte_t pte) { |
| return pte_val(pte) >> PTE_RPN_SHIFT; } |
| |
| /* Keep these as a macros to avoid include dependency mess */ |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| /* Generic modifiers for PTE bits */ |
| static inline pte_t pte_wrprotect(pte_t pte) { |
| pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); |
| pte_val(pte) |= _PAGE_RO; return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) { |
| pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_RO; |
| pte_val(pte) |= _PAGE_RW; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { |
| pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { |
| pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkspecial(pte_t pte) { |
| pte_val(pte) |= _PAGE_SPECIAL; return pte; } |
| static inline pte_t pte_mkhuge(pte_t pte) { |
| return pte; } |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| return pte; |
| } |
| |
| |
| /* Insert a PTE, top-level function is out of line. It uses an inline |
| * low level function in the respective pgtable-* files |
| */ |
| extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, |
| pte_t pte); |
| |
| /* This low level function performs the actual PTE insertion |
| * Setting the PTE depends on the MMU type and other factors. It's |
| * an horrible mess that I'm not going to try to clean up now but |
| * I'm keeping it in one place rather than spread around |
| */ |
| static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte, int percpu) |
| { |
| #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) |
| /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the |
| * helper pte_update() which does an atomic update. We need to do that |
| * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a |
| * per-CPU PTE such as a kmap_atomic, we do a simple update preserving |
| * the hash bits instead (ie, same as the non-SMP case) |
| */ |
| if (percpu) |
| *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
| | (pte_val(pte) & ~_PAGE_HASHPTE)); |
| else |
| pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); |
| |
| #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) |
| /* Second case is 32-bit with 64-bit PTE. In this case, we |
| * can just store as long as we do the two halves in the right order |
| * with a barrier in between. This is possible because we take care, |
| * in the hash code, to pre-invalidate if the PTE was already hashed, |
| * which synchronizes us with any concurrent invalidation. |
| * In the percpu case, we also fallback to the simple update preserving |
| * the hash bits |
| */ |
| if (percpu) { |
| *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
| | (pte_val(pte) & ~_PAGE_HASHPTE)); |
| return; |
| } |
| #if _PAGE_HASHPTE != 0 |
| if (pte_val(*ptep) & _PAGE_HASHPTE) |
| flush_hash_entry(mm, ptep, addr); |
| #endif |
| __asm__ __volatile__("\ |
| stw%U0%X0 %2,%0\n\ |
| eieio\n\ |
| stw%U0%X0 %L2,%1" |
| : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) |
| : "r" (pte) : "memory"); |
| |
| #elif defined(CONFIG_PPC_STD_MMU_32) |
| /* Third case is 32-bit hash table in UP mode, we need to preserve |
| * the _PAGE_HASHPTE bit since we may not have invalidated the previous |
| * translation in the hash yet (done in a subsequent flush_tlb_xxx()) |
| * and see we need to keep track that this PTE needs invalidating |
| */ |
| *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
| | (pte_val(pte) & ~_PAGE_HASHPTE)); |
| |
| #else |
| /* Anything else just stores the PTE normally. That covers all 64-bit |
| * cases, and 32-bit non-hash with 32-bit PTEs. |
| */ |
| *ptep = pte; |
| |
| #ifdef CONFIG_PPC_BOOK3E_64 |
| /* |
| * With hardware tablewalk, a sync is needed to ensure that |
| * subsequent accesses see the PTE we just wrote. Unlike userspace |
| * mappings, we can't tolerate spurious faults, so make sure |
| * the new PTE will be seen the first time. |
| */ |
| if (is_kernel_addr(addr)) |
| mb(); |
| #endif |
| #endif |
| } |
| |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep, pte_t entry, int dirty); |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| */ |
| |
| #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ |
| _PAGE_WRITETHRU) |
| |
| #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_NO_CACHE | _PAGE_GUARDED)) |
| |
| #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_NO_CACHE)) |
| |
| #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_COHERENT)) |
| |
| #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_COHERENT | _PAGE_WRITETHRU)) |
| |
| #define pgprot_cached_noncoherent(prot) \ |
| (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) |
| |
| #define pgprot_writecombine pgprot_noncached_wc |
| |
| struct file; |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot); |
| #define __HAVE_PHYS_MEM_ACCESS_PROT |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| extern pgd_t swapper_pg_dir[]; |
| |
| void limit_zone_pfn(enum zone_type zone, unsigned long max_pfn); |
| int dma_pfn_limit_to_zone(u64 pfn_limit); |
| extern void paging_init(void); |
| |
| /* |
| * kern_addr_valid is intended to indicate whether an address is a valid |
| * kernel address. Most 32-bit archs define it as always true (like this) |
| * but most 64-bit archs actually perform a test. What should we do here? |
| */ |
| #define kern_addr_valid(addr) (1) |
| |
| #include <asm-generic/pgtable.h> |
| |
| |
| /* |
| * This gets called at the end of handling a page fault, when |
| * the kernel has put a new PTE into the page table for the process. |
| * We use it to ensure coherency between the i-cache and d-cache |
| * for the page which has just been mapped in. |
| * On machines which use an MMU hash table, we use this to put a |
| * corresponding HPTE into the hash table ahead of time, instead of |
| * waiting for the inevitable extra hash-table miss exception. |
| */ |
| extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); |
| |
| extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, |
| unsigned long end, int write, |
| struct page **pages, int *nr); |
| #ifndef CONFIG_TRANSPARENT_HUGEPAGE |
| #define pmd_large(pmd) 0 |
| #define has_transparent_hugepage() 0 |
| #endif |
| pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, |
| bool *is_thp, unsigned *shift); |
| static inline pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, |
| bool *is_thp, unsigned *shift) |
| { |
| if (!arch_irqs_disabled()) { |
| pr_info("%s called with irq enabled\n", __func__); |
| dump_stack(); |
| } |
| return __find_linux_pte_or_hugepte(pgdir, ea, is_thp, shift); |
| } |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _ASM_POWERPC_PGTABLE_H */ |