blob: 5439d662d1047377ddd7d832dbd1791e0ce887fe [file] [log] [blame]
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* Vortex PCM ALSA driver.
*
* Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
* It remains stuck,and DMA transfers do not happen.
*/
#include <sound/asoundef.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "au88x0.h"
#define VORTEX_PCM_TYPE(x) (x->name[40])
/* hardware definition */
static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
.info =
(SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats =
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 5000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 0x10000,
.period_bytes_min = 0x1,
.period_bytes_max = 0x1000,
.periods_min = 2,
.periods_max = 32,
};
#ifndef CHIP_AU8820
static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
.info =
(SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats =
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 5000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 0x10000,
.period_bytes_min = 0x100,
.period_bytes_max = 0x1000,
.periods_min = 2,
.periods_max = 64,
};
#endif
static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
.info =
(SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats =
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
SNDRV_PCM_FMTBIT_A_LAW,
.rates =
SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 32000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 0x10000,
.period_bytes_min = 0x100,
.period_bytes_max = 0x1000,
.periods_min = 2,
.periods_max = 64,
};
#ifndef CHIP_AU8810
static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 0x10000,
.period_bytes_min = 0x0400,
.period_bytes_max = 0x1000,
.periods_min = 2,
.periods_max = 64,
};
#endif
#ifdef CHIP_AU8830
static unsigned int au8830_channels[3] = {
1, 2, 4,
};
static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = {
.count = ARRAY_SIZE(au8830_channels),
.list = au8830_channels,
.mask = 0,
};
#endif
/* open callback */
static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
{
vortex_t *vortex = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
/* Force equal size periods */
if ((err =
snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
/* Avoid PAGE_SIZE boundary to fall inside of a period. */
if ((err =
snd_pcm_hw_constraint_pow2(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
return err;
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
#ifndef CHIP_AU8820
if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
runtime->hw = snd_vortex_playback_hw_a3d;
}
#endif
if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
runtime->hw = snd_vortex_playback_hw_spdif;
switch (vortex->spdif_sr) {
case 32000:
runtime->hw.rates = SNDRV_PCM_RATE_32000;
break;
case 44100:
runtime->hw.rates = SNDRV_PCM_RATE_44100;
break;
case 48000:
runtime->hw.rates = SNDRV_PCM_RATE_48000;
break;
}
}
if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
|| VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
runtime->hw = snd_vortex_playback_hw_adb;
#ifdef CHIP_AU8830
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
runtime->hw.channels_max = 4;
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS,
&hw_constraints_au8830_channels);
}
#endif
substream->runtime->private_data = NULL;
}
#ifndef CHIP_AU8810
else {
runtime->hw = snd_vortex_playback_hw_wt;
substream->runtime->private_data = NULL;
}
#endif
return 0;
}
/* close callback */
static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
{
//vortex_t *chip = snd_pcm_substream_chip(substream);
stream_t *stream = (stream_t *) substream->runtime->private_data;
// the hardware-specific codes will be here
if (stream != NULL) {
stream->substream = NULL;
stream->nr_ch = 0;
}
substream->runtime->private_data = NULL;
return 0;
}
/* hw_params callback */
static int
snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
vortex_t *chip = snd_pcm_substream_chip(substream);
stream_t *stream = (stream_t *) (substream->runtime->private_data);
int err;
// Alloc buffer memory.
err =
snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
if (err < 0) {
printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
return err;
}
/*
printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
params_period_bytes(hw_params), params_channels(hw_params));
*/
spin_lock_irq(&chip->lock);
// Make audio routes and config buffer DMA.
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
int dma, type = VORTEX_PCM_TYPE(substream->pcm);
/* Dealloc any routes. */
if (stream != NULL)
vortex_adb_allocroute(chip, stream->dma,
stream->nr_ch, stream->dir,
stream->type);
/* Alloc routes. */
dma =
vortex_adb_allocroute(chip, -1,
params_channels(hw_params),
substream->stream, type);
if (dma < 0) {
spin_unlock_irq(&chip->lock);
return dma;
}
stream = substream->runtime->private_data = &chip->dma_adb[dma];
stream->substream = substream;
/* Setup Buffers. */
vortex_adbdma_setbuffers(chip, dma,
params_period_bytes(hw_params),
params_periods(hw_params));
}
#ifndef CHIP_AU8810
else {
/* if (stream != NULL)
vortex_wt_allocroute(chip, substream->number, 0); */
vortex_wt_allocroute(chip, substream->number,
params_channels(hw_params));
stream = substream->runtime->private_data =
&chip->dma_wt[substream->number];
stream->dma = substream->number;
stream->substream = substream;
vortex_wtdma_setbuffers(chip, substream->number,
params_period_bytes(hw_params),
params_periods(hw_params));
}
#endif
spin_unlock_irq(&chip->lock);
return 0;
}
/* hw_free callback */
static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
{
vortex_t *chip = snd_pcm_substream_chip(substream);
stream_t *stream = (stream_t *) (substream->runtime->private_data);
spin_lock_irq(&chip->lock);
// Delete audio routes.
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
if (stream != NULL)
vortex_adb_allocroute(chip, stream->dma,
stream->nr_ch, stream->dir,
stream->type);
}
#ifndef CHIP_AU8810
else {
if (stream != NULL)
vortex_wt_allocroute(chip, stream->dma, 0);
}
#endif
substream->runtime->private_data = NULL;
spin_unlock_irq(&chip->lock);
return snd_pcm_lib_free_pages(substream);
}
/* prepare callback */
static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
{
vortex_t *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
stream_t *stream = (stream_t *) substream->runtime->private_data;
int dma = stream->dma, fmt, dir;
// set up the hardware with the current configuration.
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = 1;
else
dir = 0;
fmt = vortex_alsafmt_aspfmt(runtime->format);
spin_lock_irq(&chip->lock);
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ ,
0);
vortex_adbdma_setstartbuffer(chip, dma, 0);
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
vortex_adb_setsrc(chip, dma, runtime->rate, dir);
}
#ifndef CHIP_AU8810
else {
vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
// FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
vortex_wtdma_setstartbuffer(chip, dma, 0);
}
#endif
spin_unlock_irq(&chip->lock);
return 0;
}
/* trigger callback */
static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
vortex_t *chip = snd_pcm_substream_chip(substream);
stream_t *stream = (stream_t *) substream->runtime->private_data;
int dma = stream->dma;
spin_lock(&chip->lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
// do something to start the PCM engine
//printk(KERN_INFO "vortex: start %d\n", dma);
stream->fifo_enabled = 1;
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
vortex_adbdma_resetup(chip, dma);
vortex_adbdma_startfifo(chip, dma);
}
#ifndef CHIP_AU8810
else {
printk(KERN_INFO "vortex: wt start %d\n", dma);
vortex_wtdma_startfifo(chip, dma);
}
#endif
break;
case SNDRV_PCM_TRIGGER_STOP:
// do something to stop the PCM engine
//printk(KERN_INFO "vortex: stop %d\n", dma);
stream->fifo_enabled = 0;
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
vortex_adbdma_pausefifo(chip, dma);
//vortex_adbdma_stopfifo(chip, dma);
#ifndef CHIP_AU8810
else {
printk(KERN_INFO "vortex: wt stop %d\n", dma);
vortex_wtdma_stopfifo(chip, dma);
}
#endif
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
//printk(KERN_INFO "vortex: pause %d\n", dma);
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
vortex_adbdma_pausefifo(chip, dma);
#ifndef CHIP_AU8810
else
vortex_wtdma_pausefifo(chip, dma);
#endif
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
//printk(KERN_INFO "vortex: resume %d\n", dma);
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
vortex_adbdma_resumefifo(chip, dma);
#ifndef CHIP_AU8810
else
vortex_wtdma_resumefifo(chip, dma);
#endif
break;
default:
spin_unlock(&chip->lock);
return -EINVAL;
}
spin_unlock(&chip->lock);
return 0;
}
/* pointer callback */
static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
{
vortex_t *chip = snd_pcm_substream_chip(substream);
stream_t *stream = (stream_t *) substream->runtime->private_data;
int dma = stream->dma;
snd_pcm_uframes_t current_ptr = 0;
spin_lock(&chip->lock);
if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
current_ptr = vortex_adbdma_getlinearpos(chip, dma);
#ifndef CHIP_AU8810
else
current_ptr = vortex_wtdma_getlinearpos(chip, dma);
#endif
//printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
spin_unlock(&chip->lock);
return (bytes_to_frames(substream->runtime, current_ptr));
}
/* operators */
static struct snd_pcm_ops snd_vortex_playback_ops = {
.open = snd_vortex_pcm_open,
.close = snd_vortex_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_vortex_pcm_hw_params,
.hw_free = snd_vortex_pcm_hw_free,
.prepare = snd_vortex_pcm_prepare,
.trigger = snd_vortex_pcm_trigger,
.pointer = snd_vortex_pcm_pointer,
.page = snd_pcm_sgbuf_ops_page,
};
/*
* definitions of capture are omitted here...
*/
static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
"AU88x0 ADB",
"AU88x0 SPDIF",
"AU88x0 A3D",
"AU88x0 WT",
"AU88x0 I2S",
};
static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
"adb",
"spdif",
"a3d",
"wt",
"i2s",
};
/* SPDIF kcontrol */
static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
return 0;
}
static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
vortex_t *vortex = snd_kcontrol_chip(kcontrol);
ucontrol->value.iec958.status[0] = 0x00;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
ucontrol->value.iec958.status[2] = 0x00;
switch (vortex->spdif_sr) {
case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
}
return 0;
}
static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
vortex_t *vortex = snd_kcontrol_chip(kcontrol);
int spdif_sr = 48000;
switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
}
if (spdif_sr == vortex->spdif_sr)
return 0;
vortex->spdif_sr = spdif_sr;
vortex_spdif_init(vortex, vortex->spdif_sr, 1);
return 1;
}
/* spdif controls */
static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_vortex_spdif_info,
.get = snd_vortex_spdif_get,
.put = snd_vortex_spdif_put,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_vortex_spdif_info,
.get = snd_vortex_spdif_mask_get
},
};
/* create a pcm device */
static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
{
struct snd_pcm *pcm;
struct snd_kcontrol *kctl;
int i;
int err, nr_capt;
if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
return -ENODEV;
/* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
* same dma engine. WT uses it own separate dma engine whcih cant capture. */
if (idx == VORTEX_PCM_ADB)
nr_capt = nr;
else
nr_capt = 0;
err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
nr_capt, &pcm);
if (err < 0)
return err;
strcpy(pcm->name, vortex_pcm_name[idx]);
chip->pcm[idx] = pcm;
// This is an evil hack, but it saves a lot of duplicated code.
VORTEX_PCM_TYPE(pcm) = idx;
pcm->private_data = chip;
/* set operators */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_vortex_playback_ops);
if (idx == VORTEX_PCM_ADB)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_vortex_playback_ops);
/* pre-allocation of Scatter-Gather buffers */
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
snd_dma_pci_data(chip->pci_dev),
0x10000, 0x10000);
if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
if (!kctl)
return -ENOMEM;
if ((err = snd_ctl_add(chip->card, kctl)) < 0)
return err;
}
}
return 0;
}